]> cvs.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
FIX: @Aczid suggested this to fix a Coverity scan warning.
[proxmark3-svn] / common / lfdemod.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2014
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdlib.h>
12 #include "lfdemod.h"
13 #include <string.h>
14
15 //un_comment to allow debug print calls when used not on device
16 void dummy(char *fmt, ...){}
17
18 #ifndef ON_DEVICE
19 #include "ui.h"
20 #include "cmdparser.h"
21 #include "cmddata.h"
22 #define prnt PrintAndLog
23 #else
24 uint8_t g_debugMode=0;
25 #define prnt dummy
26 #endif
27
28 uint8_t justNoise(uint8_t *BitStream, size_t size)
29 {
30 static const uint8_t THRESHOLD = 123;
31 //test samples are not just noise
32 uint8_t justNoise1 = 1;
33 for(size_t idx=0; idx < size && justNoise1 ;idx++){
34 justNoise1 = BitStream[idx] < THRESHOLD;
35 }
36 return justNoise1;
37 }
38
39 //by marshmellow
40 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
41 int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
42 {
43 *high=0;
44 *low=255;
45 // get high and low thresholds
46 for (size_t i=0; i < size; i++){
47 if (BitStream[i] > *high) *high = BitStream[i];
48 if (BitStream[i] < *low) *low = BitStream[i];
49 }
50 if (*high < 123) return -1; // just noise
51 *high = ((*high-128)*fuzzHi + 12800)/100;
52 *low = ((*low-128)*fuzzLo + 12800)/100;
53 return 1;
54 }
55
56 // by marshmellow
57 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
58 // returns 1 if passed
59 uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
60 {
61 uint8_t ans = 0;
62 for (uint8_t i = 0; i < bitLen; i++){
63 ans ^= ((bits >> i) & 1);
64 }
65 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
66 return (ans == pType);
67 }
68
69 //by marshmellow
70 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
71 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
72 size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
73 {
74 uint32_t parityWd = 0;
75 size_t j = 0, bitCnt = 0;
76 for (int word = 0; word < (bLen); word+=pLen){
77 for (int bit=0; bit < pLen; bit++){
78 parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
79 BitStream[j++] = (BitStream[startIdx+word+bit]);
80 }
81 j--; // overwrite parity with next data
82 // if parity fails then return 0
83 switch (pType) {
84 case 3: if (BitStream[j]==1) return 0; break; //should be 0 spacer bit
85 case 2: if (BitStream[j]==0) return 0; break; //should be 1 spacer bit
86 default: //test parity
87 if (parityTest(parityWd, pLen, pType) == 0) return 0; break;
88 }
89 bitCnt+=(pLen-1);
90 parityWd = 0;
91 }
92 // if we got here then all the parities passed
93 //return ID start index and size
94 return bitCnt;
95 }
96
97 // by marshmellow
98 // takes a array of binary values, length of bits per parity (includes parity bit),
99 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
100 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
101 size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType)
102 {
103 uint32_t parityWd = 0;
104 size_t j = 0, bitCnt = 0;
105 for (int word = 0; word < sourceLen; word+=pLen-1) {
106 for (int bit=0; bit < pLen-1; bit++){
107 parityWd = (parityWd << 1) | BitSource[word+bit];
108 dest[j++] = (BitSource[word+bit]);
109 }
110
111 // if parity fails then return 0
112 switch (pType) {
113 case 3: dest[j++]=0; break; // marker bit which should be a 0
114 case 2: dest[j++]=1; break; // marker bit which should be a 1
115 default:
116 dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1;
117 break;
118 }
119 bitCnt += pLen;
120 parityWd = 0;
121 }
122 // if we got here then all the parities passed
123 //return ID start index and size
124 return bitCnt;
125 }
126
127 uint32_t bytebits_to_byte(uint8_t *src, size_t numbits)
128 {
129 uint32_t num = 0;
130 for(int i = 0 ; i < numbits ; i++) {
131 num = (num << 1) | (*src);
132 src++;
133 }
134 return num;
135 }
136
137 //least significant bit first
138 uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits)
139 {
140 uint32_t num = 0;
141 for(int i = 0 ; i < numbits ; i++) {
142 num = (num << 1) | *(src + (numbits-(i+1)));
143 }
144 return num;
145 }
146
147 //by marshmellow
148 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
149 uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx)
150 {
151 uint8_t foundCnt=0;
152 for (int idx=0; idx < *size - pLen; idx++){
153 if (memcmp(BitStream+idx, preamble, pLen) == 0){
154 //first index found
155 foundCnt++;
156 if (foundCnt == 1){
157 *startIdx = idx;
158 }
159 if (foundCnt == 2){
160 *size = idx - *startIdx;
161 return 1;
162 }
163 }
164 }
165 return 0;
166 }
167
168 //by marshmellow
169 //takes 1s and 0s and searches for EM410x format - output EM ID
170 uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
171 {
172 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
173 // otherwise could be a void with no arguments
174 //set defaults
175 uint32_t i = 0;
176 if (BitStream[1]>1) return 0; //allow only 1s and 0s
177
178 // 111111111 bit pattern represent start of frame
179 // include 0 in front to help get start pos
180 uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
181 uint32_t idx = 0;
182 uint32_t parityBits = 0;
183 uint8_t errChk = 0;
184 uint8_t FmtLen = 10;
185 *startIdx = 0;
186 errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx);
187 if (errChk == 0 || *size < 64) return 0;
188 if (*size > 64) FmtLen = 22;
189 *startIdx += 1; //get rid of 0 from preamble
190 idx = *startIdx + 9;
191 for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
192 parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5);
193 //check even parity - quit if failed
194 if (parityTest(parityBits, 5, 0) == 0) return 0;
195 //set uint64 with ID from BitStream
196 for (uint8_t ii=0; ii<4; ii++){
197 *hi = (*hi << 1) | (*lo >> 63);
198 *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]);
199 }
200 }
201 if (errChk != 0) return 1;
202 //skip last 5 bit parity test for simplicity.
203 // *size = 64 | 128;
204 return 0;
205 }
206
207 //by marshmellow
208 //demodulates strong heavily clipped samples
209 int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low)
210 {
211 size_t bitCnt=0, smplCnt=0, errCnt=0;
212 uint8_t waveHigh = 0;
213 for (size_t i=0; i < *size; i++){
214 if (BinStream[i] >= high && waveHigh){
215 smplCnt++;
216 } else if (BinStream[i] <= low && !waveHigh){
217 smplCnt++;
218 } else { //transition
219 if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
220 if (smplCnt > clk-(clk/4)-1) { //full clock
221 if (smplCnt > clk + (clk/4)+1) { //too many samples
222 errCnt++;
223 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
224 BinStream[bitCnt++]=7;
225 } else if (waveHigh) {
226 BinStream[bitCnt++] = invert;
227 BinStream[bitCnt++] = invert;
228 } else if (!waveHigh) {
229 BinStream[bitCnt++] = invert ^ 1;
230 BinStream[bitCnt++] = invert ^ 1;
231 }
232 waveHigh ^= 1;
233 smplCnt = 0;
234 } else if (smplCnt > (clk/2) - (clk/4)-1) {
235 if (waveHigh) {
236 BinStream[bitCnt++] = invert;
237 } else if (!waveHigh) {
238 BinStream[bitCnt++] = invert ^ 1;
239 }
240 waveHigh ^= 1;
241 smplCnt = 0;
242 } else if (!bitCnt) {
243 //first bit
244 waveHigh = (BinStream[i] >= high);
245 smplCnt = 1;
246 } else {
247 smplCnt++;
248 //transition bit oops
249 }
250 } else { //haven't hit new high or new low yet
251 smplCnt++;
252 }
253 }
254 }
255 *size = bitCnt;
256 return errCnt;
257 }
258
259 //by marshmellow
260 void askAmp(uint8_t *BitStream, size_t size)
261 {
262 for(size_t i = 1; i<size; i++){
263 if (BitStream[i]-BitStream[i-1]>=30) //large jump up
264 BitStream[i]=255;
265 else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down
266 BitStream[i]=0;
267 }
268 return;
269 }
270
271 //by marshmellow
272 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
273 int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType)
274 {
275 if (*size==0) return -1;
276 int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
277 if (*clk==0 || start < 0) return -3;
278 if (*invert != 1) *invert = 0;
279 if (amp==1) askAmp(BinStream, *size);
280 if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d", *clk, start);
281
282 uint8_t initLoopMax = 255;
283 if (initLoopMax > *size) initLoopMax = *size;
284 // Detect high and lows
285 //25% clip in case highs and lows aren't clipped [marshmellow]
286 int high, low;
287 if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1)
288 return -2; //just noise
289
290 size_t errCnt = 0;
291 // if clean clipped waves detected run alternate demod
292 if (DetectCleanAskWave(BinStream, *size, high, low)) {
293 if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod");
294 errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
295 if (askType) //askman
296 return manrawdecode(BinStream, size, 0);
297 else //askraw
298 return errCnt;
299 }
300 if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod");
301
302 int lastBit; //set first clock check - can go negative
303 size_t i, bitnum = 0; //output counter
304 uint8_t midBit = 0;
305 uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
306 if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
307 size_t MaxBits = 3072; //max bits to collect
308 lastBit = start - *clk;
309
310 for (i = start; i < *size; ++i) {
311 if (i-lastBit >= *clk-tol){
312 if (BinStream[i] >= high) {
313 BinStream[bitnum++] = *invert;
314 } else if (BinStream[i] <= low) {
315 BinStream[bitnum++] = *invert ^ 1;
316 } else if (i-lastBit >= *clk+tol) {
317 if (bitnum > 0) {
318 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
319 BinStream[bitnum++]=7;
320 errCnt++;
321 }
322 } else { //in tolerance - looking for peak
323 continue;
324 }
325 midBit = 0;
326 lastBit += *clk;
327 } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){
328 if (BinStream[i] >= high) {
329 BinStream[bitnum++] = *invert;
330 } else if (BinStream[i] <= low) {
331 BinStream[bitnum++] = *invert ^ 1;
332 } else if (i-lastBit >= *clk/2+tol) {
333 BinStream[bitnum] = BinStream[bitnum-1];
334 bitnum++;
335 } else { //in tolerance - looking for peak
336 continue;
337 }
338 midBit = 1;
339 }
340 if (bitnum >= MaxBits) break;
341 }
342 *size = bitnum;
343 return errCnt;
344 }
345
346 //by marshmellow
347 //take 10 and 01 and manchester decode
348 //run through 2 times and take least errCnt
349 int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert)
350 {
351 uint16_t bitnum=0, MaxBits = 512, errCnt = 0;
352 size_t i, ii;
353 uint16_t bestErr = 1000, bestRun = 0;
354 if (*size < 16) return -1;
355 //find correct start position [alignment]
356 for (ii=0;ii<2;++ii){
357 for (i=ii; i<*size-3; i+=2)
358 if (BitStream[i]==BitStream[i+1])
359 errCnt++;
360
361 if (bestErr>errCnt){
362 bestErr=errCnt;
363 bestRun=ii;
364 }
365 errCnt=0;
366 }
367 //decode
368 for (i=bestRun; i < *size-3; i+=2){
369 if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
370 BitStream[bitnum++]=invert;
371 } else if((BitStream[i] == 0) && BitStream[i+1] == 1){
372 BitStream[bitnum++]=invert^1;
373 } else {
374 BitStream[bitnum++]=7;
375 }
376 if(bitnum>MaxBits) break;
377 }
378 *size=bitnum;
379 return bestErr;
380 }
381
382 uint32_t manchesterEncode2Bytes(uint16_t datain) {
383 uint32_t output = 0;
384 uint8_t curBit = 0;
385 for (uint8_t i=0; i<16; i++) {
386 curBit = (datain >> (15-i) & 1);
387 output |= (1<<(((15-i)*2)+curBit));
388 }
389 return output;
390 }
391
392 //by marshmellow
393 //encode binary data into binary manchester
394 int ManchesterEncode(uint8_t *BitStream, size_t size)
395 {
396 size_t modIdx=20000, i=0;
397 if (size>modIdx) return -1;
398 for (size_t idx=0; idx < size; idx++){
399 BitStream[idx+modIdx++] = BitStream[idx];
400 BitStream[idx+modIdx++] = BitStream[idx]^1;
401 }
402 for (; i<(size*2); i++){
403 BitStream[i] = BitStream[i+20000];
404 }
405 return i;
406 }
407
408 //by marshmellow
409 //take 01 or 10 = 1 and 11 or 00 = 0
410 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
411 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
412 int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
413 {
414 uint16_t bitnum = 0;
415 uint16_t errCnt = 0;
416 size_t i = offset;
417 uint16_t MaxBits=512;
418 //if not enough samples - error
419 if (*size < 51) return -1;
420 //check for phase change faults - skip one sample if faulty
421 uint8_t offsetA = 1, offsetB = 1;
422 for (; i<48; i+=2){
423 if (BitStream[i+1]==BitStream[i+2]) offsetA=0;
424 if (BitStream[i+2]==BitStream[i+3]) offsetB=0;
425 }
426 if (!offsetA && offsetB) offset++;
427 for (i=offset; i<*size-3; i+=2){
428 //check for phase error
429 if (BitStream[i+1]==BitStream[i+2]) {
430 BitStream[bitnum++]=7;
431 errCnt++;
432 }
433 if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
434 BitStream[bitnum++]=1^invert;
435 } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
436 BitStream[bitnum++]=invert;
437 } else {
438 BitStream[bitnum++]=7;
439 errCnt++;
440 }
441 if(bitnum>MaxBits) break;
442 }
443 *size=bitnum;
444 return errCnt;
445 }
446
447 // by marshmellow
448 // demod gProxIIDemod
449 // error returns as -x
450 // success returns start position in BitStream
451 // BitStream must contain previously askrawdemod and biphasedemoded data
452 int gProxII_Demod(uint8_t BitStream[], size_t *size)
453 {
454 size_t startIdx=0;
455 uint8_t preamble[] = {1,1,1,1,1,0};
456
457 uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx);
458 if (errChk == 0) return -3; //preamble not found
459 if (*size != 96) return -2; //should have found 96 bits
460 //check first 6 spacer bits to verify format
461 if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
462 //confirmed proper separator bits found
463 //return start position
464 return (int) startIdx;
465 }
466 return -5; //spacer bits not found - not a valid gproxII
467 }
468
469 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
470 size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
471 {
472 size_t last_transition = 0;
473 size_t idx = 1;
474 //uint32_t maxVal=0;
475 if (fchigh==0) fchigh=10;
476 if (fclow==0) fclow=8;
477 //set the threshold close to 0 (graph) or 128 std to avoid static
478 uint8_t threshold_value = 123;
479 size_t preLastSample = 0;
480 size_t LastSample = 0;
481 size_t currSample = 0;
482 // sync to first lo-hi transition, and threshold
483
484 // Need to threshold first sample
485 // skip 160 samples to allow antenna/samples to settle
486 if(dest[160] < threshold_value) dest[0] = 0;
487 else dest[0] = 1;
488
489 size_t numBits = 0;
490 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
491 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
492 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
493 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
494 for(idx = 161; idx < size-20; idx++) {
495 // threshold current value
496
497 if (dest[idx] < threshold_value) dest[idx] = 0;
498 else dest[idx] = 1;
499
500 // Check for 0->1 transition
501 if (dest[idx-1] < dest[idx]) {
502 preLastSample = LastSample;
503 LastSample = currSample;
504 currSample = idx-last_transition;
505 if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3)
506 //do nothing with extra garbage
507 } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5)
508 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
509 if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1) || preLastSample == 0 )){
510 dest[numBits-1]=1;
511 }
512 dest[numBits++]=1;
513
514 } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = unusable garbage
515 //do nothing with beginning garbage
516 } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
517 dest[numBits++]=1;
518 } else { //9+ = 10 sample waves (or 6+ = 7)
519 dest[numBits++]=0;
520 }
521 last_transition = idx;
522 }
523 }
524 return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
525 }
526
527 //translate 11111100000 to 10
528 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
529 size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen,
530 uint8_t invert, uint8_t fchigh, uint8_t fclow)
531 {
532 uint8_t lastval=dest[0];
533 size_t idx=0;
534 size_t numBits=0;
535 uint32_t n=1;
536 for( idx=1; idx < size; idx++) {
537 n++;
538 if (dest[idx]==lastval) continue;
539
540 //find out how many bits (n) we collected
541 //if lastval was 1, we have a 1->0 crossing
542 if (dest[idx-1]==1) {
543 n = (n * fclow + rfLen/2) / rfLen;
544 } else {// 0->1 crossing
545 n = (n * fchigh + rfLen/2) / rfLen;
546 }
547 if (n == 0) n = 1;
548
549 //add to our destination the bits we collected
550 memset(dest+numBits, dest[idx-1]^invert , n);
551 numBits += n;
552 n=0;
553 lastval=dest[idx];
554 }//end for
555 // if valid extra bits at the end were all the same frequency - add them in
556 if (n > rfLen/fchigh) {
557 if (dest[idx-2]==1) {
558 n = (n * fclow + rfLen/2) / rfLen;
559 } else {
560 n = (n * fchigh + rfLen/2) / rfLen;
561 }
562 memset(dest+numBits, dest[idx-1]^invert , n);
563 numBits += n;
564 }
565 return numBits;
566 }
567
568 //by marshmellow (from holiman's base)
569 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
570 int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
571 {
572 // FSK demodulator
573 size = fsk_wave_demod(dest, size, fchigh, fclow);
574 size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow);
575 return size;
576 }
577
578 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
579 int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
580 {
581 if (justNoise(dest, *size)) return -1;
582
583 size_t numStart=0, size2=*size, startIdx=0;
584 // FSK demodulator
585 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
586 if (*size < 96*2) return -2;
587 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
588 uint8_t preamble[] = {0,0,0,1,1,1,0,1};
589 // find bitstring in array
590 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
591 if (errChk == 0) return -3; //preamble not found
592
593 numStart = startIdx + sizeof(preamble);
594 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
595 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
596 if (dest[idx] == dest[idx+1]){
597 return -4; //not manchester data
598 }
599 *hi2 = (*hi2<<1)|(*hi>>31);
600 *hi = (*hi<<1)|(*lo>>31);
601 //Then, shift in a 0 or one into low
602 if (dest[idx] && !dest[idx+1]) // 1 0
603 *lo=(*lo<<1)|1;
604 else // 0 1
605 *lo=(*lo<<1)|0;
606 }
607 return (int)startIdx;
608 }
609
610 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
611 int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
612 {
613 if (justNoise(dest, *size)) return -1;
614
615 size_t numStart=0, size2=*size, startIdx=0;
616 // FSK demodulator
617 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
618 if (*size < 96) return -2;
619
620 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
621 uint8_t preamble[] = {0,0,0,0,1,1,1,1};
622
623 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
624 if (errChk == 0) return -3; //preamble not found
625
626 numStart = startIdx + sizeof(preamble);
627 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
628 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
629 if (dest[idx] == dest[idx+1])
630 return -4; //not manchester data
631 *hi2 = (*hi2<<1)|(*hi>>31);
632 *hi = (*hi<<1)|(*lo>>31);
633 //Then, shift in a 0 or one into low
634 if (dest[idx] && !dest[idx+1]) // 1 0
635 *lo=(*lo<<1)|1;
636 else // 0 1
637 *lo=(*lo<<1)|0;
638 }
639 return (int)startIdx;
640 }
641
642 int IOdemodFSK(uint8_t *dest, size_t size)
643 {
644 if (justNoise(dest, size)) return -1;
645 //make sure buffer has data
646 if (size < 66*64) return -2;
647 // FSK demodulator
648 size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64
649 if (size < 65) return -3; //did we get a good demod?
650 //Index map
651 //0 10 20 30 40 50 60
652 //| | | | | | |
653 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
654 //-----------------------------------------------------------------------------
655 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
656 //
657 //XSF(version)facility:codeone+codetwo
658 //Handle the data
659 size_t startIdx = 0;
660 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
661 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx);
662 if (errChk == 0) return -4; //preamble not found
663
664 if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
665 //confirmed proper separator bits found
666 //return start position
667 return (int) startIdx;
668 }
669 return -5;
670 }
671
672 // by marshmellow
673 // find viking preamble 0xF200 in already demoded data
674 int VikingDemod_AM(uint8_t *dest, size_t *size) {
675 //make sure buffer has data
676 if (*size < 64*2) return -2;
677
678 size_t startIdx = 0;
679 uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
680 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
681 if (errChk == 0) return -4; //preamble not found
682 uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^
683 bytebits_to_byte(dest+startIdx+8,8) ^
684 bytebits_to_byte(dest+startIdx+16,8) ^
685 bytebits_to_byte(dest+startIdx+24,8) ^
686 bytebits_to_byte(dest+startIdx+32,8) ^
687 bytebits_to_byte(dest+startIdx+40,8) ^
688 bytebits_to_byte(dest+startIdx+48,8) ^
689 bytebits_to_byte(dest+startIdx+56,8);
690 if ( checkCalc != 0xA8 ) return -5;
691 if (*size != 64) return -6;
692 //return start position
693 return (int) startIdx;
694 }
695
696 // find presco preamble 0x10D in already demoded data
697 int PrescoDemod(uint8_t *dest, size_t *size) {
698 //make sure buffer has data
699 if (*size < 64*2) return -2;
700
701 size_t startIdx = 0;
702 uint8_t preamble[] = {1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0};
703 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
704 if (errChk == 0) return -4; //preamble not found
705 //return start position
706 return (int) startIdx;
707 }
708
709 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
710 // BitStream must contain previously askrawdemod and biphasedemoded data
711 int FDXBdemodBI(uint8_t *dest, size_t *size)
712 {
713 //make sure buffer has enough data
714 if (*size < 128) return -1;
715
716 size_t startIdx = 0;
717 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1};
718
719 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
720 if (errChk == 0) return -2; //preamble not found
721 return (int)startIdx;
722 }
723
724 // by marshmellow
725 // FSK Demod then try to locate an AWID ID
726 int AWIDdemodFSK(uint8_t *dest, size_t *size)
727 {
728 //make sure buffer has enough data
729 if (*size < 96*50) return -1;
730
731 if (justNoise(dest, *size)) return -2;
732
733 // FSK demodulator
734 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
735 if (*size < 96) return -3; //did we get a good demod?
736
737 uint8_t preamble[] = {0,0,0,0,0,0,0,1};
738 size_t startIdx = 0;
739 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
740 if (errChk == 0) return -4; //preamble not found
741 if (*size != 96) return -5;
742 return (int)startIdx;
743 }
744
745 // by marshmellow
746 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
747 int PyramiddemodFSK(uint8_t *dest, size_t *size)
748 {
749 //make sure buffer has data
750 if (*size < 128*50) return -5;
751
752 //test samples are not just noise
753 if (justNoise(dest, *size)) return -1;
754
755 // FSK demodulator
756 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
757 if (*size < 128) return -2; //did we get a good demod?
758
759 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
760 size_t startIdx = 0;
761 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
762 if (errChk == 0) return -4; //preamble not found
763 if (*size != 128) return -3;
764 return (int)startIdx;
765 }
766
767 // by marshmellow
768 // to detect a wave that has heavily clipped (clean) samples
769 uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
770 {
771 bool allArePeaks = true;
772 uint16_t cntPeaks=0;
773 size_t loopEnd = 512+160;
774 if (loopEnd > size) loopEnd = size;
775 for (size_t i=160; i<loopEnd; i++){
776 if (dest[i]>low && dest[i]<high)
777 allArePeaks = false;
778 else
779 cntPeaks++;
780 }
781 if (!allArePeaks){
782 if (cntPeaks > 300) return true;
783 }
784 return allArePeaks;
785 }
786 // by marshmellow
787 // to help detect clocks on heavily clipped samples
788 // based on count of low to low
789 int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
790 {
791 uint8_t fndClk[] = {8,16,32,40,50,64,128};
792 size_t startwave;
793 size_t i = 100;
794 size_t minClk = 255;
795 // get to first full low to prime loop and skip incomplete first pulse
796 while ((dest[i] < high) && (i < size))
797 ++i;
798 while ((dest[i] > low) && (i < size))
799 ++i;
800
801 // loop through all samples
802 while (i < size) {
803 // measure from low to low
804 while ((dest[i] > low) && (i < size))
805 ++i;
806 startwave= i;
807 while ((dest[i] < high) && (i < size))
808 ++i;
809 while ((dest[i] > low) && (i < size))
810 ++i;
811 //get minimum measured distance
812 if (i-startwave < minClk && i < size)
813 minClk = i - startwave;
814 }
815 // set clock
816 if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk);
817 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
818 if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
819 return fndClk[clkCnt];
820 }
821 return 0;
822 }
823
824 // by marshmellow
825 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
826 // maybe somehow adjust peak trimming value based on samples to fix?
827 // return start index of best starting position for that clock and return clock (by reference)
828 int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
829 {
830 size_t i=1;
831 uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255};
832 uint8_t clkEnd = 9;
833 uint8_t loopCnt = 255; //don't need to loop through entire array...
834 if (size <= loopCnt+60) return -1; //not enough samples
835 size -= 60; //sometimes there is a strange end wave - filter out this....
836 //if we already have a valid clock
837 uint8_t clockFnd=0;
838 for (;i<clkEnd;++i)
839 if (clk[i] == *clock) clockFnd = i;
840 //clock found but continue to find best startpos
841
842 //get high and low peak
843 int peak, low;
844 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1;
845
846 //test for large clean peaks
847 if (!clockFnd){
848 if (DetectCleanAskWave(dest, size, peak, low)==1){
849 int ans = DetectStrongAskClock(dest, size, peak, low);
850 if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans);
851 for (i=clkEnd-1; i>0; i--){
852 if (clk[i] == ans) {
853 *clock = ans;
854 //clockFnd = i;
855 return 0; // for strong waves i don't use the 'best start position' yet...
856 //break; //clock found but continue to find best startpos [not yet]
857 }
858 }
859 }
860 }
861 uint8_t ii;
862 uint8_t clkCnt, tol = 0;
863 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
864 uint8_t bestStart[]={0,0,0,0,0,0,0,0,0};
865 size_t errCnt = 0;
866 size_t arrLoc, loopEnd;
867
868 if (clockFnd>0) {
869 clkCnt = clockFnd;
870 clkEnd = clockFnd+1;
871 }
872 else clkCnt=1;
873
874 //test each valid clock from smallest to greatest to see which lines up
875 for(; clkCnt < clkEnd; clkCnt++){
876 if (clk[clkCnt] <= 32){
877 tol=1;
878 }else{
879 tol=0;
880 }
881 //if no errors allowed - keep start within the first clock
882 if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2;
883 bestErr[clkCnt]=1000;
884 //try lining up the peaks by moving starting point (try first few clocks)
885 for (ii=0; ii < loopCnt; ii++){
886 if (dest[ii] < peak && dest[ii] > low) continue;
887
888 errCnt=0;
889 // now that we have the first one lined up test rest of wave array
890 loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1;
891 for (i=0; i < loopEnd; ++i){
892 arrLoc = ii + (i * clk[clkCnt]);
893 if (dest[arrLoc] >= peak || dest[arrLoc] <= low){
894 }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){
895 }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){
896 }else{ //error no peak detected
897 errCnt++;
898 }
899 }
900 //if we found no errors then we can stop here and a low clock (common clocks)
901 // this is correct one - return this clock
902 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk[clkCnt],errCnt,ii,i);
903 if(errCnt==0 && clkCnt<7) {
904 if (!clockFnd) *clock = clk[clkCnt];
905 return ii;
906 }
907 //if we found errors see if it is lowest so far and save it as best run
908 if(errCnt<bestErr[clkCnt]){
909 bestErr[clkCnt]=errCnt;
910 bestStart[clkCnt]=ii;
911 }
912 }
913 }
914 uint8_t iii;
915 uint8_t best=0;
916 for (iii=1; iii<clkEnd; ++iii){
917 if (bestErr[iii] < bestErr[best]){
918 if (bestErr[iii] == 0) bestErr[iii]=1;
919 // current best bit to error ratio vs new bit to error ratio
920 if ( (size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii] ){
921 best = iii;
922 }
923 }
924 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk[iii],bestErr[iii],clk[best],bestStart[best]);
925 }
926 if (!clockFnd) *clock = clk[best];
927 return bestStart[best];
928 }
929
930 //by marshmellow
931 //detect psk clock by reading each phase shift
932 // a phase shift is determined by measuring the sample length of each wave
933 int DetectPSKClock(uint8_t dest[], size_t size, int clock)
934 {
935 uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
936 uint16_t loopCnt = 4096; //don't need to loop through entire array...
937 if (size == 0) return 0;
938 if (size<loopCnt) loopCnt = size-20;
939
940 //if we already have a valid clock quit
941 size_t i=1;
942 for (; i < 8; ++i)
943 if (clk[i] == clock) return clock;
944
945 size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
946 uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
947 uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
948 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
949 uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
950 fc = countFC(dest, size, 0);
951 if (fc!=2 && fc!=4 && fc!=8) return -1;
952 if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc);
953
954 //find first full wave
955 for (i=160; i<loopCnt; i++){
956 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
957 if (waveStart == 0) {
958 waveStart = i+1;
959 //prnt("DEBUG: waveStart: %d",waveStart);
960 } else {
961 waveEnd = i+1;
962 //prnt("DEBUG: waveEnd: %d",waveEnd);
963 waveLenCnt = waveEnd-waveStart;
964 if (waveLenCnt > fc){
965 firstFullWave = waveStart;
966 fullWaveLen=waveLenCnt;
967 break;
968 }
969 waveStart=0;
970 }
971 }
972 }
973 if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
974
975 //test each valid clock from greatest to smallest to see which lines up
976 for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
977 lastClkBit = firstFullWave; //set end of wave as clock align
978 waveStart = 0;
979 errCnt=0;
980 peakcnt=0;
981 if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
982
983 for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
984 //top edge of wave = start of new wave
985 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
986 if (waveStart == 0) {
987 waveStart = i+1;
988 waveLenCnt=0;
989 } else { //waveEnd
990 waveEnd = i+1;
991 waveLenCnt = waveEnd-waveStart;
992 if (waveLenCnt > fc){
993 //if this wave is a phase shift
994 if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc);
995 if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
996 peakcnt++;
997 lastClkBit+=clk[clkCnt];
998 } else if (i<lastClkBit+8){
999 //noise after a phase shift - ignore
1000 } else { //phase shift before supposed to based on clock
1001 errCnt++;
1002 }
1003 } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
1004 lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
1005 }
1006 waveStart=i+1;
1007 }
1008 }
1009 }
1010 if (errCnt == 0){
1011 return clk[clkCnt];
1012 }
1013 if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
1014 if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
1015 }
1016 //all tested with errors
1017 //return the highest clk with the most peaks found
1018 uint8_t best=7;
1019 for (i=7; i>=1; i--){
1020 if (peaksdet[i] > peaksdet[best]) {
1021 best = i;
1022 }
1023 if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]);
1024 }
1025 return clk[best];
1026 }
1027
1028 int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){
1029 //find shortest transition from high to low
1030 size_t i = 0;
1031 size_t transition1 = 0;
1032 int lowestTransition = 255;
1033 bool lastWasHigh = false;
1034
1035 //find first valid beginning of a high or low wave
1036 while ((dest[i] >= peak || dest[i] <= low) && (i < size))
1037 ++i;
1038 while ((dest[i] < peak && dest[i] > low) && (i < size))
1039 ++i;
1040 lastWasHigh = (dest[i] >= peak);
1041
1042 if (i==size) return 0;
1043 transition1 = i;
1044
1045 for (;i < size; i++) {
1046 if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) {
1047 lastWasHigh = (dest[i] >= peak);
1048 if (i-transition1 < lowestTransition) lowestTransition = i-transition1;
1049 transition1 = i;
1050 }
1051 }
1052 if (lowestTransition == 255) lowestTransition = 0;
1053 if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition);
1054 return lowestTransition;
1055 }
1056
1057 //by marshmellow
1058 //detect nrz clock by reading #peaks vs no peaks(or errors)
1059 int DetectNRZClock(uint8_t dest[], size_t size, int clock)
1060 {
1061 size_t i=0;
1062 uint8_t clk[]={8,16,32,40,50,64,100,128,255};
1063 size_t loopCnt = 4096; //don't need to loop through entire array...
1064 if (size == 0) return 0;
1065 if (size<loopCnt) loopCnt = size-20;
1066 //if we already have a valid clock quit
1067 for (; i < 8; ++i)
1068 if (clk[i] == clock) return clock;
1069
1070 //get high and low peak
1071 int peak, low;
1072 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0;
1073
1074 int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low);
1075 size_t ii;
1076 uint8_t clkCnt;
1077 uint8_t tol = 0;
1078 uint16_t smplCnt = 0;
1079 int16_t peakcnt = 0;
1080 int16_t peaksdet[] = {0,0,0,0,0,0,0,0};
1081 uint16_t maxPeak = 255;
1082 bool firstpeak = false;
1083 //test for large clipped waves
1084 for (i=0; i<loopCnt; i++){
1085 if (dest[i] >= peak || dest[i] <= low){
1086 if (!firstpeak) continue;
1087 smplCnt++;
1088 } else {
1089 firstpeak=true;
1090 if (smplCnt > 6 ){
1091 if (maxPeak > smplCnt){
1092 maxPeak = smplCnt;
1093 //prnt("maxPk: %d",maxPeak);
1094 }
1095 peakcnt++;
1096 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1097 smplCnt=0;
1098 }
1099 }
1100 }
1101 bool errBitHigh = 0;
1102 bool bitHigh = 0;
1103 uint8_t ignoreCnt = 0;
1104 uint8_t ignoreWindow = 4;
1105 bool lastPeakHigh = 0;
1106 int lastBit = 0;
1107 peakcnt=0;
1108 //test each valid clock from smallest to greatest to see which lines up
1109 for(clkCnt=0; clkCnt < 8; ++clkCnt){
1110 //ignore clocks smaller than smallest peak
1111 if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue;
1112 //try lining up the peaks by moving starting point (try first 256)
1113 for (ii=20; ii < loopCnt; ++ii){
1114 if ((dest[ii] >= peak) || (dest[ii] <= low)){
1115 peakcnt=0;
1116 bitHigh = false;
1117 ignoreCnt = 0;
1118 lastBit = ii-clk[clkCnt];
1119 //loop through to see if this start location works
1120 for (i = ii; i < size-20; ++i) {
1121 //if we are at a clock bit
1122 if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) {
1123 //test high/low
1124 if (dest[i] >= peak || dest[i] <= low) {
1125 //if same peak don't count it
1126 if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) {
1127 peakcnt++;
1128 }
1129 lastPeakHigh = (dest[i] >= peak);
1130 bitHigh = true;
1131 errBitHigh = false;
1132 ignoreCnt = ignoreWindow;
1133 lastBit += clk[clkCnt];
1134 } else if (i == lastBit + clk[clkCnt] + tol) {
1135 lastBit += clk[clkCnt];
1136 }
1137 //else if not a clock bit and no peaks
1138 } else if (dest[i] < peak && dest[i] > low){
1139 if (ignoreCnt==0){
1140 bitHigh=false;
1141 if (errBitHigh==true) peakcnt--;
1142 errBitHigh=false;
1143 } else {
1144 ignoreCnt--;
1145 }
1146 // else if not a clock bit but we have a peak
1147 } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) {
1148 //error bar found no clock...
1149 errBitHigh=true;
1150 }
1151 }
1152 if(peakcnt>peaksdet[clkCnt]) {
1153 peaksdet[clkCnt]=peakcnt;
1154 }
1155 }
1156 }
1157 }
1158 int iii=7;
1159 uint8_t best=0;
1160 for (iii=7; iii > 0; iii--){
1161 if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) {
1162 if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) {
1163 best = iii;
1164 }
1165 } else if (peaksdet[iii] > peaksdet[best]){
1166 best = iii;
1167 }
1168 if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
1169 }
1170
1171 return clk[best];
1172 }
1173
1174 // by marshmellow
1175 // convert psk1 demod to psk2 demod
1176 // only transition waves are 1s
1177 void psk1TOpsk2(uint8_t *BitStream, size_t size)
1178 {
1179 size_t i=1;
1180 uint8_t lastBit=BitStream[0];
1181 for (; i<size; i++){
1182 if (BitStream[i]==7){
1183 //ignore errors
1184 } else if (lastBit!=BitStream[i]){
1185 lastBit=BitStream[i];
1186 BitStream[i]=1;
1187 } else {
1188 BitStream[i]=0;
1189 }
1190 }
1191 return;
1192 }
1193
1194 // by marshmellow
1195 // convert psk2 demod to psk1 demod
1196 // from only transition waves are 1s to phase shifts change bit
1197 void psk2TOpsk1(uint8_t *BitStream, size_t size)
1198 {
1199 uint8_t phase=0;
1200 for (size_t i=0; i<size; i++){
1201 if (BitStream[i]==1){
1202 phase ^=1;
1203 }
1204 BitStream[i]=phase;
1205 }
1206 return;
1207 }
1208
1209 // redesigned by marshmellow adjusted from existing decode functions
1210 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1211 int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
1212 {
1213 //26 bit 40134 format (don't know other formats)
1214 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
1215 uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
1216 size_t startidx = 0;
1217 if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){
1218 // if didn't find preamble try again inverting
1219 if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1;
1220 *invert ^= 1;
1221 }
1222 if (*size != 64 && *size != 224) return -2;
1223 if (*invert==1)
1224 for (size_t i = startidx; i < *size; i++)
1225 bitStream[i] ^= 1;
1226
1227 return (int) startidx;
1228 }
1229
1230 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1231 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1232 int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){
1233 if (justNoise(dest, *size)) return -1;
1234 *clk = DetectNRZClock(dest, *size, *clk);
1235 if (*clk==0) return -2;
1236 size_t i, gLen = 4096;
1237 if (gLen>*size) gLen = *size-20;
1238 int high, low;
1239 if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1240
1241 uint8_t bit=0;
1242 //convert wave samples to 1's and 0's
1243 for(i=20; i < *size-20; i++){
1244 if (dest[i] >= high) bit = 1;
1245 if (dest[i] <= low) bit = 0;
1246 dest[i] = bit;
1247 }
1248 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1249 size_t lastBit = 0;
1250 size_t numBits = 0;
1251 for(i=21; i < *size-20; i++) {
1252 //if transition detected or large number of same bits - store the passed bits
1253 if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) {
1254 memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk);
1255 numBits += (i - lastBit + (*clk/4)) / *clk;
1256 lastBit = i-1;
1257 }
1258 }
1259 *size = numBits;
1260 return 0;
1261 }
1262
1263 //by marshmellow
1264 //detects the bit clock for FSK given the high and low Field Clocks
1265 uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
1266 {
1267 uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
1268 uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1269 uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1270 uint8_t rfLensFnd = 0;
1271 uint8_t lastFCcnt = 0;
1272 uint16_t fcCounter = 0;
1273 uint16_t rfCounter = 0;
1274 uint8_t firstBitFnd = 0;
1275 size_t i;
1276 if (size == 0) return 0;
1277
1278 uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1279 rfLensFnd=0;
1280 fcCounter=0;
1281 rfCounter=0;
1282 firstBitFnd=0;
1283 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1284 // prime i to first peak / up transition
1285 for (i = 160; i < size-20; i++)
1286 if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
1287 break;
1288
1289 for (; i < size-20; i++){
1290 fcCounter++;
1291 rfCounter++;
1292
1293 if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1])
1294 continue;
1295 // else new peak
1296 // if we got less than the small fc + tolerance then set it to the small fc
1297 if (fcCounter < fcLow+fcTol)
1298 fcCounter = fcLow;
1299 else //set it to the large fc
1300 fcCounter = fcHigh;
1301
1302 //look for bit clock (rf/xx)
1303 if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){
1304 //not the same size as the last wave - start of new bit sequence
1305 if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit
1306 for (int ii=0; ii<15; ii++){
1307 if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){
1308 rfCnts[ii]++;
1309 rfCounter = 0;
1310 break;
1311 }
1312 }
1313 if (rfCounter > 0 && rfLensFnd < 15){
1314 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1315 rfCnts[rfLensFnd]++;
1316 rfLens[rfLensFnd++] = rfCounter;
1317 }
1318 } else {
1319 firstBitFnd++;
1320 }
1321 rfCounter=0;
1322 lastFCcnt=fcCounter;
1323 }
1324 fcCounter=0;
1325 }
1326 uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
1327
1328 for (i=0; i<15; i++){
1329 //get highest 2 RF values (might need to get more values to compare or compare all?)
1330 if (rfCnts[i]>rfCnts[rfHighest]){
1331 rfHighest3=rfHighest2;
1332 rfHighest2=rfHighest;
1333 rfHighest=i;
1334 } else if(rfCnts[i]>rfCnts[rfHighest2]){
1335 rfHighest3=rfHighest2;
1336 rfHighest2=i;
1337 } else if(rfCnts[i]>rfCnts[rfHighest3]){
1338 rfHighest3=i;
1339 }
1340 if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1341 }
1342 // set allowed clock remainder tolerance to be 1 large field clock length+1
1343 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1344 uint8_t tol1 = fcHigh+1;
1345
1346 if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1347
1348 // loop to find the highest clock that has a remainder less than the tolerance
1349 // compare samples counted divided by
1350 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1351 int ii=7;
1352 for (; ii>=2; ii--){
1353 if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
1354 if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
1355 if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
1356 if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]);
1357 break;
1358 }
1359 }
1360 }
1361 }
1362
1363 if (ii<0) return 0; // oops we went too far
1364
1365 return clk[ii];
1366 }
1367
1368 //by marshmellow
1369 //countFC is to detect the field clock lengths.
1370 //counts and returns the 2 most common wave lengths
1371 //mainly used for FSK field clock detection
1372 uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
1373 {
1374 uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1375 uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1376 uint8_t fcLensFnd = 0;
1377 uint8_t lastFCcnt=0;
1378 uint8_t fcCounter = 0;
1379 size_t i;
1380 if (size == 0) return 0;
1381
1382 // prime i to first up transition
1383 for (i = 160; i < size-20; i++)
1384 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
1385 break;
1386
1387 for (; i < size-20; i++){
1388 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
1389 // new up transition
1390 fcCounter++;
1391 if (fskAdj){
1392 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1393 if (lastFCcnt==5 && fcCounter==9) fcCounter--;
1394 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1395 if ((fcCounter==9) || fcCounter==4) fcCounter++;
1396 // save last field clock count (fc/xx)
1397 lastFCcnt = fcCounter;
1398 }
1399 // find which fcLens to save it to:
1400 for (int ii=0; ii<15; ii++){
1401 if (fcLens[ii]==fcCounter){
1402 fcCnts[ii]++;
1403 fcCounter=0;
1404 break;
1405 }
1406 }
1407 if (fcCounter>0 && fcLensFnd<15){
1408 //add new fc length
1409 fcCnts[fcLensFnd]++;
1410 fcLens[fcLensFnd++]=fcCounter;
1411 }
1412 fcCounter=0;
1413 } else {
1414 // count sample
1415 fcCounter++;
1416 }
1417 }
1418
1419 uint8_t best1=14, best2=14, best3=14;
1420 uint16_t maxCnt1=0;
1421 // go through fclens and find which ones are bigest 2
1422 for (i=0; i<15; i++){
1423 // get the 3 best FC values
1424 if (fcCnts[i]>maxCnt1) {
1425 best3=best2;
1426 best2=best1;
1427 maxCnt1=fcCnts[i];
1428 best1=i;
1429 } else if(fcCnts[i]>fcCnts[best2]){
1430 best3=best2;
1431 best2=i;
1432 } else if(fcCnts[i]>fcCnts[best3]){
1433 best3=i;
1434 }
1435 if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]);
1436 }
1437 if (fcLens[best1]==0) return 0;
1438 uint8_t fcH=0, fcL=0;
1439 if (fcLens[best1]>fcLens[best2]){
1440 fcH=fcLens[best1];
1441 fcL=fcLens[best2];
1442 } else{
1443 fcH=fcLens[best2];
1444 fcL=fcLens[best1];
1445 }
1446 if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) {
1447 if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
1448 return 0; //lots of waves not psk or fsk
1449 }
1450 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1451
1452 uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
1453 if (fskAdj) return fcs;
1454 return fcLens[best1];
1455 }
1456
1457 //by marshmellow - demodulate PSK1 wave
1458 //uses wave lengths (# Samples)
1459 int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
1460 {
1461 if (size == 0) return -1;
1462 uint16_t loopCnt = 4096; //don't need to loop through entire array...
1463 if (*size<loopCnt) loopCnt = *size;
1464
1465 size_t numBits=0;
1466 uint8_t curPhase = *invert;
1467 size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
1468 uint8_t fc=0, fullWaveLen=0, tol=1;
1469 uint16_t errCnt=0, waveLenCnt=0;
1470 fc = countFC(dest, *size, 0);
1471 if (fc!=2 && fc!=4 && fc!=8) return -1;
1472 //PrintAndLog("DEBUG: FC: %d",fc);
1473 *clock = DetectPSKClock(dest, *size, *clock);
1474 if (*clock == 0) return -1;
1475 int avgWaveVal=0, lastAvgWaveVal=0;
1476 //find first phase shift
1477 for (i=0; i<loopCnt; i++){
1478 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1479 waveEnd = i+1;
1480 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1481 waveLenCnt = waveEnd-waveStart;
1482 if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+2)){ //not first peak and is a large wave but not out of whack
1483 lastAvgWaveVal = avgWaveVal/(waveLenCnt);
1484 firstFullWave = waveStart;
1485 fullWaveLen=waveLenCnt;
1486 //if average wave value is > graph 0 then it is an up wave or a 1
1487 if (lastAvgWaveVal > 123) curPhase ^= 1; //fudge graph 0 a little 123 vs 128
1488 break;
1489 }
1490 waveStart = i+1;
1491 avgWaveVal = 0;
1492 }
1493 avgWaveVal += dest[i+2];
1494 }
1495 if (firstFullWave == 0) {
1496 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1497 // so skip a little to ensure we are past any Start Signal
1498 firstFullWave = 160;
1499 memset(dest, curPhase, firstFullWave / *clock);
1500 } else {
1501 memset(dest, curPhase^1, firstFullWave / *clock);
1502 }
1503 //advance bits
1504 numBits += (firstFullWave / *clock);
1505 //set start of wave as clock align
1506 lastClkBit = firstFullWave;
1507 if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave,fullWaveLen);
1508 if (g_debugMode==2) prnt("DEBUG: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc);
1509 waveStart = 0;
1510 dest[numBits++] = curPhase; //set first read bit
1511 for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
1512 //top edge of wave = start of new wave
1513 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1514 if (waveStart == 0) {
1515 waveStart = i+1;
1516 waveLenCnt = 0;
1517 avgWaveVal = dest[i+1];
1518 } else { //waveEnd
1519 waveEnd = i+1;
1520 waveLenCnt = waveEnd-waveStart;
1521 lastAvgWaveVal = avgWaveVal/waveLenCnt;
1522 if (waveLenCnt > fc){
1523 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1524 //this wave is a phase shift
1525 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1526 if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
1527 curPhase ^= 1;
1528 dest[numBits++] = curPhase;
1529 lastClkBit += *clock;
1530 } else if (i < lastClkBit+10+fc){
1531 //noise after a phase shift - ignore
1532 } else { //phase shift before supposed to based on clock
1533 errCnt++;
1534 dest[numBits++] = 7;
1535 }
1536 } else if (i+1 > lastClkBit + *clock + tol + fc){
1537 lastClkBit += *clock; //no phase shift but clock bit
1538 dest[numBits++] = curPhase;
1539 }
1540 avgWaveVal = 0;
1541 waveStart = i+1;
1542 }
1543 }
1544 avgWaveVal += dest[i+1];
1545 }
1546 *size = numBits;
1547 return errCnt;
1548 }
1549
1550 //by marshmellow
1551 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1552 bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) {
1553 size_t bufsize = *size;
1554 //need to loop through all samples and identify our clock, look for the ST pattern
1555 uint8_t fndClk[] = {8,16,32,40,50,64,128};
1556 int clk = 0;
1557 int tol = 0;
1558 int i, j, skip, start, end, low, high, minClk, waveStart;
1559 bool complete = false;
1560 int tmpbuff[bufsize / 64];
1561 int waveLen[bufsize / 64];
1562 size_t testsize = (bufsize < 512) ? bufsize : 512;
1563 int phaseoff = 0;
1564 high = low = 128;
1565 memset(tmpbuff, 0, sizeof(tmpbuff));
1566
1567 if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) {
1568 if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting");
1569 return false; //just noise
1570 }
1571 i = 0;
1572 j = 0;
1573 minClk = 255;
1574 // get to first full low to prime loop and skip incomplete first pulse
1575 while ((buffer[i] < high) && (i < bufsize))
1576 ++i;
1577 while ((buffer[i] > low) && (i < bufsize))
1578 ++i;
1579 skip = i;
1580
1581 // populate tmpbuff buffer with pulse lengths
1582 while (i < bufsize) {
1583 // measure from low to low
1584 while ((buffer[i] > low) && (i < bufsize))
1585 ++i;
1586 start= i;
1587 while ((buffer[i] < high) && (i < bufsize))
1588 ++i;
1589 //first high point for this wave
1590 waveStart = i;
1591 while ((buffer[i] > low) && (i < bufsize))
1592 ++i;
1593 if (j >= (bufsize/64)) {
1594 break;
1595 }
1596 waveLen[j] = i - waveStart; //first high to first low
1597 tmpbuff[j++] = i - start;
1598 if (i-start < minClk && i < bufsize) {
1599 minClk = i - start;
1600 }
1601 }
1602 // set clock - might be able to get this externally and remove this work...
1603 if (!clk) {
1604 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
1605 tol = fndClk[clkCnt]/8;
1606 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
1607 clk=fndClk[clkCnt];
1608 break;
1609 }
1610 }
1611 // clock not found - ERROR
1612 if (!clk) {
1613 if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting");
1614 return false;
1615 }
1616 } else tol = clk/8;
1617
1618 *foundclock = clk;
1619
1620 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1621 start = -1;
1622 for (i = 0; i < j - 4; ++i) {
1623 skip += tmpbuff[i];
1624 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
1625 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1626 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1627 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1628 start = i + 3;
1629 break;
1630 }
1631 }
1632 }
1633 }
1634 }
1635 // first ST not found - ERROR
1636 if (start < 0) {
1637 if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting");
1638 return false;
1639 }
1640 if (waveLen[i+2] > clk*1+tol)
1641 phaseoff = 0;
1642 else
1643 phaseoff = clk/2;
1644
1645 // skip over the remainder of ST
1646 skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1647
1648 // now do it again to find the end
1649 end = skip;
1650 for (i += 3; i < j - 4; ++i) {
1651 end += tmpbuff[i];
1652 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol) { //1 to 2 clocks depending on 2 bits prior
1653 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1654 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1655 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1656 complete = true;
1657 break;
1658 }
1659 }
1660 }
1661 }
1662 }
1663 end -= phaseoff;
1664 //didn't find second ST - ERROR
1665 if (!complete) {
1666 if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting");
1667 return false;
1668 }
1669 if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff);
1670 //now begin to trim out ST so we can use normal demod cmds
1671 start = skip;
1672 size_t datalen = end - start;
1673 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1674 if (datalen % clk > clk/8) {
1675 if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk);
1676 return false;
1677 } else {
1678 // padd the amount off - could be problematic... but shouldn't happen often
1679 datalen += datalen % clk;
1680 }
1681 // if datalen is less than one t55xx block - ERROR
1682 if (datalen/clk < 8*4) {
1683 if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting");
1684 return false;
1685 }
1686 size_t dataloc = start;
1687 size_t newloc = 0;
1688 i=0;
1689 // warning - overwriting buffer given with raw wave data with ST removed...
1690 while ( dataloc < bufsize-(clk/2) ) {
1691 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1692 if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) {
1693 for(i=0; i < clk/2-tol; ++i) {
1694 buffer[dataloc+i] = high+5;
1695 }
1696 }
1697 for (i=0; i<datalen; ++i) {
1698 if (i+newloc < bufsize) {
1699 if (i+newloc < dataloc)
1700 buffer[i+newloc] = buffer[dataloc];
1701
1702 dataloc++;
1703 }
1704 }
1705 newloc += i;
1706 //skip next ST - we just assume it will be there from now on...
1707 dataloc += clk*4;
1708 }
1709 *size = newloc;
1710 return true;
1711 }
Impressum, Datenschutz