1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
19 #include "iso14443crc.h"
20 #include "iso14443a.h"
22 #include "mifareutil.h"
24 static uint32_t iso14a_timeout
;
27 // the block number for the ISO14443-4 PCB
28 static uint8_t iso14_pcb_blocknum
= 0;
33 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
34 #define REQUEST_GUARD_TIME (7000/16 + 1)
35 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
36 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
37 // bool LastCommandWasRequest = FALSE;
40 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
42 // When the PM acts as reader and is receiving tag data, it takes
43 // 3 ticks delay in the AD converter
44 // 16 ticks until the modulation detector completes and sets curbit
45 // 8 ticks until bit_to_arm is assigned from curbit
46 // 8*16 ticks for the transfer from FPGA to ARM
47 // 4*16 ticks until we measure the time
48 // - 8*16 ticks because we measure the time of the previous transfer
49 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
51 // When the PM acts as a reader and is sending, it takes
52 // 4*16 ticks until we can write data to the sending hold register
53 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
54 // 8 ticks until the first transfer starts
55 // 8 ticks later the FPGA samples the data
56 // 1 tick to assign mod_sig_coil
57 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
59 // When the PM acts as tag and is receiving it takes
60 // 2 ticks delay in the RF part (for the first falling edge),
61 // 3 ticks for the A/D conversion,
62 // 8 ticks on average until the start of the SSC transfer,
63 // 8 ticks until the SSC samples the first data
64 // 7*16 ticks to complete the transfer from FPGA to ARM
65 // 8 ticks until the next ssp_clk rising edge
66 // 4*16 ticks until we measure the time
67 // - 8*16 ticks because we measure the time of the previous transfer
68 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
70 // The FPGA will report its internal sending delay in
71 uint16_t FpgaSendQueueDelay
;
72 // the 5 first bits are the number of bits buffered in mod_sig_buf
73 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
74 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
76 // When the PM acts as tag and is sending, it takes
77 // 4*16 ticks until we can write data to the sending hold register
78 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
79 // 8 ticks until the first transfer starts
80 // 8 ticks later the FPGA samples the data
81 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
82 // + 1 tick to assign mod_sig_coil
83 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
85 // When the PM acts as sniffer and is receiving tag data, it takes
86 // 3 ticks A/D conversion
87 // 14 ticks to complete the modulation detection
88 // 8 ticks (on average) until the result is stored in to_arm
89 // + the delays in transferring data - which is the same for
90 // sniffing reader and tag data and therefore not relevant
91 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
93 // When the PM acts as sniffer and is receiving reader data, it takes
94 // 2 ticks delay in analogue RF receiver (for the falling edge of the
95 // start bit, which marks the start of the communication)
96 // 3 ticks A/D conversion
97 // 8 ticks on average until the data is stored in to_arm.
98 // + the delays in transferring data - which is the same for
99 // sniffing reader and tag data and therefore not relevant
100 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
102 //variables used for timing purposes:
103 //these are in ssp_clk cycles:
104 static uint32_t NextTransferTime
;
105 static uint32_t LastTimeProxToAirStart
;
106 static uint32_t LastProxToAirDuration
;
110 // CARD TO READER - manchester
111 // Sequence D: 11110000 modulation with subcarrier during first half
112 // Sequence E: 00001111 modulation with subcarrier during second half
113 // Sequence F: 00000000 no modulation with subcarrier
114 // READER TO CARD - miller
115 // Sequence X: 00001100 drop after half a period
116 // Sequence Y: 00000000 no drop
117 // Sequence Z: 11000000 drop at start
125 const uint8_t OddByteParity
[256] = {
126 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
129 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
145 void iso14a_set_trigger(bool enable
) {
150 void iso14a_set_timeout(uint32_t timeout
) {
151 iso14a_timeout
= timeout
;
152 if(MF_DBGLEVEL
>= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout
, iso14a_timeout
/ 106);
156 void iso14a_set_ATS_timeout(uint8_t *ats
) {
162 if (ats
[0] > 1) { // there is a format byte T0
163 if ((ats
[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
164 if ((ats
[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
169 fwi
= (tb1
& 0xf0) >> 4; // frame waiting indicator (FWI)
170 fwt
= 256 * 16 * (1 << fwi
); // frame waiting time (FWT) in 1/fc
172 iso14a_set_timeout(fwt
/(8*16));
178 //-----------------------------------------------------------------------------
179 // Generate the parity value for a byte sequence
181 //-----------------------------------------------------------------------------
182 byte_t
oddparity (const byte_t bt
)
184 return OddByteParity
[bt
];
187 void GetParity(const uint8_t *pbtCmd
, uint16_t iLen
, uint8_t *par
)
189 uint16_t paritybit_cnt
= 0;
190 uint16_t paritybyte_cnt
= 0;
191 uint8_t parityBits
= 0;
193 for (uint16_t i
= 0; i
< iLen
; i
++) {
194 // Generate the parity bits
195 parityBits
|= ((OddByteParity
[pbtCmd
[i
]]) << (7-paritybit_cnt
));
196 if (paritybit_cnt
== 7) {
197 par
[paritybyte_cnt
] = parityBits
; // save 8 Bits parity
198 parityBits
= 0; // and advance to next Parity Byte
206 // save remaining parity bits
207 par
[paritybyte_cnt
] = parityBits
;
211 void AppendCrc14443a(uint8_t* data
, int len
)
213 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
216 //=============================================================================
217 // ISO 14443 Type A - Miller decoder
218 //=============================================================================
220 // This decoder is used when the PM3 acts as a tag.
221 // The reader will generate "pauses" by temporarily switching of the field.
222 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
223 // The FPGA does a comparison with a threshold and would deliver e.g.:
224 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
225 // The Miller decoder needs to identify the following sequences:
226 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
227 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
228 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
229 // Note 1: the bitstream may start at any time. We therefore need to sync.
230 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
231 //-----------------------------------------------------------------------------
234 // Lookup-Table to decide if 4 raw bits are a modulation.
235 // We accept two or three consecutive "0" in any position with the rest "1"
236 const bool Mod_Miller_LUT
[] = {
237 TRUE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
,
238 TRUE
, TRUE
, FALSE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
240 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
241 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
245 Uart
.state
= STATE_UNSYNCD
;
247 Uart
.len
= 0; // number of decoded data bytes
248 Uart
.parityLen
= 0; // number of decoded parity bytes
249 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
250 Uart
.parityBits
= 0; // holds 8 parity bits
251 Uart
.fourBits
= 0x00000000; // buffer for 4 Bits
256 void UartInit(uint8_t *data
, uint8_t *parity
)
259 Uart
.parity
= parity
;
263 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
264 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
267 Uart
.fourBits
= (Uart
.fourBits
<< 8) | bit
;
269 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
271 Uart
.syncBit
= 9999; // not set
272 // we look for a ...xxxx1111111100x11111xxxxxx pattern
273 // (unmodulated, followed by the start bit = 8 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
274 #define ISO14443A_STARTBIT_MASK 0x007FEF80 // mask is 00000000 01111111 11101111 10000000
275 #define ISO14443A_STARTBIT_PATTERN 0x007F8F80 // pattern is 00000000 01111111 10001111 10000000
276 if ((Uart
.fourBits
& ISO14443A_STARTBIT_MASK
) >> 0 == ISO14443A_STARTBIT_PATTERN
>> 0) Uart
.syncBit
= 7;
277 else if ((Uart
.fourBits
& ISO14443A_STARTBIT_MASK
) >> 1 == ISO14443A_STARTBIT_PATTERN
>> 1) Uart
.syncBit
= 6;
278 else if ((Uart
.fourBits
& ISO14443A_STARTBIT_MASK
) >> 2 == ISO14443A_STARTBIT_PATTERN
>> 2) Uart
.syncBit
= 5;
279 else if ((Uart
.fourBits
& ISO14443A_STARTBIT_MASK
) >> 3 == ISO14443A_STARTBIT_PATTERN
>> 3) Uart
.syncBit
= 4;
280 else if ((Uart
.fourBits
& ISO14443A_STARTBIT_MASK
) >> 4 == ISO14443A_STARTBIT_PATTERN
>> 4) Uart
.syncBit
= 3;
281 else if ((Uart
.fourBits
& ISO14443A_STARTBIT_MASK
) >> 5 == ISO14443A_STARTBIT_PATTERN
>> 5) Uart
.syncBit
= 2;
282 else if ((Uart
.fourBits
& ISO14443A_STARTBIT_MASK
) >> 6 == ISO14443A_STARTBIT_PATTERN
>> 6) Uart
.syncBit
= 1;
283 else if ((Uart
.fourBits
& ISO14443A_STARTBIT_MASK
) >> 7 == ISO14443A_STARTBIT_PATTERN
>> 7) Uart
.syncBit
= 0;
284 if (Uart
.syncBit
!= 9999) { // found a sync bit
285 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
286 Uart
.startTime
-= Uart
.syncBit
;
287 Uart
.endTime
= Uart
.startTime
;
288 Uart
.state
= STATE_START_OF_COMMUNICATION
;
293 if (IsMillerModulationNibble1(Uart
.fourBits
>> Uart
.syncBit
)) {
294 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
296 } else { // Modulation in first half = Sequence Z = logic "0"
297 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
301 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
302 Uart
.state
= STATE_MILLER_Z
;
303 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
304 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
305 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
306 Uart
.parityBits
<<= 1; // make room for the parity bit
307 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
310 if((Uart
.len
&0x0007) == 0) { // every 8 data bytes
311 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
318 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
320 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
321 Uart
.state
= STATE_MILLER_X
;
322 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
323 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
324 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
325 Uart
.parityBits
<<= 1; // make room for the new parity bit
326 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
329 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
330 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
334 } else { // no modulation in both halves - Sequence Y
335 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
336 Uart
.state
= STATE_UNSYNCD
;
337 Uart
.bitCount
--; // last "0" was part of EOC sequence
338 Uart
.shiftReg
<<= 1; // drop it
339 if(Uart
.bitCount
> 0) { // if we decoded some bits
340 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // right align them
341 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff); // add last byte to the output
342 Uart
.parityBits
<<= 1; // add a (void) parity bit
343 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align parity bits
344 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store it
346 } else if (Uart
.len
& 0x0007) { // there are some parity bits to store
347 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align remaining parity bits
348 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store them
351 return TRUE
; // we are finished with decoding the raw data sequence
353 UartReset(); // Nothing received - start over
356 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
358 } else { // a logic "0"
360 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
361 Uart
.state
= STATE_MILLER_Y
;
362 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
363 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
364 Uart
.parityBits
<<= 1; // make room for the parity bit
365 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
368 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
369 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
379 return FALSE
; // not finished yet, need more data
384 //=============================================================================
385 // ISO 14443 Type A - Manchester decoder
386 //=============================================================================
388 // This decoder is used when the PM3 acts as a reader.
389 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
390 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
391 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
392 // The Manchester decoder needs to identify the following sequences:
393 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
394 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
395 // 8 ticks unmodulated: Sequence F = end of communication
396 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
397 // Note 1: the bitstream may start at any time. We therefore need to sync.
398 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
401 // Lookup-Table to decide if 4 raw bits are a modulation.
402 // We accept three or four "1" in any position
403 const bool Mod_Manchester_LUT
[] = {
404 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
405 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
408 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
409 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
414 Demod
.state
= DEMOD_UNSYNCD
;
415 Demod
.len
= 0; // number of decoded data bytes
417 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
418 Demod
.parityBits
= 0; //
419 Demod
.collisionPos
= 0; // Position of collision bit
420 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
426 void DemodInit(uint8_t *data
, uint8_t *parity
)
429 Demod
.parity
= parity
;
433 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
434 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
437 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
439 if (Demod
.state
== DEMOD_UNSYNCD
) {
441 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
442 if (Demod
.twoBits
== 0x0000) {
448 Demod
.syncBit
= 0xFFFF; // not set
449 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
450 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
451 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
452 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
453 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
454 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
455 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
456 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
457 if (Demod
.syncBit
!= 0xFFFF) {
458 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
459 Demod
.startTime
-= Demod
.syncBit
;
460 Demod
.bitCount
= offset
; // number of decoded data bits
461 Demod
.state
= DEMOD_MANCHESTER_DATA
;
467 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
468 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
469 if (!Demod
.collisionPos
) {
470 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
472 } // modulation in first half only - Sequence D = 1
474 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
475 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
476 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
477 Demod
.parityBits
<<= 1; // make room for the parity bit
478 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
481 if((Demod
.len
&0x0007) == 0) { // every 8 data bytes
482 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits
483 Demod
.parityBits
= 0;
486 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
487 } else { // no modulation in first half
488 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
490 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
491 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
492 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
493 Demod
.parityBits
<<= 1; // make room for the new parity bit
494 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
497 if ((Demod
.len
&0x0007) == 0) { // every 8 data bytes
498 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits1
499 Demod
.parityBits
= 0;
502 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
503 } else { // no modulation in both halves - End of communication
504 if(Demod
.bitCount
> 0) { // there are some remaining data bits
505 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align the decoded bits
506 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff; // and add them to the output
507 Demod
.parityBits
<<= 1; // add a (void) parity bit
508 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
509 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
511 } else if (Demod
.len
& 0x0007) { // there are some parity bits to store
512 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
513 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
516 return TRUE
; // we are finished with decoding the raw data sequence
517 } else { // nothing received. Start over
525 return FALSE
; // not finished yet, need more data
528 //=============================================================================
529 // Finally, a `sniffer' for ISO 14443 Type A
530 // Both sides of communication!
531 //=============================================================================
533 //-----------------------------------------------------------------------------
534 // Record the sequence of commands sent by the reader to the tag, with
535 // triggering so that we start recording at the point that the tag is moved
537 //-----------------------------------------------------------------------------
538 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
540 // bit 0 - trigger from first card answer
541 // bit 1 - trigger from first reader 7-bit request
545 // We won't start recording the frames that we acquire until we trigger;
546 // a good trigger condition to get started is probably when we see a
547 // response from the tag.
548 // triggered == FALSE -- to wait first for card
549 bool triggered
= !(param
& 0x03);
551 // Allocate memory from BigBuf for some buffers
552 // free all previous allocations first
555 // The command (reader -> tag) that we're receiving.
556 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
557 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
559 // The response (tag -> reader) that we're receiving.
560 uint8_t *receivedResponse
= BigBuf_malloc(MAX_FRAME_SIZE
);
561 uint8_t *receivedResponsePar
= BigBuf_malloc(MAX_PARITY_SIZE
);
563 // The DMA buffer, used to stream samples from the FPGA
564 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
570 uint8_t *data
= dmaBuf
;
571 uint8_t previous_data
= 0;
574 bool TagIsActive
= FALSE
;
575 bool ReaderIsActive
= FALSE
;
577 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
579 // Set up the demodulator for tag -> reader responses.
580 DemodInit(receivedResponse
, receivedResponsePar
);
582 // Set up the demodulator for the reader -> tag commands
583 UartInit(receivedCmd
, receivedCmdPar
);
585 // Setup and start DMA.
586 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
588 // And now we loop, receiving samples.
589 for(uint32_t rsamples
= 0; TRUE
; ) {
592 DbpString("cancelled by button");
599 int register readBufDataP
= data
- dmaBuf
;
600 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
601 if (readBufDataP
<= dmaBufDataP
){
602 dataLen
= dmaBufDataP
- readBufDataP
;
604 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
606 // test for length of buffer
607 if(dataLen
> maxDataLen
) {
608 maxDataLen
= dataLen
;
609 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
610 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
614 if(dataLen
< 1) continue;
616 // primary buffer was stopped( <-- we lost data!
617 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
618 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
619 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
620 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
622 // secondary buffer sets as primary, secondary buffer was stopped
623 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
624 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
625 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
630 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
632 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
633 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
634 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
637 // check - if there is a short 7bit request from reader
638 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
641 if (!LogTrace(receivedCmd
,
643 Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
644 Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
648 /* And ready to receive another command. */
650 /* And also reset the demod code, which might have been */
651 /* false-triggered by the commands from the reader. */
655 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
658 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
659 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
660 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
663 if (!LogTrace(receivedResponse
,
665 Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
666 Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
670 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
672 // And ready to receive another response.
676 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
680 previous_data
= *data
;
683 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
688 DbpString("COMMAND FINISHED");
691 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
692 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart
.output
[0]);
696 //-----------------------------------------------------------------------------
697 // Prepare tag messages
698 //-----------------------------------------------------------------------------
699 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, uint16_t len
, uint8_t *parity
)
703 // Correction bit, might be removed when not needed
708 ToSendStuffBit(1); // 1
714 ToSend
[++ToSendMax
] = SEC_D
;
715 LastProxToAirDuration
= 8 * ToSendMax
- 4;
717 for(uint16_t i
= 0; i
< len
; i
++) {
721 for(uint16_t j
= 0; j
< 8; j
++) {
723 ToSend
[++ToSendMax
] = SEC_D
;
725 ToSend
[++ToSendMax
] = SEC_E
;
730 // Get the parity bit
731 if (parity
[i
>>3] & (0x80>>(i
&0x0007))) {
732 ToSend
[++ToSendMax
] = SEC_D
;
733 LastProxToAirDuration
= 8 * ToSendMax
- 4;
735 ToSend
[++ToSendMax
] = SEC_E
;
736 LastProxToAirDuration
= 8 * ToSendMax
;
741 ToSend
[++ToSendMax
] = SEC_F
;
743 // Convert from last byte pos to length
747 static void CodeIso14443aAsTag(const uint8_t *cmd
, uint16_t len
)
749 uint8_t par
[MAX_PARITY_SIZE
];
751 GetParity(cmd
, len
, par
);
752 CodeIso14443aAsTagPar(cmd
, len
, par
);
756 static void Code4bitAnswerAsTag(uint8_t cmd
)
762 // Correction bit, might be removed when not needed
767 ToSendStuffBit(1); // 1
773 ToSend
[++ToSendMax
] = SEC_D
;
776 for(i
= 0; i
< 4; i
++) {
778 ToSend
[++ToSendMax
] = SEC_D
;
779 LastProxToAirDuration
= 8 * ToSendMax
- 4;
781 ToSend
[++ToSendMax
] = SEC_E
;
782 LastProxToAirDuration
= 8 * ToSendMax
;
788 ToSend
[++ToSendMax
] = SEC_F
;
790 // Convert from last byte pos to length
794 //-----------------------------------------------------------------------------
795 // Wait for commands from reader
796 // Stop when button is pressed
797 // Or return TRUE when command is captured
798 //-----------------------------------------------------------------------------
799 static int GetIso14443aCommandFromReader(uint8_t *received
, uint8_t *parity
, int *len
)
801 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
802 // only, since we are receiving, not transmitting).
803 // Signal field is off with the appropriate LED
805 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
807 // Now run a `software UART' on the stream of incoming samples.
808 UartInit(received
, parity
);
811 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
816 if(BUTTON_PRESS()) return FALSE
;
818 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
819 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
820 if(MillerDecoding(b
, 0)) {
828 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
829 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
830 int EmSend4bit(uint8_t resp
);
831 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
);
832 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
833 int EmSendCmd(uint8_t *resp
, uint16_t respLen
);
834 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
);
835 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
836 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
);
838 static uint8_t* free_buffer_pointer
;
845 uint32_t ProxToAirDuration
;
846 } tag_response_info_t
;
848 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
849 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
850 // This will need the following byte array for a modulation sequence
851 // 144 data bits (18 * 8)
854 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
855 // 1 just for the case
857 // 166 bytes, since every bit that needs to be send costs us a byte
861 // Prepare the tag modulation bits from the message
862 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
864 // Make sure we do not exceed the free buffer space
865 if (ToSendMax
> max_buffer_size
) {
866 Dbprintf("Out of memory, when modulating bits for tag answer:");
867 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
871 // Copy the byte array, used for this modulation to the buffer position
872 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
874 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
875 response_info
->modulation_n
= ToSendMax
;
876 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
882 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
883 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
884 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
885 // -> need 273 bytes buffer
886 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
888 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
889 // Retrieve and store the current buffer index
890 response_info
->modulation
= free_buffer_pointer
;
892 // Determine the maximum size we can use from our buffer
893 size_t max_buffer_size
= ALLOCATED_TAG_MODULATION_BUFFER_SIZE
;
895 // Forward the prepare tag modulation function to the inner function
896 if (prepare_tag_modulation(response_info
, max_buffer_size
)) {
897 // Update the free buffer offset
898 free_buffer_pointer
+= ToSendMax
;
905 //-----------------------------------------------------------------------------
906 // Main loop of simulated tag: receive commands from reader, decide what
907 // response to send, and send it.
908 //-----------------------------------------------------------------------------
909 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
, byte_t
* data
)
913 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
914 uint8_t response1
[2];
917 case 1: { // MIFARE Classic
918 // Says: I am Mifare 1k - original line
923 case 2: { // MIFARE Ultralight
924 // Says: I am a stupid memory tag, no crypto
929 case 3: { // MIFARE DESFire
930 // Says: I am a DESFire tag, ph33r me
935 case 4: { // ISO/IEC 14443-4
936 // Says: I am a javacard (JCOP)
941 case 5: { // MIFARE TNP3XXX
948 Dbprintf("Error: unkown tagtype (%d)",tagType
);
953 // The second response contains the (mandatory) first 24 bits of the UID
954 uint8_t response2
[5] = {0x00};
956 // Check if the uid uses the (optional) part
957 uint8_t response2a
[5] = {0x00};
961 num_to_bytes(uid_1st
,3,response2
+1);
962 num_to_bytes(uid_2nd
,4,response2a
);
963 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
965 // Configure the ATQA and SAK accordingly
966 response1
[0] |= 0x40;
969 num_to_bytes(uid_1st
,4,response2
);
970 // Configure the ATQA and SAK accordingly
971 response1
[0] &= 0xBF;
975 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
976 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
978 // Prepare the mandatory SAK (for 4 and 7 byte UID)
979 uint8_t response3
[3] = {0x00};
981 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
983 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
984 uint8_t response3a
[3] = {0x00};
985 response3a
[0] = sak
& 0xFB;
986 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
988 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
989 uint8_t response6
[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
990 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
991 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
992 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
993 // TC(1) = 0x02: CID supported, NAD not supported
994 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
996 #define TAG_RESPONSE_COUNT 7
997 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
998 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
999 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
1000 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1001 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
1002 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
1003 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
1004 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
1007 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1008 // Such a response is less time critical, so we can prepare them on the fly
1009 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1010 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1011 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
1012 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
1013 tag_response_info_t dynamic_response_info
= {
1014 .response
= dynamic_response_buffer
,
1016 .modulation
= dynamic_modulation_buffer
,
1020 BigBuf_free_keep_EM();
1022 // allocate buffers:
1023 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1024 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
1025 free_buffer_pointer
= BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE
);
1031 // Prepare the responses of the anticollision phase
1032 // there will be not enough time to do this at the moment the reader sends it REQA
1033 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
1034 prepare_allocated_tag_modulation(&responses
[i
]);
1039 // To control where we are in the protocol
1043 // Just to allow some checks
1048 // We need to listen to the high-frequency, peak-detected path.
1049 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1052 tag_response_info_t
* p_response
;
1056 // Clean receive command buffer
1058 if(!GetIso14443aCommandFromReader(receivedCmd
, receivedCmdPar
, &len
)) {
1059 DbpString("Button press");
1065 // Okay, look at the command now.
1067 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1068 p_response
= &responses
[0]; order
= 1;
1069 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1070 p_response
= &responses
[0]; order
= 6;
1071 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1072 p_response
= &responses
[1]; order
= 2;
1073 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1074 p_response
= &responses
[2]; order
= 20;
1075 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1076 p_response
= &responses
[3]; order
= 3;
1077 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1078 p_response
= &responses
[4]; order
= 30;
1079 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1080 EmSendCmdEx(data
+(4*receivedCmd
[1]),16,false);
1081 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1082 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1084 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1087 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1090 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1091 p_response
= &responses
[5]; order
= 7;
1092 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1093 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1094 EmSend4bit(CARD_NACK_NA
);
1097 p_response
= &responses
[6]; order
= 70;
1099 } else if (order
== 7 && len
== 8) { // Received {nr] and {ar} (part of authentication)
1101 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1103 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1104 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1105 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1107 // Check for ISO 14443A-4 compliant commands, look at left nibble
1108 switch (receivedCmd
[0]) {
1111 case 0x0A: { // IBlock (command)
1112 dynamic_response_info
.response
[0] = receivedCmd
[0];
1113 dynamic_response_info
.response
[1] = 0x00;
1114 dynamic_response_info
.response
[2] = 0x90;
1115 dynamic_response_info
.response
[3] = 0x00;
1116 dynamic_response_info
.response_n
= 4;
1120 case 0x1B: { // Chaining command
1121 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1122 dynamic_response_info
.response_n
= 2;
1127 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1128 dynamic_response_info
.response_n
= 2;
1132 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1133 dynamic_response_info
.response_n
= 2;
1137 case 0xC2: { // Readers sends deselect command
1138 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1139 dynamic_response_info
.response_n
= 2;
1143 // Never seen this command before
1145 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1147 Dbprintf("Received unknown command (len=%d):",len
);
1148 Dbhexdump(len
,receivedCmd
,false);
1150 dynamic_response_info
.response_n
= 0;
1154 if (dynamic_response_info
.response_n
> 0) {
1155 // Copy the CID from the reader query
1156 dynamic_response_info
.response
[1] = receivedCmd
[1];
1158 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1159 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1160 dynamic_response_info
.response_n
+= 2;
1162 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1163 Dbprintf("Error preparing tag response");
1165 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1169 p_response
= &dynamic_response_info
;
1173 // Count number of wakeups received after a halt
1174 if(order
== 6 && lastorder
== 5) { happened
++; }
1176 // Count number of other messages after a halt
1177 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1179 if(cmdsRecvd
> 999) {
1180 DbpString("1000 commands later...");
1185 if (p_response
!= NULL
) {
1186 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1187 // do the tracing for the previous reader request and this tag answer:
1188 uint8_t par
[MAX_PARITY_SIZE
];
1189 GetParity(p_response
->response
, p_response
->response_n
, par
);
1191 EmLogTrace(Uart
.output
,
1193 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1194 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1196 p_response
->response
,
1197 p_response
->response_n
,
1198 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1199 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1204 Dbprintf("Trace Full. Simulation stopped.");
1209 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1211 BigBuf_free_keep_EM();
1215 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1216 // of bits specified in the delay parameter.
1217 void PrepareDelayedTransfer(uint16_t delay
)
1219 uint8_t bitmask
= 0;
1220 uint8_t bits_to_shift
= 0;
1221 uint8_t bits_shifted
= 0;
1225 for (uint16_t i
= 0; i
< delay
; i
++) {
1226 bitmask
|= (0x01 << i
);
1228 ToSend
[ToSendMax
++] = 0x00;
1229 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1230 bits_to_shift
= ToSend
[i
] & bitmask
;
1231 ToSend
[i
] = ToSend
[i
] >> delay
;
1232 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1233 bits_shifted
= bits_to_shift
;
1239 //-------------------------------------------------------------------------------------
1240 // Transmit the command (to the tag) that was placed in ToSend[].
1241 // Parameter timing:
1242 // if NULL: transfer at next possible time, taking into account
1243 // request guard time and frame delay time
1244 // if == 0: transfer immediately and return time of transfer
1245 // if != 0: delay transfer until time specified
1246 //-------------------------------------------------------------------------------------
1247 static void TransmitFor14443a(const uint8_t *cmd
, uint16_t len
, uint32_t *timing
)
1250 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1252 uint32_t ThisTransferTime
= 0;
1255 if(*timing
== 0) { // Measure time
1256 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1258 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1260 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1261 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1262 LastTimeProxToAirStart
= *timing
;
1264 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1265 while(GetCountSspClk() < ThisTransferTime
);
1266 LastTimeProxToAirStart
= ThisTransferTime
;
1270 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1274 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1275 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1283 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1287 //-----------------------------------------------------------------------------
1288 // Prepare reader command (in bits, support short frames) to send to FPGA
1289 //-----------------------------------------------------------------------------
1290 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd
, uint16_t bits
, const uint8_t *parity
)
1298 // Start of Communication (Seq. Z)
1299 ToSend
[++ToSendMax
] = SEC_Z
;
1300 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1303 size_t bytecount
= nbytes(bits
);
1304 // Generate send structure for the data bits
1305 for (i
= 0; i
< bytecount
; i
++) {
1306 // Get the current byte to send
1308 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1310 for (j
= 0; j
< bitsleft
; j
++) {
1313 ToSend
[++ToSendMax
] = SEC_X
;
1314 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1319 ToSend
[++ToSendMax
] = SEC_Z
;
1320 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1323 ToSend
[++ToSendMax
] = SEC_Y
;
1330 // Only transmit parity bit if we transmitted a complete byte
1332 // Get the parity bit
1333 if (parity
[i
>>3] & (0x80 >> (i
&0x0007))) {
1335 ToSend
[++ToSendMax
] = SEC_X
;
1336 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1341 ToSend
[++ToSendMax
] = SEC_Z
;
1342 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1345 ToSend
[++ToSendMax
] = SEC_Y
;
1352 // End of Communication: Logic 0 followed by Sequence Y
1355 ToSend
[++ToSendMax
] = SEC_Z
;
1356 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1359 ToSend
[++ToSendMax
] = SEC_Y
;
1362 ToSend
[++ToSendMax
] = SEC_Y
;
1364 // Convert to length of command:
1368 //-----------------------------------------------------------------------------
1369 // Prepare reader command to send to FPGA
1370 //-----------------------------------------------------------------------------
1371 void CodeIso14443aAsReaderPar(const uint8_t *cmd
, uint16_t len
, const uint8_t *parity
)
1373 CodeIso14443aBitsAsReaderPar(cmd
, len
*8, parity
);
1377 //-----------------------------------------------------------------------------
1378 // Wait for commands from reader
1379 // Stop when button is pressed (return 1) or field was gone (return 2)
1380 // Or return 0 when command is captured
1381 //-----------------------------------------------------------------------------
1382 static int EmGetCmd(uint8_t *received
, uint16_t *len
, uint8_t *parity
)
1386 uint32_t timer
= 0, vtime
= 0;
1390 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1391 // only, since we are receiving, not transmitting).
1392 // Signal field is off with the appropriate LED
1394 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1396 // Set ADC to read field strength
1397 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1398 AT91C_BASE_ADC
->ADC_MR
=
1399 ADC_MODE_PRESCALE(63) |
1400 ADC_MODE_STARTUP_TIME(1) |
1401 ADC_MODE_SAMPLE_HOLD_TIME(15);
1402 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1404 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1406 // Now run a 'software UART' on the stream of incoming samples.
1407 UartInit(received
, parity
);
1410 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1415 if (BUTTON_PRESS()) return 1;
1417 // test if the field exists
1418 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1420 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1421 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1422 if (analogCnt
>= 32) {
1423 if ((MAX_ADC_HF_VOLTAGE
* (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1424 vtime
= GetTickCount();
1425 if (!timer
) timer
= vtime
;
1426 // 50ms no field --> card to idle state
1427 if (vtime
- timer
> 50) return 2;
1429 if (timer
) timer
= 0;
1435 // receive and test the miller decoding
1436 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1437 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1438 if(MillerDecoding(b
, 0)) {
1448 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
)
1452 uint32_t ThisTransferTime
;
1454 // Modulate Manchester
1455 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1457 // include correction bit if necessary
1458 if (Uart
.parityBits
& 0x01) {
1459 correctionNeeded
= TRUE
;
1461 if(correctionNeeded
) {
1462 // 1236, so correction bit needed
1468 // clear receiving shift register and holding register
1469 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1470 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1471 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1472 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1474 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1475 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1476 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1477 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1480 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1483 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1486 for(; i
< respLen
; ) {
1487 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1488 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1489 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1492 if(BUTTON_PRESS()) {
1497 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1498 uint8_t fpga_queued_bits
= FpgaSendQueueDelay
>> 3;
1499 for (i
= 0; i
<= fpga_queued_bits
/8 + 1; ) {
1500 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1501 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1502 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1507 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1512 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1513 Code4bitAnswerAsTag(resp
);
1514 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1515 // do the tracing for the previous reader request and this tag answer:
1517 GetParity(&resp
, 1, par
);
1518 EmLogTrace(Uart
.output
,
1520 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1521 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1525 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1526 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1531 int EmSend4bit(uint8_t resp
){
1532 return EmSend4bitEx(resp
, false);
1535 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
){
1536 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1537 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1538 // do the tracing for the previous reader request and this tag answer:
1539 EmLogTrace(Uart
.output
,
1541 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1542 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1546 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1547 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1552 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
){
1553 uint8_t par
[MAX_PARITY_SIZE
];
1554 GetParity(resp
, respLen
, par
);
1555 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, par
);
1558 int EmSendCmd(uint8_t *resp
, uint16_t respLen
){
1559 uint8_t par
[MAX_PARITY_SIZE
];
1560 GetParity(resp
, respLen
, par
);
1561 return EmSendCmdExPar(resp
, respLen
, false, par
);
1564 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
){
1565 return EmSendCmdExPar(resp
, respLen
, false, par
);
1568 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
1569 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
)
1572 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1573 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1574 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1575 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1576 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1577 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1578 reader_EndTime
= tag_StartTime
- exact_fdt
;
1579 reader_StartTime
= reader_EndTime
- reader_modlen
;
1580 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_EndTime
, reader_Parity
, TRUE
)) {
1582 } else return(!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_EndTime
, tag_Parity
, FALSE
));
1588 //-----------------------------------------------------------------------------
1589 // Wait a certain time for tag response
1590 // If a response is captured return TRUE
1591 // If it takes too long return FALSE
1592 //-----------------------------------------------------------------------------
1593 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint8_t *receivedResponsePar
, uint16_t offset
)
1597 // Set FPGA mode to "reader listen mode", no modulation (listen
1598 // only, since we are receiving, not transmitting).
1599 // Signal field is on with the appropriate LED
1601 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1603 // Now get the answer from the card
1604 DemodInit(receivedResponse
, receivedResponsePar
);
1607 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1613 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1614 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1615 if(ManchesterDecoding(b
, offset
, 0)) {
1616 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1618 } else if (c
++ > iso14a_timeout
&& Demod
.state
== DEMOD_UNSYNCD
) {
1625 void ReaderTransmitBitsPar(uint8_t* frame
, uint16_t bits
, uint8_t *par
, uint32_t *timing
)
1627 CodeIso14443aBitsAsReaderPar(frame
, bits
, par
);
1629 // Send command to tag
1630 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1634 // Log reader command in trace buffer
1636 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1640 void ReaderTransmitPar(uint8_t* frame
, uint16_t len
, uint8_t *par
, uint32_t *timing
)
1642 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1645 void ReaderTransmitBits(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1647 // Generate parity and redirect
1648 uint8_t par
[MAX_PARITY_SIZE
];
1649 GetParity(frame
, len
/8, par
);
1650 ReaderTransmitBitsPar(frame
, len
, par
, timing
);
1653 void ReaderTransmit(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1655 // Generate parity and redirect
1656 uint8_t par
[MAX_PARITY_SIZE
];
1657 GetParity(frame
, len
, par
);
1658 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1661 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
, uint8_t *parity
)
1663 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, offset
)) return FALSE
;
1665 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1670 int ReaderReceive(uint8_t *receivedAnswer
, uint8_t *parity
)
1672 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, 0)) return FALSE
;
1674 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1679 /* performs iso14443a anticollision procedure
1680 * fills the uid pointer unless NULL
1681 * fills resp_data unless NULL */
1682 int iso14443a_select_card(byte_t
*uid_ptr
, iso14a_card_select_t
*p_hi14a_card
, uint32_t *cuid_ptr
) {
1683 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1684 uint8_t sel_all
[] = { 0x93,0x20 };
1685 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1686 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1687 uint8_t resp
[MAX_FRAME_SIZE
]; // theoretically. A usual RATS will be much smaller
1688 uint8_t resp_par
[MAX_PARITY_SIZE
];
1690 size_t uid_resp_len
;
1692 uint8_t sak
= 0x04; // cascade uid
1693 int cascade_level
= 0;
1696 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1697 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1700 if(!ReaderReceive(resp
, resp_par
)) return 0;
1703 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1704 p_hi14a_card
->uidlen
= 0;
1705 memset(p_hi14a_card
->uid
,0,10);
1710 memset(uid_ptr
,0,10);
1713 // check for proprietary anticollision:
1714 if ((resp
[0] & 0x1F) == 0) {
1718 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1719 // which case we need to make a cascade 2 request and select - this is a long UID
1720 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1721 for(; sak
& 0x04; cascade_level
++) {
1722 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1723 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1726 ReaderTransmit(sel_all
, sizeof(sel_all
), NULL
);
1727 if (!ReaderReceive(resp
, resp_par
)) return 0;
1729 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1730 memset(uid_resp
, 0, 4);
1731 uint16_t uid_resp_bits
= 0;
1732 uint16_t collision_answer_offset
= 0;
1733 // anti-collision-loop:
1734 while (Demod
.collisionPos
) {
1735 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1736 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1737 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1738 uid_resp
[uid_resp_bits
/ 8] |= UIDbit
<< (uid_resp_bits
% 8);
1740 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1742 // construct anticollosion command:
1743 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1744 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1745 sel_uid
[2+i
] = uid_resp
[i
];
1747 collision_answer_offset
= uid_resp_bits
%8;
1748 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1749 if (!ReaderReceiveOffset(resp
, collision_answer_offset
, resp_par
)) return 0;
1751 // finally, add the last bits and BCC of the UID
1752 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1753 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1754 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1757 } else { // no collision, use the response to SELECT_ALL as current uid
1758 memcpy(uid_resp
, resp
, 4);
1762 // calculate crypto UID. Always use last 4 Bytes.
1764 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1767 // Construct SELECT UID command
1768 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1769 memcpy(sel_uid
+2, uid_resp
, 4); // the UID
1770 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1771 AppendCrc14443a(sel_uid
, 7); // calculate and add CRC
1772 ReaderTransmit(sel_uid
, sizeof(sel_uid
), NULL
);
1775 if (!ReaderReceive(resp
, resp_par
)) return 0;
1778 // Test if more parts of the uid are coming
1779 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1780 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1781 // http://www.nxp.com/documents/application_note/AN10927.pdf
1782 uid_resp
[0] = uid_resp
[1];
1783 uid_resp
[1] = uid_resp
[2];
1784 uid_resp
[2] = uid_resp
[3];
1790 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1794 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1795 p_hi14a_card
->uidlen
+= uid_resp_len
;
1800 p_hi14a_card
->sak
= sak
;
1801 p_hi14a_card
->ats_len
= 0;
1804 // non iso14443a compliant tag
1805 if( (sak
& 0x20) == 0) return 2;
1807 // Request for answer to select
1808 AppendCrc14443a(rats
, 2);
1809 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1811 if (!(len
= ReaderReceive(resp
, resp_par
))) return 0;
1815 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1816 p_hi14a_card
->ats_len
= len
;
1819 // reset the PCB block number
1820 iso14_pcb_blocknum
= 0;
1822 // set default timeout based on ATS
1823 iso14a_set_ATS_timeout(resp
);
1828 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1829 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1830 // Set up the synchronous serial port
1832 // connect Demodulated Signal to ADC:
1833 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1835 // Signal field is on with the appropriate LED
1836 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
1837 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
1842 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1849 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
1850 iso14a_set_timeout(1050); // 10ms default
1853 int iso14_apdu(uint8_t *cmd
, uint16_t cmd_len
, void *data
) {
1854 uint8_t parity
[MAX_PARITY_SIZE
];
1855 uint8_t real_cmd
[cmd_len
+4];
1856 real_cmd
[0] = 0x0a; //I-Block
1857 // put block number into the PCB
1858 real_cmd
[0] |= iso14_pcb_blocknum
;
1859 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1860 memcpy(real_cmd
+2, cmd
, cmd_len
);
1861 AppendCrc14443a(real_cmd
,cmd_len
+2);
1863 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
1864 size_t len
= ReaderReceive(data
, parity
);
1865 uint8_t *data_bytes
= (uint8_t *) data
;
1867 return 0; //DATA LINK ERROR
1868 // if we received an I- or R(ACK)-Block with a block number equal to the
1869 // current block number, toggle the current block number
1870 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
1871 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1872 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1873 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1875 iso14_pcb_blocknum
^= 1;
1881 //-----------------------------------------------------------------------------
1882 // Read an ISO 14443a tag. Send out commands and store answers.
1884 //-----------------------------------------------------------------------------
1885 void ReaderIso14443a(UsbCommand
*c
)
1887 iso14a_command_t param
= c
->arg
[0];
1888 uint8_t *cmd
= c
->d
.asBytes
;
1889 size_t len
= c
->arg
[1] & 0xffff;
1890 size_t lenbits
= c
->arg
[1] >> 16;
1891 uint32_t timeout
= c
->arg
[2];
1893 byte_t buf
[USB_CMD_DATA_SIZE
];
1894 uint8_t par
[MAX_PARITY_SIZE
];
1896 if(param
& ISO14A_CONNECT
) {
1902 if(param
& ISO14A_REQUEST_TRIGGER
) {
1903 iso14a_set_trigger(TRUE
);
1906 if(param
& ISO14A_CONNECT
) {
1907 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
1908 if(!(param
& ISO14A_NO_SELECT
)) {
1909 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
1910 arg0
= iso14443a_select_card(NULL
,card
,NULL
);
1911 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
1915 if(param
& ISO14A_SET_TIMEOUT
) {
1916 iso14a_set_timeout(timeout
);
1919 if(param
& ISO14A_APDU
) {
1920 arg0
= iso14_apdu(cmd
, len
, buf
);
1921 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1924 if(param
& ISO14A_RAW
) {
1925 if(param
& ISO14A_APPEND_CRC
) {
1926 AppendCrc14443a(cmd
,len
);
1928 if (lenbits
) lenbits
+= 16;
1931 GetParity(cmd
, lenbits
/8, par
);
1932 ReaderTransmitBitsPar(cmd
, lenbits
, par
, NULL
);
1934 ReaderTransmit(cmd
,len
, NULL
);
1936 arg0
= ReaderReceive(buf
, par
);
1937 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1940 if(param
& ISO14A_REQUEST_TRIGGER
) {
1941 iso14a_set_trigger(FALSE
);
1944 if(param
& ISO14A_NO_DISCONNECT
) {
1948 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1953 // Determine the distance between two nonces.
1954 // Assume that the difference is small, but we don't know which is first.
1955 // Therefore try in alternating directions.
1956 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
1959 uint32_t nttmp1
, nttmp2
;
1961 if (nt1
== nt2
) return 0;
1966 for (i
= 1; i
< 32768; i
++) {
1967 nttmp1
= prng_successor(nttmp1
, 1);
1968 if (nttmp1
== nt2
) return i
;
1969 nttmp2
= prng_successor(nttmp2
, 1);
1970 if (nttmp2
== nt1
) return -i
;
1973 return(-99999); // either nt1 or nt2 are invalid nonces
1977 //-----------------------------------------------------------------------------
1978 // Recover several bits of the cypher stream. This implements (first stages of)
1979 // the algorithm described in "The Dark Side of Security by Obscurity and
1980 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1981 // (article by Nicolas T. Courtois, 2009)
1982 //-----------------------------------------------------------------------------
1983 void ReaderMifare(bool first_try
)
1986 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
1987 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1988 static uint8_t mf_nr_ar3
;
1990 uint8_t receivedAnswer
[MAX_MIFARE_FRAME_SIZE
];
1991 uint8_t receivedAnswerPar
[MAX_MIFARE_PARITY_SIZE
];
1993 // free eventually allocated BigBuf memory. We want all for tracing.
2000 uint8_t par
[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2001 static byte_t par_low
= 0;
2003 uint8_t uid
[10] ={0};
2007 uint32_t previous_nt
= 0;
2008 static uint32_t nt_attacked
= 0;
2009 byte_t par_list
[8] = {0x00};
2010 byte_t ks_list
[8] = {0x00};
2012 static uint32_t sync_time
;
2013 static uint32_t sync_cycles
;
2014 int catch_up_cycles
= 0;
2015 int last_catch_up
= 0;
2016 uint16_t consecutive_resyncs
= 0;
2021 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2022 sync_time
= GetCountSspClk() & 0xfffffff8;
2023 sync_cycles
= 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2029 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2031 mf_nr_ar
[3] = mf_nr_ar3
;
2040 for(uint16_t i
= 0; TRUE
; i
++) {
2044 // Test if the action was cancelled
2045 if(BUTTON_PRESS()) {
2051 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
2052 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
2056 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
2057 catch_up_cycles
= 0;
2059 // if we missed the sync time already, advance to the next nonce repeat
2060 while(GetCountSspClk() > sync_time
) {
2061 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
2064 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2065 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2067 // Receive the (4 Byte) "random" nonce
2068 if (!ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2069 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2074 nt
= bytes_to_num(receivedAnswer
, 4);
2076 // Transmit reader nonce with fake par
2077 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2079 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2080 int nt_distance
= dist_nt(previous_nt
, nt
);
2081 if (nt_distance
== 0) {
2085 if (nt_distance
== -99999) { // invalid nonce received, try again
2088 sync_cycles
= (sync_cycles
- nt_distance
);
2089 if (MF_DBGLEVEL
>= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i
, nt_distance
, sync_cycles
);
2094 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2095 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2096 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2097 catch_up_cycles
= 0;
2100 if (catch_up_cycles
== last_catch_up
) {
2101 consecutive_resyncs
++;
2104 last_catch_up
= catch_up_cycles
;
2105 consecutive_resyncs
= 0;
2107 if (consecutive_resyncs
< 3) {
2108 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2111 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2112 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2117 consecutive_resyncs
= 0;
2119 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2120 if (ReaderReceive(receivedAnswer
, receivedAnswerPar
))
2122 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2126 par_low
= par
[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2130 if(led_on
) LED_B_ON(); else LED_B_OFF();
2132 par_list
[nt_diff
] = SwapBits(par
[0], 8);
2133 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2135 // Test if the information is complete
2136 if (nt_diff
== 0x07) {
2141 nt_diff
= (nt_diff
+ 1) & 0x07;
2142 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2145 if (nt_diff
== 0 && first_try
)
2149 par
[0] = ((par
[0] & 0x1F) + 1) | par_low
;
2155 mf_nr_ar
[3] &= 0x1F;
2158 memcpy(buf
+ 0, uid
, 4);
2159 num_to_bytes(nt
, 4, buf
+ 4);
2160 memcpy(buf
+ 8, par_list
, 8);
2161 memcpy(buf
+ 16, ks_list
, 8);
2162 memcpy(buf
+ 24, mf_nr_ar
, 4);
2164 cmd_send(CMD_ACK
,isOK
,0,0,buf
,28);
2167 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2174 *MIFARE 1K simulate.
2177 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2178 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2179 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2180 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2181 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2183 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2185 int cardSTATE
= MFEMUL_NOFIELD
;
2187 int vHf
= 0; // in mV
2189 uint32_t selTimer
= 0;
2190 uint32_t authTimer
= 0;
2192 uint8_t cardWRBL
= 0;
2193 uint8_t cardAUTHSC
= 0;
2194 uint8_t cardAUTHKEY
= 0xff; // no authentication
2195 uint32_t cardRr
= 0;
2197 //uint32_t rn_enc = 0;
2199 uint32_t cardINTREG
= 0;
2200 uint8_t cardINTBLOCK
= 0;
2201 struct Crypto1State mpcs
= {0, 0};
2202 struct Crypto1State
*pcs
;
2204 uint32_t numReads
= 0;//Counts numer of times reader read a block
2205 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
2206 uint8_t receivedCmd_par
[MAX_MIFARE_PARITY_SIZE
];
2207 uint8_t response
[MAX_MIFARE_FRAME_SIZE
];
2208 uint8_t response_par
[MAX_MIFARE_PARITY_SIZE
];
2210 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2211 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2212 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2213 uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
2214 uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2216 uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
2217 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2219 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2220 // This can be used in a reader-only attack.
2221 // (it can also be retrieved via 'hf 14a list', but hey...
2222 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0};
2223 uint8_t ar_nr_collected
= 0;
2225 // free eventually allocated BigBuf memory but keep Emulator Memory
2226 BigBuf_free_keep_EM();
2232 // Authenticate response - nonce
2233 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2235 //-- Determine the UID
2236 // Can be set from emulator memory, incoming data
2237 // and can be 7 or 4 bytes long
2238 if (flags
& FLAG_4B_UID_IN_DATA
)
2240 // 4B uid comes from data-portion of packet
2241 memcpy(rUIDBCC1
,datain
,4);
2242 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2244 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2245 // 7B uid comes from data-portion of packet
2246 memcpy(&rUIDBCC1
[1],datain
,3);
2247 memcpy(rUIDBCC2
, datain
+3, 4);
2250 // get UID from emul memory
2251 emlGetMemBt(receivedCmd
, 7, 1);
2252 _7BUID
= !(receivedCmd
[0] == 0x00);
2253 if (!_7BUID
) { // ---------- 4BUID
2254 emlGetMemBt(rUIDBCC1
, 0, 4);
2255 } else { // ---------- 7BUID
2256 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2257 emlGetMemBt(rUIDBCC2
, 3, 4);
2262 * Regardless of what method was used to set the UID, set fifth byte and modify
2263 * the ATQA for 4 or 7-byte UID
2265 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2269 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2272 // We need to listen to the high-frequency, peak-detected path.
2273 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2276 if (MF_DBGLEVEL
>= 1) {
2278 Dbprintf("4B UID: %02x%02x%02x%02x",
2279 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3]);
2281 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2282 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3],
2283 rUIDBCC2
[0], rUIDBCC2
[1] ,rUIDBCC2
[2], rUIDBCC2
[3]);
2287 bool finished
= FALSE
;
2288 while (!BUTTON_PRESS() && !finished
) {
2291 // find reader field
2292 if (cardSTATE
== MFEMUL_NOFIELD
) {
2293 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
2294 if (vHf
> MF_MINFIELDV
) {
2295 cardSTATE_TO_IDLE();
2299 if(cardSTATE
== MFEMUL_NOFIELD
) continue;
2303 res
= EmGetCmd(receivedCmd
, &len
, receivedCmd_par
);
2304 if (res
== 2) { //Field is off!
2305 cardSTATE
= MFEMUL_NOFIELD
;
2308 } else if (res
== 1) {
2309 break; //return value 1 means button press
2312 // REQ or WUP request in ANY state and WUP in HALTED state
2313 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2314 selTimer
= GetTickCount();
2315 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2316 cardSTATE
= MFEMUL_SELECT1
;
2318 // init crypto block
2321 crypto1_destroy(pcs
);
2326 switch (cardSTATE
) {
2327 case MFEMUL_NOFIELD
:
2330 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2333 case MFEMUL_SELECT1
:{
2335 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2336 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2337 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2341 if (MF_DBGLEVEL
>= 4 && len
== 9 && receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 )
2343 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2347 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2348 EmSendCmd(_7BUID
?rSAK1
:rSAK
, _7BUID
?sizeof(rSAK1
):sizeof(rSAK
));
2349 cuid
= bytes_to_num(rUIDBCC1
, 4);
2351 cardSTATE
= MFEMUL_WORK
;
2353 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2356 cardSTATE
= MFEMUL_SELECT2
;
2364 cardSTATE_TO_IDLE();
2365 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2369 uint32_t ar
= bytes_to_num(receivedCmd
, 4);
2370 uint32_t nr
= bytes_to_num(&receivedCmd
[4], 4);
2373 if(ar_nr_collected
< 2){
2374 if(ar_nr_responses
[2] != ar
)
2375 {// Avoid duplicates... probably not necessary, ar should vary.
2376 ar_nr_responses
[ar_nr_collected
*4] = cuid
;
2377 ar_nr_responses
[ar_nr_collected
*4+1] = nonce
;
2378 ar_nr_responses
[ar_nr_collected
*4+2] = ar
;
2379 ar_nr_responses
[ar_nr_collected
*4+3] = nr
;
2385 crypto1_word(pcs
, ar
, 1);
2386 cardRr
= nr
^ crypto1_word(pcs
, 0, 0);
2389 if (cardRr
!= prng_successor(nonce
, 64)){
2390 if (MF_DBGLEVEL
>= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2391 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2392 cardRr
, prng_successor(nonce
, 64));
2393 // Shouldn't we respond anything here?
2394 // Right now, we don't nack or anything, which causes the
2395 // reader to do a WUPA after a while. /Martin
2396 // -- which is the correct response. /piwi
2397 cardSTATE_TO_IDLE();
2398 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2402 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2404 num_to_bytes(ans
, 4, rAUTH_AT
);
2406 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2408 cardSTATE
= MFEMUL_WORK
;
2409 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2410 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2411 GetTickCount() - authTimer
);
2414 case MFEMUL_SELECT2
:{
2416 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2419 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2420 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2426 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2427 EmSendCmd(rSAK
, sizeof(rSAK
));
2428 cuid
= bytes_to_num(rUIDBCC2
, 4);
2429 cardSTATE
= MFEMUL_WORK
;
2431 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2435 // i guess there is a command). go into the work state.
2437 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2440 cardSTATE
= MFEMUL_WORK
;
2442 //intentional fall-through to the next case-stmt
2447 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2451 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2453 if(encrypted_data
) {
2455 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2458 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2459 authTimer
= GetTickCount();
2460 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2461 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2462 crypto1_destroy(pcs
);//Added by martin
2463 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2465 if (!encrypted_data
) { // first authentication
2466 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2468 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2469 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2470 } else { // nested authentication
2471 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2472 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2473 num_to_bytes(ans
, 4, rAUTH_AT
);
2476 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2477 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2478 cardSTATE
= MFEMUL_AUTH1
;
2482 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2483 // BUT... ACK --> NACK
2484 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2485 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2489 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2490 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2491 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2496 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2500 if(receivedCmd
[0] == 0x30 // read block
2501 || receivedCmd
[0] == 0xA0 // write block
2502 || receivedCmd
[0] == 0xC0 // inc
2503 || receivedCmd
[0] == 0xC1 // dec
2504 || receivedCmd
[0] == 0xC2 // restore
2505 || receivedCmd
[0] == 0xB0) { // transfer
2506 if (receivedCmd
[1] >= 16 * 4) {
2507 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2508 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2512 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2513 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2514 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2519 if (receivedCmd
[0] == 0x30) {
2520 if (MF_DBGLEVEL
>= 4) {
2521 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2523 emlGetMem(response
, receivedCmd
[1], 1);
2524 AppendCrc14443a(response
, 16);
2525 mf_crypto1_encrypt(pcs
, response
, 18, response_par
);
2526 EmSendCmdPar(response
, 18, response_par
);
2528 if(exitAfterNReads
> 0 && numReads
== exitAfterNReads
) {
2529 Dbprintf("%d reads done, exiting", numReads
);
2535 if (receivedCmd
[0] == 0xA0) {
2536 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2537 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2538 cardSTATE
= MFEMUL_WRITEBL2
;
2539 cardWRBL
= receivedCmd
[1];
2542 // increment, decrement, restore
2543 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2544 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2545 if (emlCheckValBl(receivedCmd
[1])) {
2546 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2547 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2550 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2551 if (receivedCmd
[0] == 0xC1)
2552 cardSTATE
= MFEMUL_INTREG_INC
;
2553 if (receivedCmd
[0] == 0xC0)
2554 cardSTATE
= MFEMUL_INTREG_DEC
;
2555 if (receivedCmd
[0] == 0xC2)
2556 cardSTATE
= MFEMUL_INTREG_REST
;
2557 cardWRBL
= receivedCmd
[1];
2561 if (receivedCmd
[0] == 0xB0) {
2562 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2563 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2564 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2566 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2570 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2573 cardSTATE
= MFEMUL_HALTED
;
2574 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2575 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2579 if (receivedCmd
[0] == 0xe0) {//RATS
2580 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2583 // command not allowed
2584 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2585 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2588 case MFEMUL_WRITEBL2
:{
2590 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2591 emlSetMem(receivedCmd
, cardWRBL
, 1);
2592 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2593 cardSTATE
= MFEMUL_WORK
;
2595 cardSTATE_TO_IDLE();
2596 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2601 case MFEMUL_INTREG_INC
:{
2602 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2603 memcpy(&ans
, receivedCmd
, 4);
2604 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2605 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2606 cardSTATE_TO_IDLE();
2609 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2610 cardINTREG
= cardINTREG
+ ans
;
2611 cardSTATE
= MFEMUL_WORK
;
2614 case MFEMUL_INTREG_DEC
:{
2615 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2616 memcpy(&ans
, receivedCmd
, 4);
2617 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2618 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2619 cardSTATE_TO_IDLE();
2622 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2623 cardINTREG
= cardINTREG
- ans
;
2624 cardSTATE
= MFEMUL_WORK
;
2627 case MFEMUL_INTREG_REST
:{
2628 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2629 memcpy(&ans
, receivedCmd
, 4);
2630 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2631 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2632 cardSTATE_TO_IDLE();
2635 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2636 cardSTATE
= MFEMUL_WORK
;
2642 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2645 if(flags
& FLAG_INTERACTIVE
)// Interactive mode flag, means we need to send ACK
2647 //May just aswell send the collected ar_nr in the response aswell
2648 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,0,0,&ar_nr_responses
,ar_nr_collected
*4*4);
2651 if(flags
& FLAG_NR_AR_ATTACK
)
2653 if(ar_nr_collected
> 1) {
2654 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2655 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2656 ar_nr_responses
[0], // UID
2657 ar_nr_responses
[1], //NT
2658 ar_nr_responses
[2], //AR1
2659 ar_nr_responses
[3], //NR1
2660 ar_nr_responses
[6], //AR2
2661 ar_nr_responses
[7] //NR2
2664 Dbprintf("Failed to obtain two AR/NR pairs!");
2665 if(ar_nr_collected
>0) {
2666 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2667 ar_nr_responses
[0], // UID
2668 ar_nr_responses
[1], //NT
2669 ar_nr_responses
[2], //AR1
2670 ar_nr_responses
[3] //NR1
2675 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, BigBuf_get_traceLen());
2681 //-----------------------------------------------------------------------------
2684 //-----------------------------------------------------------------------------
2685 void RAMFUNC
SniffMifare(uint8_t param
) {
2687 // bit 0 - trigger from first card answer
2688 // bit 1 - trigger from first reader 7-bit request
2690 // C(red) A(yellow) B(green)
2692 // init trace buffer
2696 // The command (reader -> tag) that we're receiving.
2697 // The length of a received command will in most cases be no more than 18 bytes.
2698 // So 32 should be enough!
2699 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
2700 uint8_t receivedCmdPar
[MAX_MIFARE_PARITY_SIZE
];
2701 // The response (tag -> reader) that we're receiving.
2702 uint8_t receivedResponse
[MAX_MIFARE_FRAME_SIZE
];
2703 uint8_t receivedResponsePar
[MAX_MIFARE_PARITY_SIZE
];
2705 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2706 // into trace, along with its length and other annotations.
2707 //uint8_t *trace = (uint8_t *)BigBuf;
2709 // free eventually allocated BigBuf memory
2711 // allocate the DMA buffer, used to stream samples from the FPGA
2712 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
2713 uint8_t *data
= dmaBuf
;
2714 uint8_t previous_data
= 0;
2717 bool ReaderIsActive
= FALSE
;
2718 bool TagIsActive
= FALSE
;
2720 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2722 // Set up the demodulator for tag -> reader responses.
2723 DemodInit(receivedResponse
, receivedResponsePar
);
2725 // Set up the demodulator for the reader -> tag commands
2726 UartInit(receivedCmd
, receivedCmdPar
);
2728 // Setup for the DMA.
2729 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2736 // And now we loop, receiving samples.
2737 for(uint32_t sniffCounter
= 0; TRUE
; ) {
2739 if(BUTTON_PRESS()) {
2740 DbpString("cancelled by button");
2747 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
2748 // check if a transaction is completed (timeout after 2000ms).
2749 // if yes, stop the DMA transfer and send what we have so far to the client
2750 if (MfSniffSend(2000)) {
2751 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2755 ReaderIsActive
= FALSE
;
2756 TagIsActive
= FALSE
;
2757 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2761 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
2762 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
2763 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
2764 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
2766 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
2768 // test for length of buffer
2769 if(dataLen
> maxDataLen
) { // we are more behind than ever...
2770 maxDataLen
= dataLen
;
2771 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
2772 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2776 if(dataLen
< 1) continue;
2778 // primary buffer was stopped ( <-- we lost data!
2779 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2780 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2781 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2782 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2784 // secondary buffer sets as primary, secondary buffer was stopped
2785 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2786 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2787 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2792 if (sniffCounter
& 0x01) {
2794 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
2795 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
2796 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
2798 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parity
, Uart
.bitCount
, TRUE
)) break;
2800 /* And ready to receive another command. */
2803 /* And also reset the demod code */
2806 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
2809 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
2810 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
2811 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
2814 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parity
, Demod
.bitCount
, FALSE
)) break;
2816 // And ready to receive another response.
2819 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
2823 previous_data
= *data
;
2826 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
2832 DbpString("COMMAND FINISHED");
2834 FpgaDisableSscDma();
2837 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);