]> cvs.zerfleddert.de Git - proxmark3-svn/blob - client/mifarehost.c
FIX: Coverity, CID#121314, Explicit null dereferenced, in really odd occasions...
[proxmark3-svn] / client / mifarehost.c
1 // Merlok, 2011, 2012
2 // people from mifare@nethemba.com, 2010
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // mifare commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <pthread.h>
15 #include "mifarehost.h"
16 #include "proxmark3.h"
17
18 #define llx PRIx64
19
20 // MIFARE
21 int compar_int(const void * a, const void * b) {
22 // didn't work: (the result is truncated to 32 bits)
23 //return (*(uint64_t*)b - *(uint64_t*)a);
24
25 // better:
26 if (*(uint64_t*)b == *(uint64_t*)a) return 0;
27 else if (*(uint64_t*)b > *(uint64_t*)a) return 1;
28 else return -1;
29 }
30
31 // Compare 16 Bits out of cryptostate
32 int Compare16Bits(const void * a, const void * b) {
33 if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0;
34 else if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
35 else return -1;
36 }
37
38 typedef
39 struct {
40 union {
41 struct Crypto1State *slhead;
42 uint64_t *keyhead;
43 } head;
44 union {
45 struct Crypto1State *sltail;
46 uint64_t *keytail;
47 } tail;
48 uint32_t len;
49 uint32_t uid;
50 uint32_t blockNo;
51 uint32_t keyType;
52 uint32_t nt;
53 uint32_t ks1;
54 } StateList_t;
55
56
57 // wrapper function for multi-threaded lfsr_recovery32
58 void* nested_worker_thread(void *arg)
59 {
60 struct Crypto1State *p1;
61 StateList_t *statelist = arg;
62
63 statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
64 for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
65 statelist->len = p1 - statelist->head.slhead;
66 statelist->tail.sltail = --p1;
67 qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
68
69 return statelist->head.slhead;
70 }
71
72 int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * resultKey, bool calibrate)
73 {
74 uint16_t i;
75 uint32_t uid;
76 UsbCommand resp;
77
78 StateList_t statelists[2];
79 struct Crypto1State *p1, *p2, *p3, *p4;
80
81 // flush queue
82 clearCommandBuffer();
83 //WaitForResponseTimeout(CMD_ACK,NULL,100);
84
85 UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
86 memcpy(c.d.asBytes, key, 6);
87 SendCommand(&c);
88
89 if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
90 return -1;
91 }
92
93 if (resp.arg[0]) {
94 return resp.arg[0]; // error during nested
95 }
96
97 memcpy(&uid, resp.d.asBytes, 4);
98 PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8);
99
100 for (i = 0; i < 2; i++) {
101 statelists[i].blockNo = resp.arg[2] & 0xff;
102 statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
103 statelists[i].uid = uid;
104 memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
105 memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
106 }
107
108 // calc keys
109
110 pthread_t thread_id[2];
111
112 // create and run worker threads
113 for (i = 0; i < 2; i++) {
114 pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
115 }
116
117 // wait for threads to terminate:
118 for (i = 0; i < 2; i++) {
119 pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
120 }
121
122
123 // the first 16 Bits of the cryptostate already contain part of our key.
124 // Create the intersection of the two lists based on these 16 Bits and
125 // roll back the cryptostate
126 p1 = p3 = statelists[0].head.slhead;
127 p2 = p4 = statelists[1].head.slhead;
128 while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
129 if (Compare16Bits(p1, p2) == 0) {
130 struct Crypto1State savestate, *savep = &savestate;
131 savestate = *p1;
132 while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
133 *p3 = *p1;
134 lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
135 p3++;
136 p1++;
137 }
138 savestate = *p2;
139 while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
140 *p4 = *p2;
141 lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
142 p4++;
143 p2++;
144 }
145 }
146 else {
147 while (Compare16Bits(p1, p2) == -1) p1++;
148 while (Compare16Bits(p1, p2) == 1) p2++;
149 }
150 }
151 p3->even = 0; p3->odd = 0;
152 p4->even = 0; p4->odd = 0;
153 statelists[0].len = p3 - statelists[0].head.slhead;
154 statelists[1].len = p4 - statelists[1].head.slhead;
155 statelists[0].tail.sltail=--p3;
156 statelists[1].tail.sltail=--p4;
157
158 // the statelists now contain possible keys. The key we are searching for must be in the
159 // intersection of both lists. Create the intersection:
160 qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compar_int);
161 qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compar_int);
162
163 uint64_t *p5, *p6, *p7;
164 p5 = p7 = statelists[0].head.keyhead;
165 p6 = statelists[1].head.keyhead;
166 while (p5 <= statelists[0].tail.keytail && p6 <= statelists[1].tail.keytail) {
167 if (compar_int(p5, p6) == 0) {
168 *p7++ = *p5++;
169 p6++;
170 }
171 else {
172 while (compar_int(p5, p6) == -1) p5++;
173 while (compar_int(p5, p6) == 1) p6++;
174 }
175 }
176 statelists[0].len = p7 - statelists[0].head.keyhead;
177 statelists[0].tail.keytail=--p7;
178
179 memset(resultKey, 0, 6);
180 // The list may still contain several key candidates. Test each of them with mfCheckKeys
181 for (i = 0; i < statelists[0].len; i++) {
182 uint8_t keyBlock[6];
183 uint64_t key64;
184 crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
185 num_to_bytes(key64, 6, keyBlock);
186 key64 = 0;
187 if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, 1, keyBlock, &key64)) {
188 num_to_bytes(key64, 6, resultKey);
189 break;
190 }
191 }
192
193 free(statelists[0].head.slhead);
194 free(statelists[1].head.slhead);
195 return 0;
196 }
197
198 int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
199
200 *key = 0;
201
202 UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType&0xff)<<8)), clear_trace, keycnt}};
203 memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
204
205 clearCommandBuffer();
206 SendCommand(&c);
207 UsbCommand resp;
208 if (!WaitForResponseTimeout(CMD_ACK,&resp,3000)) return 1;
209 if ((resp.arg[0] & 0xff) != 0x01) return 2;
210 *key = bytes_to_num(resp.d.asBytes, 6);
211 return 0;
212 }
213
214 // EMULATOR
215
216 int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
217 UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
218 clearCommandBuffer();
219 SendCommand(&c);
220 UsbCommand resp;
221 if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
222 memcpy(data, resp.d.asBytes, blocksCount * 16);
223 return 0;
224 }
225
226 int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
227 return mfEmlSetMem_xt(data, blockNum, blocksCount, 16);
228 }
229
230 int mfEmlSetMem_xt(uint8_t *data, int blockNum, int blocksCount, int blockBtWidth) {
231 UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, blockBtWidth}};
232 memcpy(c.d.asBytes, data, blocksCount * blockBtWidth);
233
234 clearCommandBuffer();
235 SendCommand(&c);
236 return 0;
237 }
238
239 // "MAGIC" CARD
240
241 int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, uint8_t wipecard) {
242
243 uint8_t params = MAGIC_SINGLE;
244 uint8_t block0[16];
245 memset(block0, 0x00, sizeof(block0));
246
247
248 int old = mfCGetBlock(0, block0, params);
249 if (old == 0) {
250 PrintAndLog("old block 0: %s", sprint_hex(block0, sizeof(block0)));
251 } else {
252 PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
253 }
254
255 // fill in the new values
256 // UID
257 memcpy(block0, uid, 4);
258 // Mifare UID BCC
259 block0[4] = block0[0]^block0[1]^block0[2]^block0[3];
260 // mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
261 if ( sak != NULL )
262 block0[5]=sak[0];
263
264 if ( atqa != NULL ) {
265 block0[6]=atqa[1];
266 block0[7]=atqa[0];
267 }
268 PrintAndLog("new block 0: %s", sprint_hex(block0,16));
269
270 if ( wipecard ) params |= MAGIC_WIPE;
271 if ( oldUID == NULL) params |= MAGIC_UID;
272
273 return mfCSetBlock(0, block0, oldUID, params);
274 }
275
276 int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, uint8_t params) {
277
278 uint8_t isOK = 0;
279 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params, blockNo, 0}};
280 memcpy(c.d.asBytes, data, 16);
281 clearCommandBuffer();
282 SendCommand(&c);
283 UsbCommand resp;
284 if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
285 isOK = resp.arg[0] & 0xff;
286 if (uid != NULL)
287 memcpy(uid, resp.d.asBytes, 4);
288 if (!isOK)
289 return 2;
290 } else {
291 PrintAndLog("Command execute timeout");
292 return 1;
293 }
294 return 0;
295 }
296
297 int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
298 uint8_t isOK = 0;
299 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
300 clearCommandBuffer();
301 SendCommand(&c);
302 UsbCommand resp;
303 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
304 isOK = resp.arg[0] & 0xff;
305 memcpy(data, resp.d.asBytes, 16);
306 if (!isOK) return 2;
307 } else {
308 PrintAndLog("Command execute timeout");
309 return 1;
310 }
311 return 0;
312 }
313
314 // SNIFFER
315
316 // constants
317 static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00};
318
319 // variables
320 char logHexFileName[FILE_PATH_SIZE] = {0x00};
321 static uint8_t traceCard[4096] = {0x00};
322 static char traceFileName[FILE_PATH_SIZE] = {0x00};
323 static int traceState = TRACE_IDLE;
324 static uint8_t traceCurBlock = 0;
325 static uint8_t traceCurKey = 0;
326
327 struct Crypto1State *traceCrypto1 = NULL;
328
329 struct Crypto1State *revstate = NULL;
330
331 uint64_t key = 0;
332 uint32_t ks2 = 0;
333 uint32_t ks3 = 0;
334
335 uint32_t uid = 0; // serial number
336 uint32_t nt =0; // tag challenge
337 uint32_t nr_enc =0; // encrypted reader challenge
338 uint32_t ar_enc =0; // encrypted reader response
339 uint32_t at_enc =0; // encrypted tag response
340
341 int isTraceCardEmpty(void) {
342 return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
343 }
344
345 int isBlockEmpty(int blockN) {
346 for (int i = 0; i < 16; i++)
347 if (traceCard[blockN * 16 + i] != 0) return 0;
348
349 return 1;
350 }
351
352 int isBlockTrailer(int blockN) {
353 return ((blockN & 0x03) == 0x03);
354 }
355
356 int loadTraceCard(uint8_t *tuid) {
357 FILE * f;
358 char buf[64] = {0x00};
359 uint8_t buf8[64] = {0x00};
360 int i, blockNum;
361
362 if (!isTraceCardEmpty())
363 saveTraceCard();
364
365 memset(traceCard, 0x00, 4096);
366 memcpy(traceCard, tuid + 3, 4);
367
368 FillFileNameByUID(traceFileName, tuid, ".eml", 7);
369
370 f = fopen(traceFileName, "r");
371 if (!f) return 1;
372
373 blockNum = 0;
374
375 while(!feof(f)){
376
377 memset(buf, 0, sizeof(buf));
378 if (fgets(buf, sizeof(buf), f) == NULL) {
379 PrintAndLog("File reading error.");
380 fclose(f);
381 return 2;
382 }
383
384 if (strlen(buf) < 32){
385 if (feof(f)) break;
386 PrintAndLog("File content error. Block data must include 32 HEX symbols");
387 fclose(f);
388 return 2;
389 }
390 for (i = 0; i < 32; i += 2)
391 sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
392
393 memcpy(traceCard + blockNum * 16, buf8, 16);
394
395 blockNum++;
396 }
397 fclose(f);
398
399 return 0;
400 }
401
402 int saveTraceCard(void) {
403 FILE * f;
404
405 if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
406
407 f = fopen(traceFileName, "w+");
408 if ( !f ) return 1;
409
410 for (int i = 0; i < 64; i++) { // blocks
411 for (int j = 0; j < 16; j++) // bytes
412 fprintf(f, "%02x", *(traceCard + i * 16 + j));
413 fprintf(f,"\n");
414 }
415 fclose(f);
416 return 0;
417 }
418
419 int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
420
421 if (traceCrypto1)
422 crypto1_destroy(traceCrypto1);
423
424 traceCrypto1 = NULL;
425
426 if (wantSaveToEmlFile)
427 loadTraceCard(tuid);
428
429 traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
430 traceCard[5] = sak;
431 memcpy(&traceCard[6], atqa, 2);
432 traceCurBlock = 0;
433 uid = bytes_to_num(tuid + 3, 4);
434
435 traceState = TRACE_IDLE;
436
437 return 0;
438 }
439
440 void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
441 uint8_t bt = 0;
442 int i;
443
444 if (len != 1) {
445 for (i = 0; i < len; i++)
446 data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
447 } else {
448 bt = 0;
449 for (i = 0; i < 4; i++)
450 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], i)) << i;
451
452 data[0] = bt;
453 }
454 return;
455 }
456
457
458 int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
459 uint8_t data[64];
460
461 if (traceState == TRACE_ERROR) return 1;
462 if (len > 64) {
463 traceState = TRACE_ERROR;
464 return 1;
465 }
466
467 memcpy(data, data_src, len);
468 if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
469 mf_crypto1_decrypt(traceCrypto1, data, len, 0);
470 PrintAndLog("dec> %s", sprint_hex(data, len));
471 AddLogHex(logHexFileName, "dec> ", data, len);
472 }
473
474 switch (traceState) {
475 case TRACE_IDLE:
476 // check packet crc16!
477 if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) {
478 PrintAndLog("dec> CRC ERROR!!!");
479 AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!");
480 traceState = TRACE_ERROR; // do not decrypt the next commands
481 return 1;
482 }
483
484 // AUTHENTICATION
485 if ((len == 4) && ((data[0] == 0x60) || (data[0] == 0x61))) {
486 traceState = TRACE_AUTH1;
487 traceCurBlock = data[1];
488 traceCurKey = data[0] == 60 ? 1:0;
489 return 0;
490 }
491
492 // READ
493 if ((len ==4) && ((data[0] == 0x30))) {
494 traceState = TRACE_READ_DATA;
495 traceCurBlock = data[1];
496 return 0;
497 }
498
499 // WRITE
500 if ((len ==4) && ((data[0] == 0xA0))) {
501 traceState = TRACE_WRITE_OK;
502 traceCurBlock = data[1];
503 return 0;
504 }
505
506 // HALT
507 if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) {
508 traceState = TRACE_ERROR; // do not decrypt the next commands
509 return 0;
510 }
511
512 return 0;
513 break;
514
515 case TRACE_READ_DATA:
516 if (len == 18) {
517 traceState = TRACE_IDLE;
518
519 if (isBlockTrailer(traceCurBlock)) {
520 memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
521 } else {
522 memcpy(traceCard + traceCurBlock * 16, data, 16);
523 }
524 if (wantSaveToEmlFile) saveTraceCard();
525 return 0;
526 } else {
527 traceState = TRACE_ERROR;
528 return 1;
529 }
530 break;
531
532 case TRACE_WRITE_OK:
533 if ((len == 1) && (data[0] == 0x0a)) {
534 traceState = TRACE_WRITE_DATA;
535
536 return 0;
537 } else {
538 traceState = TRACE_ERROR;
539 return 1;
540 }
541 break;
542
543 case TRACE_WRITE_DATA:
544 if (len == 18) {
545 traceState = TRACE_IDLE;
546
547 memcpy(traceCard + traceCurBlock * 16, data, 16);
548 if (wantSaveToEmlFile) saveTraceCard();
549 return 0;
550 } else {
551 traceState = TRACE_ERROR;
552 return 1;
553 }
554 break;
555
556 case TRACE_AUTH1:
557 if (len == 4) {
558 traceState = TRACE_AUTH2;
559 nt = bytes_to_num(data, 4);
560 return 0;
561 } else {
562 traceState = TRACE_ERROR;
563 return 1;
564 }
565 break;
566
567 case TRACE_AUTH2:
568 if (len == 8) {
569 traceState = TRACE_AUTH_OK;
570
571 nr_enc = bytes_to_num(data, 4);
572 ar_enc = bytes_to_num(data + 4, 4);
573 return 0;
574 } else {
575 traceState = TRACE_ERROR;
576 return 1;
577 }
578 break;
579
580 case TRACE_AUTH_OK:
581 if (len ==4) {
582 traceState = TRACE_IDLE;
583
584 at_enc = bytes_to_num(data, 4);
585
586 // decode key here)
587 ks2 = ar_enc ^ prng_successor(nt, 64);
588 ks3 = at_enc ^ prng_successor(nt, 96);
589 revstate = lfsr_recovery64(ks2, ks3);
590 lfsr_rollback_word(revstate, 0, 0);
591 lfsr_rollback_word(revstate, 0, 0);
592 lfsr_rollback_word(revstate, nr_enc, 1);
593 lfsr_rollback_word(revstate, uid ^ nt, 0);
594
595 crypto1_get_lfsr(revstate, &key);
596 printf("Key: %012"llx"\n",key);
597 AddLogUint64(logHexFileName, "key: ", key);
598
599 int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
600 if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
601
602 if (traceCurKey) {
603 num_to_bytes(key, 6, traceCard + blockShift + 10);
604 } else {
605 num_to_bytes(key, 6, traceCard + blockShift);
606 }
607 if (wantSaveToEmlFile) saveTraceCard();
608
609 if (traceCrypto1) {
610 crypto1_destroy(traceCrypto1);
611 }
612
613 // set cryptosystem state
614 traceCrypto1 = lfsr_recovery64(ks2, ks3);
615
616 // nt = crypto1_word(traceCrypto1, nt ^ uid, 1) ^ nt;
617
618 /* traceCrypto1 = crypto1_create(key); // key in lfsr
619 crypto1_word(traceCrypto1, nt ^ uid, 0);
620 crypto1_word(traceCrypto1, ar, 1);
621 crypto1_word(traceCrypto1, 0, 0);
622 crypto1_word(traceCrypto1, 0, 0);*/
623
624 return 0;
625 } else {
626 traceState = TRACE_ERROR;
627 return 1;
628 }
629 break;
630
631 default:
632 traceState = TRACE_ERROR;
633 return 1;
634 }
635
636 return 0;
637 }
638
639 int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){
640 /*
641 uint32_t nt; // tag challenge
642 uint32_t nr_enc; // encrypted reader challenge
643 uint32_t ar_enc; // encrypted reader response
644 uint32_t at_enc; // encrypted tag response
645 */
646
647 struct Crypto1State *pcs = NULL;
648
649 ks2 = ar_enc ^ prng_successor(nt, 64);
650 ks3 = at_enc ^ prng_successor(nt, 96);
651
652 PrintAndLog("Decrypting data with:");
653 PrintAndLog(" nt: %08x",nt);
654 PrintAndLog(" ar_enc: %08x",ar_enc);
655 PrintAndLog(" at_enc: %08x",at_enc);
656 PrintAndLog("\nEncrypted data: [%s]", sprint_hex(data,len) );
657
658 pcs = lfsr_recovery64(ks2, ks3);
659 mf_crypto1_decrypt(pcs, data, len, FALSE);
660 PrintAndLog("Decrypted data: [%s]", sprint_hex(data,len) );
661 crypto1_destroy(pcs);
662 return 0;
663 }
Impressum, Datenschutz