1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
42 struct common_area common_area
__attribute__((section(".commonarea")));
44 void BufferClear(void)
46 memset(BigBuf
,0,sizeof(BigBuf
));
47 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf
));
50 void ToSendReset(void)
56 void ToSendStuffBit(int b
)
60 ToSend
[ToSendMax
] = 0;
65 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
70 if(ToSendBit
>= sizeof(ToSend
)) {
72 DbpString("ToSendStuffBit overflowed!");
76 //=============================================================================
77 // Debug print functions, to go out over USB, to the usual PC-side client.
78 //=============================================================================
80 void DbpString(char *str
)
82 byte_t len
= strlen(str
);
83 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
84 // /* this holds up stuff unless we're connected to usb */
85 // if (!UsbConnected())
89 // c.cmd = CMD_DEBUG_PRINT_STRING;
90 // c.arg[0] = strlen(str);
91 // if(c.arg[0] > sizeof(c.d.asBytes)) {
92 // c.arg[0] = sizeof(c.d.asBytes);
94 // memcpy(c.d.asBytes, str, c.arg[0]);
96 // UsbSendPacket((uint8_t *)&c, sizeof(c));
97 // // TODO fix USB so stupid things like this aren't req'd
102 void DbpIntegers(int x1
, int x2
, int x3
)
104 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
105 // /* this holds up stuff unless we're connected to usb */
106 // if (!UsbConnected())
110 // c.cmd = CMD_DEBUG_PRINT_INTEGERS;
115 // UsbSendPacket((uint8_t *)&c, sizeof(c));
121 void Dbprintf(const char *fmt
, ...) {
122 // should probably limit size here; oh well, let's just use a big buffer
123 char output_string
[128];
127 kvsprintf(fmt
, output_string
, 10, ap
);
130 DbpString(output_string
);
133 // prints HEX & ASCII
134 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
147 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
150 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
152 Dbprintf("%*D",l
,d
," ");
160 //-----------------------------------------------------------------------------
161 // Read an ADC channel and block till it completes, then return the result
162 // in ADC units (0 to 1023). Also a routine to average 32 samples and
164 //-----------------------------------------------------------------------------
165 static int ReadAdc(int ch
)
169 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
170 AT91C_BASE_ADC
->ADC_MR
=
171 ADC_MODE_PRESCALE(32) |
172 ADC_MODE_STARTUP_TIME(16) |
173 ADC_MODE_SAMPLE_HOLD_TIME(8);
174 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
176 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
177 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
179 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
184 int AvgAdc(int ch
) // was static - merlok
189 for(i
= 0; i
< 32; i
++) {
193 return (a
+ 15) >> 5;
196 void MeasureAntennaTuning(void)
198 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
199 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
200 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
205 DbpString("Measuring antenna characteristics, please wait...");
206 memset(dest
,0,sizeof(FREE_BUFFER_SIZE
));
209 * Sweeps the useful LF range of the proxmark from
210 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
211 * read the voltage in the antenna, the result left
212 * in the buffer is a graph which should clearly show
213 * the resonating frequency of your LF antenna
214 * ( hopefully around 95 if it is tuned to 125kHz!)
217 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
218 for (i
=255; i
>19; i
--) {
220 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
222 // Vref = 3.3V, and a 10000:240 voltage divider on the input
223 // can measure voltages up to 137500 mV
224 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
225 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
226 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
228 dest
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
238 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
239 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
241 // Vref = 3300mV, and an 10:1 voltage divider on the input
242 // can measure voltages up to 33000 mV
243 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
245 // c.cmd = CMD_MEASURED_ANTENNA_TUNING;
246 // c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
248 // c.arg[2] = peakf | (peakv << 16);
250 DbpString("Measuring complete, sending report back to host");
251 cmd_send(CMD_MEASURED_ANTENNA_TUNING
,vLf125
|(vLf134
<<16),vHf
,peakf
|(peakv
<<16),0,0);
252 // UsbSendPacket((uint8_t *)&c, sizeof(c));
253 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
259 void MeasureAntennaTuningHf(void)
261 int vHf
= 0; // in mV
263 DbpString("Measuring HF antenna, press button to exit");
266 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
267 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
269 // Vref = 3300mV, and an 10:1 voltage divider on the input
270 // can measure voltages up to 33000 mV
271 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
273 Dbprintf("%d mV",vHf
);
274 if (BUTTON_PRESS()) break;
276 DbpString("cancelled");
280 void SimulateTagHfListen(void)
282 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
287 // We're using this mode just so that I can test it out; the simulated
288 // tag mode would work just as well and be simpler.
289 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
291 // We need to listen to the high-frequency, peak-detected path.
292 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
298 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
299 AT91C_BASE_SSC
->SSC_THR
= 0xff;
301 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
302 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
316 if(i
>= FREE_BUFFER_SIZE
) {
322 DbpString("simulate tag (now type bitsamples)");
325 void ReadMem(int addr
)
327 const uint8_t *data
= ((uint8_t *)addr
);
329 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
330 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
333 /* osimage version information is linked in */
334 extern struct version_information version_information
;
335 /* bootrom version information is pointed to from _bootphase1_version_pointer */
336 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
337 void SendVersion(void)
339 char temp
[48]; /* Limited data payload in USB packets */
340 DbpString("Prox/RFID mark3 RFID instrument");
342 /* Try to find the bootrom version information. Expect to find a pointer at
343 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
344 * pointer, then use it.
346 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
347 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
348 DbpString("bootrom version information appears invalid");
350 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
354 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
357 FpgaGatherVersion(temp
, sizeof(temp
));
362 // samy's sniff and repeat routine
365 DbpString("Stand-alone mode! No PC necessary.");
367 // 3 possible options? no just 2 for now
370 int high
[OPTS
], low
[OPTS
];
372 // Oooh pretty -- notify user we're in elite samy mode now
374 LED(LED_ORANGE
, 200);
376 LED(LED_ORANGE
, 200);
378 LED(LED_ORANGE
, 200);
380 LED(LED_ORANGE
, 200);
386 // Turn on selected LED
387 LED(selected
+ 1, 0);
395 // Was our button held down or pressed?
396 int button_pressed
= BUTTON_HELD(1000);
399 // Button was held for a second, begin recording
400 if (button_pressed
> 0)
403 LED(selected
+ 1, 0);
407 DbpString("Starting recording");
409 // wait for button to be released
410 while(BUTTON_PRESS())
413 /* need this delay to prevent catching some weird data */
416 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
417 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
420 LED(selected
+ 1, 0);
421 // Finished recording
423 // If we were previously playing, set playing off
424 // so next button push begins playing what we recorded
428 // Change where to record (or begin playing)
429 else if (button_pressed
)
431 // Next option if we were previously playing
433 selected
= (selected
+ 1) % OPTS
;
437 LED(selected
+ 1, 0);
439 // Begin transmitting
443 DbpString("Playing");
444 // wait for button to be released
445 while(BUTTON_PRESS())
447 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
448 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
449 DbpString("Done playing");
450 if (BUTTON_HELD(1000) > 0)
452 DbpString("Exiting");
457 /* We pressed a button so ignore it here with a delay */
460 // when done, we're done playing, move to next option
461 selected
= (selected
+ 1) % OPTS
;
464 LED(selected
+ 1, 0);
467 while(BUTTON_PRESS())
476 Listen and detect an external reader. Determine the best location
480 Inside the ListenReaderField() function, there is two mode.
481 By default, when you call the function, you will enter mode 1.
482 If you press the PM3 button one time, you will enter mode 2.
483 If you press the PM3 button a second time, you will exit the function.
485 DESCRIPTION OF MODE 1:
486 This mode just listens for an external reader field and lights up green
487 for HF and/or red for LF. This is the original mode of the detectreader
490 DESCRIPTION OF MODE 2:
491 This mode will visually represent, using the LEDs, the actual strength of the
492 current compared to the maximum current detected. Basically, once you know
493 what kind of external reader is present, it will help you spot the best location to place
494 your antenna. You will probably not get some good results if there is a LF and a HF reader
495 at the same place! :-)
499 static const char LIGHT_SCHEME
[] = {
500 0x0, /* ---- | No field detected */
501 0x1, /* X--- | 14% of maximum current detected */
502 0x2, /* -X-- | 29% of maximum current detected */
503 0x4, /* --X- | 43% of maximum current detected */
504 0x8, /* ---X | 57% of maximum current detected */
505 0xC, /* --XX | 71% of maximum current detected */
506 0xE, /* -XXX | 86% of maximum current detected */
507 0xF, /* XXXX | 100% of maximum current detected */
509 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
511 void ListenReaderField(int limit
)
513 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
514 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
515 int mode
=1, display_val
, display_max
, i
;
522 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
524 if(limit
!= HF_ONLY
) {
525 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
529 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
531 if (limit
!= LF_ONLY
) {
532 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
537 if (BUTTON_PRESS()) {
542 DbpString("Signal Strength Mode");
546 DbpString("Stopped");
554 if (limit
!= HF_ONLY
) {
556 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
561 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
562 // see if there's a significant change
563 if(abs(lf_av
- lf_av_new
) > 10) {
564 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
572 if (limit
!= LF_ONLY
) {
574 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
579 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
580 // see if there's a significant change
581 if(abs(hf_av
- hf_av_new
) > 10) {
582 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
591 if (limit
== LF_ONLY
) {
593 display_max
= lf_max
;
594 } else if (limit
== HF_ONLY
) {
596 display_max
= hf_max
;
597 } else { /* Pick one at random */
598 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
600 display_max
= hf_max
;
603 display_max
= lf_max
;
606 for (i
=0; i
<LIGHT_LEN
; i
++) {
607 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
608 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
609 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
610 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
611 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
619 void UsbPacketReceived(uint8_t *packet
, int len
)
621 UsbCommand
*c
= (UsbCommand
*)packet
;
623 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
627 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
628 AcquireRawAdcSamples125k(c
->arg
[0]);
629 cmd_send(CMD_ACK
,0,0,0,0,0);
631 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
632 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
634 case CMD_HID_DEMOD_FSK
:
635 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
637 case CMD_HID_SIM_TAG
:
638 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1); // Simulate HID tag by ID
640 case CMD_HID_CLONE_TAG
: // Clone HID tag by ID to T55x7
641 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
643 case CMD_EM410X_WRITE_TAG
:
644 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
646 case CMD_READ_TI_TYPE
:
649 case CMD_WRITE_TI_TYPE
:
650 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
652 case CMD_SIMULATE_TAG_125K
:
654 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
657 case CMD_LF_SIMULATE_BIDIR
:
658 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
660 case CMD_INDALA_CLONE_TAG
: // Clone Indala 64-bit tag by UID to T55x7
661 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
663 case CMD_INDALA_CLONE_TAG_L
: // Clone Indala 224-bit tag by UID to T55x7
664 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
666 case CMD_T55XX_READ_BLOCK
:
667 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
669 case CMD_T55XX_WRITE_BLOCK
:
670 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
672 case CMD_T55XX_READ_TRACE
: // Clone HID tag by ID to T55x7
675 case CMD_PCF7931_READ
: // Read PCF7931 tag
677 cmd_send(CMD_ACK
,0,0,0,0,0);
678 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
680 case CMD_EM4X_READ_WORD
:
681 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
683 case CMD_EM4X_WRITE_WORD
:
684 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
689 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
690 SnoopHitag(c
->arg
[0]);
692 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
693 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
695 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
696 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
701 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
702 AcquireRawAdcSamplesIso15693();
704 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
705 RecordRawAdcSamplesIso15693();
708 case CMD_ISO_15693_COMMAND
:
709 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
712 case CMD_ISO_15693_FIND_AFI
:
713 BruteforceIso15693Afi(c
->arg
[0]);
716 case CMD_ISO_15693_DEBUG
:
717 SetDebugIso15693(c
->arg
[0]);
720 case CMD_READER_ISO_15693
:
721 ReaderIso15693(c
->arg
[0]);
723 case CMD_SIMTAG_ISO_15693
:
724 SimTagIso15693(c
->arg
[0]);
729 case CMD_SIMULATE_TAG_LEGIC_RF
:
730 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
733 case CMD_WRITER_LEGIC_RF
:
734 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
737 case CMD_READER_LEGIC_RF
:
738 LegicRfReader(c
->arg
[0], c
->arg
[1]);
742 #ifdef WITH_ISO14443b
743 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
744 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
746 case CMD_READ_SRI512_TAG
:
747 ReadSRI512Iso14443(c
->arg
[0]);
749 case CMD_READ_SRIX4K_TAG
:
750 ReadSRIX4KIso14443(c
->arg
[0]);
752 case CMD_SNOOP_ISO_14443
:
755 case CMD_SIMULATE_TAG_ISO_14443
:
756 SimulateIso14443Tag();
760 #ifdef WITH_ISO14443a
761 case CMD_SNOOP_ISO_14443a
:
762 SnoopIso14443a(c
->arg
[0]);
764 case CMD_READER_ISO_14443a
:
767 case CMD_SIMULATE_TAG_ISO_14443a
:
768 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
770 case CMD_EPA_PACE_COLLECT_NONCE
:
771 EPA_PACE_Collect_Nonce(c
);
774 case CMD_READER_MIFARE
:
777 case CMD_MIFARE_READBL
:
778 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
780 case CMD_MIFARE_READSC
:
781 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
783 case CMD_MIFARE_WRITEBL
:
784 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
786 case CMD_MIFARE_NESTED
:
787 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
789 case CMD_MIFARE_CHKKEYS
:
790 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
792 case CMD_SIMULATE_MIFARE_CARD
:
793 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
797 case CMD_MIFARE_SET_DBGMODE
:
798 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
800 case CMD_MIFARE_EML_MEMCLR
:
801 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
803 case CMD_MIFARE_EML_MEMSET
:
804 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
806 case CMD_MIFARE_EML_MEMGET
:
807 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
809 case CMD_MIFARE_EML_CARDLOAD
:
810 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
813 // Work with "magic Chinese" card
814 case CMD_MIFARE_EML_CSETBLOCK
:
815 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
817 case CMD_MIFARE_EML_CGETBLOCK
:
818 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
822 case CMD_MIFARE_SNIFFER
:
823 SniffMifare(c
->arg
[0]);
828 // Makes use of ISO14443a FPGA Firmware
829 case CMD_SNOOP_ICLASS
:
832 case CMD_SIMULATE_TAG_ICLASS
:
833 SimulateIClass(c
->arg
[0], c
->d
.asBytes
);
835 case CMD_READER_ICLASS
:
836 ReaderIClass(c
->arg
[0]);
840 case CMD_SIMULATE_TAG_HF_LISTEN
:
841 SimulateTagHfListen();
848 case CMD_MEASURE_ANTENNA_TUNING
:
849 MeasureAntennaTuning();
852 case CMD_MEASURE_ANTENNA_TUNING_HF
:
853 MeasureAntennaTuningHf();
856 case CMD_LISTEN_READER_FIELD
:
857 ListenReaderField(c
->arg
[0]);
860 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
861 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
863 LED_D_OFF(); // LED D indicates field ON or OFF
866 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
: {
868 // if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
869 // n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
871 // n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
873 // n.arg[0] = c->arg[0];
874 // memcpy(n.d.asBytes, BigBuf+c->arg[0], 48); // 12*sizeof(uint32_t)
876 // usb_write((uint8_t *)&n, sizeof(n));
877 // UsbSendPacket((uint8_t *)&n, sizeof(n));
881 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
882 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
883 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,0,((byte_t
*)BigBuf
)+c
->arg
[0]+i
,len
);
885 // Trigger a finish downloading signal with an ACK frame
886 cmd_send(CMD_ACK
,0,0,0,0,0);
890 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
891 uint8_t *b
= (uint8_t *)BigBuf
;
892 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, 48);
893 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
894 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
895 cmd_send(CMD_ACK
,0,0,0,0,0);
902 case CMD_SET_LF_DIVISOR
:
903 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
906 case CMD_SET_ADC_MUX
:
908 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
909 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
910 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
911 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
927 case CMD_SETUP_WRITE
:
928 case CMD_FINISH_WRITE
:
929 case CMD_HARDWARE_RESET
: {
933 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
935 // We're going to reset, and the bootrom will take control.
939 case CMD_START_FLASH
: {
940 if(common_area
.flags
.bootrom_present
) {
941 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
944 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
948 case CMD_DEVICE_INFO
: {
949 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
950 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
951 // UsbSendPacket((uint8_t*)&c, sizeof(c));
952 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
956 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
961 void __attribute__((noreturn
)) AppMain(void)
965 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
966 /* Initialize common area */
967 memset(&common_area
, 0, sizeof(common_area
));
968 common_area
.magic
= COMMON_AREA_MAGIC
;
969 common_area
.version
= 1;
971 common_area
.flags
.osimage_present
= 1;
982 // The FPGA gets its clock from us from PCK0 output, so set that up.
983 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
984 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
985 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
986 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
987 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
988 AT91C_PMC_PRES_CLK_4
;
989 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
992 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
994 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
996 // Load the FPGA image, which we have stored in our flash.
1005 byte_t rx
[sizeof(UsbCommand
)];
1010 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1012 UsbPacketReceived(rx
,rx_len
);
1020 if (BUTTON_HELD(1000) > 0)