1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
27 #include "lfsampling.h"
29 #include "mifareutil.h"
35 // Craig Young - 14a stand-alone code
36 #ifdef WITH_ISO14443a_StandAlone
37 #include "iso14443a.h"
38 #include "protocols.h"
41 #define abs(x) ( ((x)<0) ? -(x) : (x) )
43 //=============================================================================
44 // A buffer where we can queue things up to be sent through the FPGA, for
45 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
46 // is the order in which they go out on the wire.
47 //=============================================================================
49 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
50 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
53 struct common_area common_area
__attribute__((section(".commonarea")));
55 void ToSendReset(void)
61 void ToSendStuffBit(int b
) {
64 ToSend
[ToSendMax
] = 0;
69 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
73 if(ToSendMax
>= sizeof(ToSend
)) {
75 DbpString("ToSendStuffBit overflowed!");
79 //=============================================================================
80 // Debug print functions, to go out over USB, to the usual PC-side client.
81 //=============================================================================
83 void DbpString(char *str
) {
84 byte_t len
= strlen(str
);
85 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
89 void DbpIntegers(int x1
, int x2
, int x3
) {
90 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
94 void Dbprintf(const char *fmt
, ...) {
95 // should probably limit size here; oh well, let's just use a big buffer
96 char output_string
[128] = {0x00};
100 kvsprintf(fmt
, output_string
, 10, ap
);
103 DbpString(output_string
);
106 // prints HEX & ASCII
107 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
113 l
= (len
>8) ? 8 : len
;
120 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
123 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
125 Dbprintf("%*D",l
,d
," ");
132 //-----------------------------------------------------------------------------
133 // Read an ADC channel and block till it completes, then return the result
134 // in ADC units (0 to 1023). Also a routine to average 32 samples and
136 //-----------------------------------------------------------------------------
137 static int ReadAdc(int ch
)
141 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
142 AT91C_BASE_ADC
->ADC_MR
=
143 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
144 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
145 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
147 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
148 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
149 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
152 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
154 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
156 // Note: with the "historic" values in the comments above, the error was 34% !!!
158 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
160 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
162 while (!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) ;
164 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
168 int AvgAdc(int ch
) // was static - merlok
173 for(i
= 0; i
< 32; ++i
)
176 return (a
+ 15) >> 5;
179 void MeasureAntennaTuning(void) {
180 uint8_t LF_Results
[256];
181 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
182 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
187 * Sweeps the useful LF range of the proxmark from
188 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
189 * read the voltage in the antenna, the result left
190 * in the buffer is a graph which should clearly show
191 * the resonating frequency of your LF antenna
192 * ( hopefully around 95 if it is tuned to 125kHz!)
195 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
196 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
198 for (i
=255; i
>=19; i
--) {
200 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
202 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
203 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
204 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
206 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
207 if(LF_Results
[i
] > peak
) {
209 peak
= LF_Results
[i
];
215 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
218 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
219 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
220 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
222 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
224 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
225 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
230 void MeasureAntennaTuningHf(void) {
231 int vHf
= 0; // in mV
233 DbpString("Measuring HF antenna, press button to exit");
235 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
236 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
237 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
241 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
243 Dbprintf("%d mV",vHf
);
244 if (BUTTON_PRESS()) break;
247 DbpString("cancelled");
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
252 void ReadMem(int addr
) {
253 const uint8_t *data
= ((uint8_t *)addr
);
255 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
256 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
259 /* osimage version information is linked in */
260 extern struct version_information version_information
;
261 /* bootrom version information is pointed to from _bootphase1_version_pointer */
262 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
263 void SendVersion(void)
265 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
266 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
268 /* Try to find the bootrom version information. Expect to find a pointer at
269 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
270 * pointer, then use it.
272 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
274 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
275 strcat(VersionString
, "bootrom version information appears invalid\n");
277 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
278 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
281 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
282 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
284 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
285 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
287 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
288 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
290 // Send Chip ID and used flash memory
291 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
292 uint32_t compressed_data_section_size
= common_area
.arg1
;
293 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
296 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
297 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
298 void printUSBSpeed(void)
300 Dbprintf("USB Speed:");
301 Dbprintf(" Sending USB packets to client...");
303 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
304 uint8_t *test_data
= BigBuf_get_addr();
307 uint32_t start_time
= end_time
= GetTickCount();
308 uint32_t bytes_transferred
= 0;
311 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
312 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
313 end_time
= GetTickCount();
314 bytes_transferred
+= USB_CMD_DATA_SIZE
;
318 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
319 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
320 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
321 1000 * bytes_transferred
/ (end_time
- start_time
));
326 * Prints runtime information about the PM3.
328 void SendStatus(void) {
329 BigBuf_print_status();
331 printConfig(); //LF Sampling config
334 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
335 Dbprintf(" ToSendMax..........%d", ToSendMax
);
336 Dbprintf(" ToSendBit..........%d", ToSendBit
);
337 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE
);
339 cmd_send(CMD_ACK
,1,0,0,0,0);
342 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
345 void StandAloneMode()
347 DbpString("Stand-alone mode! No PC necessary.");
348 // Oooh pretty -- notify user we're in elite samy mode now
350 LED(LED_ORANGE
, 200);
352 LED(LED_ORANGE
, 200);
354 LED(LED_ORANGE
, 200);
356 LED(LED_ORANGE
, 200);
361 #ifdef WITH_ISO14443a_StandAlone
362 void StandAloneMode14a()
365 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
368 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
369 int cardRead
[OPTS
] = {0};
370 uint8_t readUID
[10] = {0};
371 uint32_t uid_1st
[OPTS
]={0};
372 uint32_t uid_2nd
[OPTS
]={0};
373 uint32_t uid_tmp1
= 0;
374 uint32_t uid_tmp2
= 0;
375 iso14a_card_select_t hi14a_card
[OPTS
];
377 uint8_t params
= (MAGIC_SINGLE
| MAGIC_DATAIN
);
379 LED(selected
+ 1, 0);
387 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
391 LED(selected
+ 1, 0);
395 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
396 /* need this delay to prevent catching some weird data */
398 /* Code for reading from 14a tag */
399 uint8_t uid
[10] = {0};
401 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
406 if (BUTTON_PRESS()) {
407 if (cardRead
[selected
]) {
408 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
411 else if (cardRead
[(selected
+1)%OPTS
]) {
412 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
413 selected
= (selected
+1)%OPTS
;
414 break; // playing = 1;
417 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
421 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0))
425 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
426 memcpy(readUID
,uid
,10*sizeof(uint8_t));
427 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
428 // Set UID byte order
429 for (int i
=0; i
<4; i
++)
431 dst
= (uint8_t *)&uid_tmp2
;
432 for (int i
=0; i
<4; i
++)
434 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
435 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
439 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
440 uid_1st
[selected
] = (uid_tmp1
)>>8;
441 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
444 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
445 uid_1st
[selected
] = uid_tmp1
;
446 uid_2nd
[selected
] = uid_tmp2
;
452 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
453 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
456 LED(LED_ORANGE
, 200);
458 LED(LED_ORANGE
, 200);
461 LED(selected
+ 1, 0);
463 // Next state is replay:
466 cardRead
[selected
] = 1;
468 /* MF Classic UID clone */
469 else if (iGotoClone
==1)
473 LED(selected
+ 1, 0);
474 LED(LED_ORANGE
, 250);
477 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
479 // wait for button to be released
480 // Delay cloning until card is in place
481 while(BUTTON_PRESS())
484 Dbprintf("Starting clone. [Bank: %u]", selected
);
485 // need this delay to prevent catching some weird data
487 // Begin clone function here:
488 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
489 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
490 memcpy(c.d.asBytes, data, 16);
493 Block read is similar:
494 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
495 We need to imitate that call with blockNo 0 to set a uid.
497 The get and set commands are handled in this file:
498 // Work with "magic Chinese" card
499 case CMD_MIFARE_CSETBLOCK:
500 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
502 case CMD_MIFARE_CGETBLOCK:
503 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
506 mfCSetUID provides example logic for UID set workflow:
507 -Read block0 from card in field with MifareCGetBlock()
508 -Configure new values without replacing reserved bytes
509 memcpy(block0, uid, 4); // Copy UID bytes from byte array
511 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
512 Bytes 5-7 are reserved SAK and ATQA for mifare classic
513 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
515 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
516 // arg0 = Flags, arg1=blockNo
517 MifareCGetBlock(params
, 0, oldBlock0
);
518 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
519 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
523 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
524 memcpy(newBlock0
,oldBlock0
,16);
525 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
527 newBlock0
[0] = uid_1st
[selected
]>>24;
528 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
529 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
530 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
531 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
533 // arg0 = workFlags, arg1 = blockNo, datain
534 MifareCSetBlock(params
, 0, newBlock0
);
535 MifareCGetBlock(params
, 0, testBlock0
);
537 if (memcmp(testBlock0
, newBlock0
, 16)==0) {
538 DbpString("Cloned successfull!");
539 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
542 selected
= (selected
+ 1) % OPTS
;
544 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
549 LED(selected
+ 1, 0);
551 // Change where to record (or begin playing)
552 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
555 LED(selected
+ 1, 0);
557 // Begin transmitting
561 DbpString("Playing");
564 int button_action
= BUTTON_HELD(1000);
565 if (button_action
== 0) { // No button action, proceed with sim
566 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
567 uint8_t flags
= ( uid_2nd
[selected
] > 0x00 ) ? FLAG_7B_UID_IN_DATA
: FLAG_4B_UID_IN_DATA
;
568 num_to_bytes(uid_1st
[selected
], 3, data
);
569 num_to_bytes(uid_2nd
[selected
], 4, data
);
571 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
572 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
573 DbpString("Mifare Classic");
574 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
576 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
577 DbpString("Mifare Ultralight");
578 SimulateIso14443aTag(2, flags
, data
); // Mifare Ultralight
580 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
581 DbpString("Mifare DESFire");
582 SimulateIso14443aTag(3, flags
, data
); // Mifare DESFire
585 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
586 SimulateIso14443aTag(1, flags
, data
);
589 else if (button_action
== BUTTON_SINGLE_CLICK
) {
590 selected
= (selected
+ 1) % OPTS
;
591 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
595 else if (button_action
== BUTTON_HOLD
) {
596 Dbprintf("Playtime over. Begin cloning...");
603 /* We pressed a button so ignore it here with a delay */
606 LED(selected
+ 1, 0);
609 while(BUTTON_PRESS())
615 // samy's sniff and repeat routine
619 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
621 int high
[OPTS
], low
[OPTS
];
626 // Turn on selected LED
627 LED(selected
+ 1, 0);
633 // Was our button held down or pressed?
634 int button_pressed
= BUTTON_HELD(1000);
637 // Button was held for a second, begin recording
638 if (button_pressed
> 0 && cardRead
== 0)
641 LED(selected
+ 1, 0);
645 DbpString("Starting recording");
647 // wait for button to be released
648 while(BUTTON_PRESS())
651 /* need this delay to prevent catching some weird data */
654 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
655 Dbprintf("Recorded %x %x %08x", selected
, high
[selected
], low
[selected
]);
658 LED(selected
+ 1, 0);
659 // Finished recording
660 // If we were previously playing, set playing off
661 // so next button push begins playing what we recorded
665 else if (button_pressed
> 0 && cardRead
== 1) {
667 LED(selected
+ 1, 0);
671 Dbprintf("Cloning %x %x %08x", selected
, high
[selected
], low
[selected
]);
673 // wait for button to be released
674 while(BUTTON_PRESS())
677 /* need this delay to prevent catching some weird data */
680 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
681 Dbprintf("Cloned %x %x %08x", selected
, high
[selected
], low
[selected
]);
684 LED(selected
+ 1, 0);
685 // Finished recording
687 // If we were previously playing, set playing off
688 // so next button push begins playing what we recorded
693 // Change where to record (or begin playing)
694 else if (button_pressed
) {
695 // Next option if we were previously playing
697 selected
= (selected
+ 1) % OPTS
;
701 LED(selected
+ 1, 0);
703 // Begin transmitting
707 DbpString("Playing");
708 // wait for button to be released
709 while(BUTTON_PRESS())
712 Dbprintf("%x %x %08x", selected
, high
[selected
], low
[selected
]);
713 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
714 DbpString("Done playing");
716 if (BUTTON_HELD(1000) > 0) {
717 DbpString("Exiting");
722 /* We pressed a button so ignore it here with a delay */
725 // when done, we're done playing, move to next option
726 selected
= (selected
+ 1) % OPTS
;
729 LED(selected
+ 1, 0);
732 while(BUTTON_PRESS())
741 Listen and detect an external reader. Determine the best location
745 Inside the ListenReaderField() function, there is two mode.
746 By default, when you call the function, you will enter mode 1.
747 If you press the PM3 button one time, you will enter mode 2.
748 If you press the PM3 button a second time, you will exit the function.
750 DESCRIPTION OF MODE 1:
751 This mode just listens for an external reader field and lights up green
752 for HF and/or red for LF. This is the original mode of the detectreader
755 DESCRIPTION OF MODE 2:
756 This mode will visually represent, using the LEDs, the actual strength of the
757 current compared to the maximum current detected. Basically, once you know
758 what kind of external reader is present, it will help you spot the best location to place
759 your antenna. You will probably not get some good results if there is a LF and a HF reader
760 at the same place! :-)
764 static const char LIGHT_SCHEME
[] = {
765 0x0, /* ---- | No field detected */
766 0x1, /* X--- | 14% of maximum current detected */
767 0x2, /* -X-- | 29% of maximum current detected */
768 0x4, /* --X- | 43% of maximum current detected */
769 0x8, /* ---X | 57% of maximum current detected */
770 0xC, /* --XX | 71% of maximum current detected */
771 0xE, /* -XXX | 86% of maximum current detected */
772 0xF, /* XXXX | 100% of maximum current detected */
774 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
776 void ListenReaderField(int limit
) {
779 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
781 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
782 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
783 int mode
=1, display_val
, display_max
, i
;
785 // switch off FPGA - we don't want to measure our own signal
786 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
787 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
791 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
793 if(limit
!= HF_ONLY
) {
794 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
798 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
800 if (limit
!= LF_ONLY
) {
801 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
806 if (BUTTON_PRESS()) {
811 DbpString("Signal Strength Mode");
815 DbpString("Stopped");
823 if (limit
!= HF_ONLY
) {
825 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
831 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
832 // see if there's a significant change
833 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
834 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
841 if (limit
!= LF_ONLY
) {
843 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
849 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
850 // see if there's a significant change
851 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
852 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
860 if (limit
== LF_ONLY
) {
862 display_max
= lf_max
;
863 } else if (limit
== HF_ONLY
) {
865 display_max
= hf_max
;
866 } else { /* Pick one at random */
867 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
869 display_max
= hf_max
;
872 display_max
= lf_max
;
875 for (i
=0; i
<LIGHT_LEN
; i
++) {
876 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
877 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
878 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
879 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
880 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
888 void UsbPacketReceived(uint8_t *packet
, int len
)
890 UsbCommand
*c
= (UsbCommand
*)packet
;
892 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
896 case CMD_SET_LF_SAMPLING_CONFIG
:
897 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
899 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
900 cmd_send(CMD_ACK
, SampleLF(c
->arg
[0]),0,0,0,0);
902 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
903 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
905 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
906 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
908 case CMD_HID_DEMOD_FSK
:
909 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
911 case CMD_HID_SIM_TAG
:
912 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
914 case CMD_FSK_SIM_TAG
:
915 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
917 case CMD_ASK_SIM_TAG
:
918 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
920 case CMD_PSK_SIM_TAG
:
921 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
923 case CMD_HID_CLONE_TAG
:
924 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
926 case CMD_IO_DEMOD_FSK
:
927 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
929 case CMD_IO_CLONE_TAG
:
930 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
932 case CMD_EM410X_DEMOD
:
933 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
935 case CMD_EM410X_WRITE_TAG
:
936 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
938 case CMD_READ_TI_TYPE
:
941 case CMD_WRITE_TI_TYPE
:
942 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
944 case CMD_SIMULATE_TAG_125K
:
946 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
949 case CMD_LF_SIMULATE_BIDIR
:
950 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
952 case CMD_INDALA_CLONE_TAG
:
953 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
955 case CMD_INDALA_CLONE_TAG_L
:
956 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
958 case CMD_T55XX_READ_BLOCK
:
959 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
961 case CMD_T55XX_WRITE_BLOCK
:
962 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
964 case CMD_T55XX_WAKEUP
:
965 T55xxWakeUp(c
->arg
[0]);
967 case CMD_T55XX_RESET_READ
:
970 case CMD_PCF7931_READ
:
973 case CMD_PCF7931_WRITE
:
974 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
976 case CMD_EM4X_READ_WORD
:
977 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
979 case CMD_EM4X_WRITE_WORD
:
980 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
982 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
983 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
985 case CMD_VIKING_CLONE_TAG
:
986 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
991 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
992 SnoopHitag(c
->arg
[0]);
994 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
995 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
997 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
998 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1000 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1001 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1003 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1004 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1006 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1007 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1009 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1010 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1014 #ifdef WITH_ISO15693
1015 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1016 AcquireRawAdcSamplesIso15693();
1018 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1019 RecordRawAdcSamplesIso15693();
1022 case CMD_ISO_15693_COMMAND
:
1023 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1026 case CMD_ISO_15693_FIND_AFI
:
1027 BruteforceIso15693Afi(c
->arg
[0]);
1030 case CMD_ISO_15693_DEBUG
:
1031 SetDebugIso15693(c
->arg
[0]);
1034 case CMD_READER_ISO_15693
:
1035 ReaderIso15693(c
->arg
[0]);
1037 case CMD_SIMTAG_ISO_15693
:
1038 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1043 case CMD_SIMULATE_TAG_LEGIC_RF
:
1044 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1047 case CMD_WRITER_LEGIC_RF
:
1048 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1051 case CMD_READER_LEGIC_RF
:
1052 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1056 #ifdef WITH_ISO14443b
1057 case CMD_READ_SRI512_TAG
:
1058 ReadSTMemoryIso14443b(0x0F);
1060 case CMD_READ_SRIX4K_TAG
:
1061 ReadSTMemoryIso14443b(0x7F);
1063 case CMD_SNOOP_ISO_14443B
:
1066 case CMD_SIMULATE_TAG_ISO_14443B
:
1067 SimulateIso14443bTag();
1069 case CMD_ISO_14443B_COMMAND
:
1070 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1074 #ifdef WITH_ISO14443a
1075 case CMD_SNOOP_ISO_14443a
:
1076 SniffIso14443a(c
->arg
[0]);
1078 case CMD_READER_ISO_14443a
:
1081 case CMD_SIMULATE_TAG_ISO_14443a
:
1082 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1085 case CMD_EPA_PACE_COLLECT_NONCE
:
1086 EPA_PACE_Collect_Nonce(c
);
1088 case CMD_EPA_PACE_REPLAY
:
1092 case CMD_READER_MIFARE
:
1093 ReaderMifare(c
->arg
[0], c
->arg
[1]);
1095 case CMD_MIFARE_READBL
:
1096 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1098 case CMD_MIFAREU_READBL
:
1099 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1101 case CMD_MIFAREUC_AUTH
:
1102 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1104 case CMD_MIFAREU_READCARD
:
1105 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1107 case CMD_MIFAREUC_SETPWD
:
1108 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1110 case CMD_MIFARE_READSC
:
1111 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1113 case CMD_MIFARE_WRITEBL
:
1114 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1116 //case CMD_MIFAREU_WRITEBL_COMPAT:
1117 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1119 case CMD_MIFAREU_WRITEBL
:
1120 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1122 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1123 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1125 case CMD_MIFARE_NESTED
:
1126 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1128 case CMD_MIFARE_CHKKEYS
:
1129 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1131 case CMD_SIMULATE_MIFARE_CARD
:
1132 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1136 case CMD_MIFARE_SET_DBGMODE
:
1137 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1139 case CMD_MIFARE_EML_MEMCLR
:
1140 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1142 case CMD_MIFARE_EML_MEMSET
:
1143 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1145 case CMD_MIFARE_EML_MEMGET
:
1146 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1148 case CMD_MIFARE_EML_CARDLOAD
:
1149 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1152 // Work with "magic Chinese" card
1153 case CMD_MIFARE_CSETBLOCK
:
1154 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1156 case CMD_MIFARE_CGETBLOCK
:
1157 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1159 case CMD_MIFARE_CIDENT
:
1164 case CMD_MIFARE_SNIFFER
:
1165 SniffMifare(c
->arg
[0]);
1169 case CMD_MIFARE_DESFIRE_READBL
: break;
1170 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1171 case CMD_MIFARE_DESFIRE_AUTH1
:
1172 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1174 case CMD_MIFARE_DESFIRE_AUTH2
:
1175 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1177 case CMD_MIFARE_DES_READER
:
1178 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1180 case CMD_MIFARE_DESFIRE_INFO
:
1181 MifareDesfireGetInformation();
1183 case CMD_MIFARE_DESFIRE
:
1184 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1187 case CMD_MIFARE_COLLECT_NONCES
:
1191 case CMD_EMV_TRANSACTION
:
1194 case CMD_EMV_GET_RANDOM_NUM
:
1197 case CMD_EMV_LOAD_VALUE
:
1198 EMVloadvalue(c
->arg
[0], c
->d
.asBytes
);
1200 case CMD_EMV_DUMP_CARD
:
1204 // Makes use of ISO14443a FPGA Firmware
1205 case CMD_SNOOP_ICLASS
:
1208 case CMD_SIMULATE_TAG_ICLASS
:
1209 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1211 case CMD_READER_ICLASS
:
1212 ReaderIClass(c
->arg
[0]);
1214 case CMD_READER_ICLASS_REPLAY
:
1215 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1217 case CMD_ICLASS_EML_MEMSET
:
1218 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1220 case CMD_ICLASS_WRITEBLOCK
:
1221 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1223 case CMD_ICLASS_READCHECK
: // auth step 1
1224 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1226 case CMD_ICLASS_READBLOCK
:
1227 iClass_ReadBlk(c
->arg
[0]);
1229 case CMD_ICLASS_AUTHENTICATION
: //check
1230 iClass_Authentication(c
->d
.asBytes
);
1232 case CMD_ICLASS_DUMP
:
1233 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1235 case CMD_ICLASS_CLONE
:
1236 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1240 case CMD_HF_SNIFFER
:
1241 HfSnoop(c
->arg
[0], c
->arg
[1]);
1245 case CMD_BUFF_CLEAR
:
1249 case CMD_MEASURE_ANTENNA_TUNING
:
1250 MeasureAntennaTuning();
1253 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1254 MeasureAntennaTuningHf();
1257 case CMD_LISTEN_READER_FIELD
:
1258 ListenReaderField(c
->arg
[0]);
1261 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1262 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1264 LED_D_OFF(); // LED D indicates field ON or OFF
1267 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1270 uint8_t *BigBuf
= BigBuf_get_addr();
1272 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1273 len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1274 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1276 // Trigger a finish downloading signal with an ACK frame
1277 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1281 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1282 uint8_t *b
= BigBuf_get_addr();
1283 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1284 cmd_send(CMD_ACK
,0,0,0,0,0);
1291 case CMD_SET_LF_DIVISOR
:
1292 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1293 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1296 case CMD_SET_ADC_MUX
:
1298 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1299 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1300 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1301 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1312 cmd_send(CMD_ACK
,0,0,0,0,0);
1322 case CMD_SETUP_WRITE
:
1323 case CMD_FINISH_WRITE
:
1324 case CMD_HARDWARE_RESET
:
1327 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1329 // We're going to reset, and the bootrom will take control.
1333 case CMD_START_FLASH
:
1334 if(common_area
.flags
.bootrom_present
) {
1335 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1338 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1342 case CMD_DEVICE_INFO
: {
1343 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1344 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1345 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1349 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1354 void __attribute__((noreturn
)) AppMain(void)
1358 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1359 /* Initialize common area */
1360 memset(&common_area
, 0, sizeof(common_area
));
1361 common_area
.magic
= COMMON_AREA_MAGIC
;
1362 common_area
.version
= 1;
1364 common_area
.flags
.osimage_present
= 1;
1374 // The FPGA gets its clock from us from PCK0 output, so set that up.
1375 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1376 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1377 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1378 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1379 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1380 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1381 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1384 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1386 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1388 // Load the FPGA image, which we have stored in our flash.
1389 // (the HF version by default)
1390 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1398 byte_t rx
[sizeof(UsbCommand
)];
1403 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1405 UsbPacketReceived(rx
,rx_len
);
1410 #ifndef WITH_ISO14443a_StandAlone
1411 if (BUTTON_HELD(1000) > 0)
1415 #ifdef WITH_ISO14443a
1416 #ifdef WITH_ISO14443a_StandAlone
1417 if (BUTTON_HELD(1000) > 0)
1418 StandAloneMode14a();