1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
13 #include "../common/usb_cdc.h"
14 #include "../common/cmd.h"
16 #include "../include/proxmark3.h"
25 #include "../include/hitag2.h"
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
42 struct common_area common_area
__attribute__((section(".commonarea")));
44 void BufferClear(void)
46 memset(BigBuf
,0,sizeof(BigBuf
));
47 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf
));
50 void ToSendReset(void)
56 void ToSendStuffBit(int b
)
60 ToSend
[ToSendMax
] = 0;
65 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
70 if(ToSendBit
>= sizeof(ToSend
)) {
72 DbpString("ToSendStuffBit overflowed!");
76 //=============================================================================
77 // Debug print functions, to go out over USB, to the usual PC-side client.
78 //=============================================================================
80 void DbpString(char *str
)
82 byte_t len
= strlen(str
);
83 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
87 void DbpIntegers(int x1
, int x2
, int x3
)
89 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
93 void Dbprintf(const char *fmt
, ...) {
94 // should probably limit size here; oh well, let's just use a big buffer
95 char output_string
[128];
99 kvsprintf(fmt
, output_string
, 10, ap
);
102 DbpString(output_string
);
105 // prints HEX & ASCII
106 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
119 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
122 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
124 Dbprintf("%*D",l
,d
," ");
132 //-----------------------------------------------------------------------------
133 // Read an ADC channel and block till it completes, then return the result
134 // in ADC units (0 to 1023). Also a routine to average 32 samples and
136 //-----------------------------------------------------------------------------
137 static int ReadAdc(int ch
)
141 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
142 AT91C_BASE_ADC
->ADC_MR
=
143 ADC_MODE_PRESCALE(32) |
144 ADC_MODE_STARTUP_TIME(16) |
145 ADC_MODE_SAMPLE_HOLD_TIME(8);
146 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
148 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
149 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
151 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
156 int AvgAdc(int ch
) // was static - merlok
161 for(i
= 0; i
< 32; i
++) {
165 return (a
+ 15) >> 5;
168 void MeasureAntennaTuning(void)
170 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
171 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
172 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
175 DbpString("Measuring antenna characteristics, please wait...");
176 memset(dest
,0,sizeof(FREE_BUFFER_SIZE
));
179 * Sweeps the useful LF range of the proxmark from
180 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
181 * read the voltage in the antenna, the result left
182 * in the buffer is a graph which should clearly show
183 * the resonating frequency of your LF antenna
184 * ( hopefully around 95 if it is tuned to 125kHz!)
187 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
188 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
189 for (i
=255; i
>19; i
--) {
191 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
193 // Vref = 3.3V, and a 10000:240 voltage divider on the input
194 // can measure voltages up to 137500 mV
195 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
196 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
197 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
199 dest
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
209 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
210 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
211 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
213 // Vref = 3300mV, and an 10:1 voltage divider on the input
214 // can measure voltages up to 33000 mV
215 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
217 // c.cmd = CMD_MEASURED_ANTENNA_TUNING;
218 // c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
220 // c.arg[2] = peakf | (peakv << 16);
222 DbpString("Measuring complete, sending report back to host");
223 cmd_send(CMD_MEASURED_ANTENNA_TUNING
,vLf125
|(vLf134
<<16),vHf
,peakf
|(peakv
<<16),0,0);
224 // UsbSendPacket((uint8_t *)&c, sizeof(c));
225 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
231 void MeasureAntennaTuningHf(void)
233 int vHf
= 0; // in mV
235 DbpString("Measuring HF antenna, press button to exit");
238 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
239 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
240 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
242 // Vref = 3300mV, and an 10:1 voltage divider on the input
243 // can measure voltages up to 33000 mV
244 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
246 Dbprintf("%d mV",vHf
);
247 if (BUTTON_PRESS()) break;
249 DbpString("cancelled");
253 void SimulateTagHfListen(void)
255 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
260 // We're using this mode just so that I can test it out; the simulated
261 // tag mode would work just as well and be simpler.
262 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
263 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
265 // We need to listen to the high-frequency, peak-detected path.
266 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
272 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
273 AT91C_BASE_SSC
->SSC_THR
= 0xff;
275 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
276 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
290 if(i
>= FREE_BUFFER_SIZE
) {
296 DbpString("simulate tag (now type bitsamples)");
299 void ReadMem(int addr
)
301 const uint8_t *data
= ((uint8_t *)addr
);
303 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
304 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
307 /* osimage version information is linked in */
308 extern struct version_information version_information
;
309 /* bootrom version information is pointed to from _bootphase1_version_pointer */
310 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
311 void SendVersion(void)
313 char temp
[256]; /* Limited data payload in USB packets */
314 DbpString("Prox/RFID mark3 RFID instrument");
316 /* Try to find the bootrom version information. Expect to find a pointer at
317 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
318 * pointer, then use it.
320 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
321 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
322 DbpString("bootrom version information appears invalid");
324 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
328 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
331 FpgaGatherVersion(temp
, sizeof(temp
));
334 cmd_send(CMD_ACK
,*(AT91C_DBGU_CIDR
),0,0,NULL
,0);
338 // samy's sniff and repeat routine
341 DbpString("Stand-alone mode! No PC necessary.");
342 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
344 // 3 possible options? no just 2 for now
347 int high
[OPTS
], low
[OPTS
];
349 // Oooh pretty -- notify user we're in elite samy mode now
351 LED(LED_ORANGE
, 200);
353 LED(LED_ORANGE
, 200);
355 LED(LED_ORANGE
, 200);
357 LED(LED_ORANGE
, 200);
363 // Turn on selected LED
364 LED(selected
+ 1, 0);
372 // Was our button held down or pressed?
373 int button_pressed
= BUTTON_HELD(1000);
376 // Button was held for a second, begin recording
377 if (button_pressed
> 0)
380 LED(selected
+ 1, 0);
384 DbpString("Starting recording");
386 // wait for button to be released
387 while(BUTTON_PRESS())
390 /* need this delay to prevent catching some weird data */
393 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
394 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
397 LED(selected
+ 1, 0);
398 // Finished recording
400 // If we were previously playing, set playing off
401 // so next button push begins playing what we recorded
405 // Change where to record (or begin playing)
406 else if (button_pressed
)
408 // Next option if we were previously playing
410 selected
= (selected
+ 1) % OPTS
;
414 LED(selected
+ 1, 0);
416 // Begin transmitting
420 DbpString("Playing");
421 // wait for button to be released
422 while(BUTTON_PRESS())
424 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
425 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
426 DbpString("Done playing");
427 if (BUTTON_HELD(1000) > 0)
429 DbpString("Exiting");
434 /* We pressed a button so ignore it here with a delay */
437 // when done, we're done playing, move to next option
438 selected
= (selected
+ 1) % OPTS
;
441 LED(selected
+ 1, 0);
444 while(BUTTON_PRESS())
453 Listen and detect an external reader. Determine the best location
457 Inside the ListenReaderField() function, there is two mode.
458 By default, when you call the function, you will enter mode 1.
459 If you press the PM3 button one time, you will enter mode 2.
460 If you press the PM3 button a second time, you will exit the function.
462 DESCRIPTION OF MODE 1:
463 This mode just listens for an external reader field and lights up green
464 for HF and/or red for LF. This is the original mode of the detectreader
467 DESCRIPTION OF MODE 2:
468 This mode will visually represent, using the LEDs, the actual strength of the
469 current compared to the maximum current detected. Basically, once you know
470 what kind of external reader is present, it will help you spot the best location to place
471 your antenna. You will probably not get some good results if there is a LF and a HF reader
472 at the same place! :-)
476 static const char LIGHT_SCHEME
[] = {
477 0x0, /* ---- | No field detected */
478 0x1, /* X--- | 14% of maximum current detected */
479 0x2, /* -X-- | 29% of maximum current detected */
480 0x4, /* --X- | 43% of maximum current detected */
481 0x8, /* ---X | 57% of maximum current detected */
482 0xC, /* --XX | 71% of maximum current detected */
483 0xE, /* -XXX | 86% of maximum current detected */
484 0xF, /* XXXX | 100% of maximum current detected */
486 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
488 void ListenReaderField(int limit
)
490 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
491 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
492 int mode
=1, display_val
, display_max
, i
;
499 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
501 if(limit
!= HF_ONLY
) {
502 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
506 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
508 if (limit
!= LF_ONLY
) {
509 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
514 if (BUTTON_PRESS()) {
519 DbpString("Signal Strength Mode");
523 DbpString("Stopped");
531 if (limit
!= HF_ONLY
) {
533 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
538 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
539 // see if there's a significant change
540 if(abs(lf_av
- lf_av_new
) > 10) {
541 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
549 if (limit
!= LF_ONLY
) {
551 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
556 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
557 // see if there's a significant change
558 if(abs(hf_av
- hf_av_new
) > 10) {
559 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
568 if (limit
== LF_ONLY
) {
570 display_max
= lf_max
;
571 } else if (limit
== HF_ONLY
) {
573 display_max
= hf_max
;
574 } else { /* Pick one at random */
575 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
577 display_max
= hf_max
;
580 display_max
= lf_max
;
583 for (i
=0; i
<LIGHT_LEN
; i
++) {
584 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
585 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
586 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
587 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
588 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
596 void UsbPacketReceived(uint8_t *packet
, int len
)
598 UsbCommand
*c
= (UsbCommand
*)packet
;
600 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
604 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
605 AcquireRawAdcSamples125k(c
->arg
[0]);
606 cmd_send(CMD_ACK
,0,0,0,0,0);
608 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
609 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
611 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
612 SnoopLFRawAdcSamples(c
->arg
[0], c
->arg
[1]);
613 cmd_send(CMD_ACK
,0,0,0,0,0);
615 case CMD_HID_DEMOD_FSK
:
616 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
618 case CMD_HID_SIM_TAG
:
619 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1); // Simulate HID tag by ID
621 case CMD_HID_CLONE_TAG
: // Clone HID tag by ID to T55x7
622 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
624 case CMD_IO_DEMOD_FSK
:
625 CmdIOdemodFSK(1, 0, 0, 1); // Demodulate IO tag
627 case CMD_IO_CLONE_TAG
: // Clone IO tag by ID to T55x7
628 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
630 case CMD_EM410X_WRITE_TAG
:
631 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
633 case CMD_READ_TI_TYPE
:
636 case CMD_WRITE_TI_TYPE
:
637 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
639 case CMD_SIMULATE_TAG_125K
:
641 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
644 case CMD_LF_SIMULATE_BIDIR
:
645 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
647 case CMD_INDALA_CLONE_TAG
: // Clone Indala 64-bit tag by UID to T55x7
648 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
650 case CMD_INDALA_CLONE_TAG_L
: // Clone Indala 224-bit tag by UID to T55x7
651 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
653 case CMD_T55XX_READ_BLOCK
:
654 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
656 case CMD_T55XX_WRITE_BLOCK
:
657 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
659 case CMD_T55XX_READ_TRACE
: // Clone HID tag by ID to T55x7
662 case CMD_PCF7931_READ
: // Read PCF7931 tag
664 cmd_send(CMD_ACK
,0,0,0,0,0);
666 case CMD_EM4X_READ_WORD
:
667 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
669 case CMD_EM4X_WRITE_WORD
:
670 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
675 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
676 SnoopHitag(c
->arg
[0]);
678 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
679 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
681 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
682 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
687 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
688 AcquireRawAdcSamplesIso15693();
690 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
691 RecordRawAdcSamplesIso15693();
694 case CMD_ISO_15693_COMMAND
:
695 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
698 case CMD_ISO_15693_FIND_AFI
:
699 BruteforceIso15693Afi(c
->arg
[0]);
702 case CMD_ISO_15693_DEBUG
:
703 SetDebugIso15693(c
->arg
[0]);
706 case CMD_READER_ISO_15693
:
707 ReaderIso15693(c
->arg
[0]);
709 case CMD_SIMTAG_ISO_15693
:
710 SimTagIso15693(c
->arg
[0]);
715 case CMD_SIMULATE_TAG_LEGIC_RF
:
716 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
719 case CMD_WRITER_LEGIC_RF
:
720 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
723 case CMD_READER_LEGIC_RF
:
724 LegicRfReader(c
->arg
[0], c
->arg
[1]);
728 #ifdef WITH_ISO14443b
729 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
730 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
732 case CMD_READ_SRI512_TAG
:
733 ReadSTMemoryIso14443(0x0F);
735 case CMD_READ_SRIX4K_TAG
:
736 ReadSTMemoryIso14443(0x7F);
738 case CMD_SNOOP_ISO_14443
:
741 case CMD_SIMULATE_TAG_ISO_14443
:
742 SimulateIso14443Tag();
744 case CMD_ISO_14443B_COMMAND
:
745 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
749 #ifdef WITH_ISO14443a
750 case CMD_SNOOP_ISO_14443a
:
751 SnoopIso14443a(c
->arg
[0]);
753 case CMD_READER_ISO_14443a
:
756 case CMD_SIMULATE_TAG_ISO_14443a
:
757 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
759 case CMD_EPA_PACE_COLLECT_NONCE
:
760 EPA_PACE_Collect_Nonce(c
);
763 case CMD_READER_MIFARE
:
764 ReaderMifare(c
->arg
[0]);
766 case CMD_MIFARE_READBL
:
767 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
769 case CMD_MIFAREU_READBL
:
770 MifareUReadBlock(c
->arg
[0],c
->d
.asBytes
);
772 case CMD_MIFAREUC_AUTH1
:
773 MifareUC_Auth1(c
->arg
[0],c
->d
.asBytes
);
775 case CMD_MIFAREUC_AUTH2
:
776 MifareUC_Auth2(c
->arg
[0],c
->d
.asBytes
);
778 case CMD_MIFAREU_READCARD
:
779 MifareUReadCard(c
->arg
[0],c
->arg
[1],c
->d
.asBytes
);
781 case CMD_MIFAREUC_READCARD
:
782 MifareUReadCard(c
->arg
[0],c
->arg
[1],c
->d
.asBytes
);
784 case CMD_MIFARE_READSC
:
785 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
787 case CMD_MIFARE_WRITEBL
:
788 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
790 case CMD_MIFAREU_WRITEBL_COMPAT
:
791 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
793 case CMD_MIFAREU_WRITEBL
:
794 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
796 case CMD_MIFARE_NESTED
:
797 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
799 case CMD_MIFARE_CHKKEYS
:
800 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
802 case CMD_SIMULATE_MIFARE_CARD
:
803 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
807 case CMD_MIFARE_SET_DBGMODE
:
808 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
810 case CMD_MIFARE_EML_MEMCLR
:
811 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
813 case CMD_MIFARE_EML_MEMSET
:
814 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
816 case CMD_MIFARE_EML_MEMGET
:
817 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
819 case CMD_MIFARE_EML_CARDLOAD
:
820 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
823 // Work with "magic Chinese" card
824 case CMD_MIFARE_EML_CSETBLOCK
:
825 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
827 case CMD_MIFARE_EML_CGETBLOCK
:
828 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
832 case CMD_MIFARE_SNIFFER
:
833 SniffMifare(c
->arg
[0]);
837 case CMD_MIFARE_DESFIRE_READBL
:
839 case CMD_MIFARE_DESFIRE_WRITEBL
:
841 case CMD_MIFARE_DESFIRE_AUTH1
:
842 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
844 case CMD_MIFARE_DESFIRE_AUTH2
:
845 MifareDES_Auth2(c
->arg
[0],c
->d
.asBytes
);
847 // case CMD_MIFARE_DES_READER:
848 // ReaderMifareDES(c->arg[0], c->arg[1], c->d.asBytes);
850 case CMD_MIFARE_DESFIRE_INFO
:
851 MifareDesfireGetInformation();
856 // Makes use of ISO14443a FPGA Firmware
857 case CMD_SNOOP_ICLASS
:
860 case CMD_SIMULATE_TAG_ICLASS
:
861 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
863 case CMD_READER_ICLASS
:
864 ReaderIClass(c
->arg
[0]);
866 case CMD_READER_ICLASS_REPLAY
:
867 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
871 case CMD_SIMULATE_TAG_HF_LISTEN
:
872 SimulateTagHfListen();
879 case CMD_MEASURE_ANTENNA_TUNING
:
880 MeasureAntennaTuning();
883 case CMD_MEASURE_ANTENNA_TUNING_HF
:
884 MeasureAntennaTuningHf();
887 case CMD_LISTEN_READER_FIELD
:
888 ListenReaderField(c
->arg
[0]);
891 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
892 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
894 LED_D_OFF(); // LED D indicates field ON or OFF
897 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
900 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
901 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
902 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,0,((byte_t
*)BigBuf
)+c
->arg
[0]+i
,len
);
904 // Trigger a finish downloading signal with an ACK frame
905 cmd_send(CMD_ACK
,0,0,0,0,0);
909 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
910 uint8_t *b
= (uint8_t *)BigBuf
;
911 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, 48);
912 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
913 cmd_send(CMD_ACK
,0,0,0,0,0);
920 case CMD_SET_LF_DIVISOR
:
921 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
922 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
925 case CMD_SET_ADC_MUX
:
927 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
928 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
929 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
930 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
946 case CMD_SETUP_WRITE
:
947 case CMD_FINISH_WRITE
:
948 case CMD_HARDWARE_RESET
:
952 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
954 // We're going to reset, and the bootrom will take control.
958 case CMD_START_FLASH
:
959 if(common_area
.flags
.bootrom_present
) {
960 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
963 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
967 case CMD_DEVICE_INFO
: {
968 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
969 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
970 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
974 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
979 void __attribute__((noreturn
)) AppMain(void)
983 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
984 /* Initialize common area */
985 memset(&common_area
, 0, sizeof(common_area
));
986 common_area
.magic
= COMMON_AREA_MAGIC
;
987 common_area
.version
= 1;
989 common_area
.flags
.osimage_present
= 1;
999 // The FPGA gets its clock from us from PCK0 output, so set that up.
1000 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1001 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1002 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1003 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1004 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1005 AT91C_PMC_PRES_CLK_4
;
1006 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1009 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1011 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1013 // Load the FPGA image, which we have stored in our flash.
1014 // (the HF version by default)
1015 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1023 byte_t rx
[sizeof(UsbCommand
)];
1028 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1030 UsbPacketReceived(rx
,rx_len
);
1036 if (BUTTON_HELD(1000) > 0)