1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015 piwi
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Implements a card only attack based on crypto text (encrypted nonces
9 // received during a nested authentication) only. Unlike other card only
10 // attacks this doesn't rely on implementation errors but only on the
11 // inherent weaknesses of the crypto1 cypher. Described in
12 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14 // Computer and Communications Security, 2015
15 //-----------------------------------------------------------------------------
22 #include "proxmark3.h"
26 #include "nonce2key/crapto1.h"
29 // uint32_t test_state_odd = 0;
30 // uint32_t test_state_even = 0;
32 #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
33 #define GOOD_BYTES_REQUIRED 60
36 static const float p_K
[257] = { // the probability that a random nonce has a Sum Property == K
37 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
38 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
39 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
40 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
60 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
61 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
62 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
63 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
64 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
65 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
66 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
67 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
68 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
72 typedef struct noncelistentry
{
78 typedef struct noncelist
{
85 noncelistentry_t
*first
;
90 static noncelist_t nonces
[256];
91 static uint16_t first_byte_Sum
= 0;
92 static uint16_t first_byte_num
= 0;
93 static uint16_t num_good_first_bytes
= 0;
94 static uint64_t maximum_states
= 0;
95 static uint64_t known_target_key
;
97 #define MAX_BEST_BYTES 256
98 static uint8_t best_first_bytes
[MAX_BEST_BYTES
];
106 #define STATELIST_INDEX_WIDTH 16
107 #define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
112 uint32_t *index
[2][STATELIST_INDEX_SIZE
];
113 } partial_indexed_statelist_t
;
122 static partial_indexed_statelist_t partial_statelist
[17];
123 static partial_indexed_statelist_t statelist_bitflip
;
125 static statelist_t
*candidates
= NULL
;
128 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
130 uint8_t first_byte
= nonce_enc
>> 24;
131 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
132 noncelistentry_t
*p2
= NULL
;
134 if (p1
== NULL
) { // first nonce with this 1st byte
136 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
137 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
140 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
141 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
144 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
149 if (p1
== NULL
) { // need to add at the end of the list
150 if (p2
== NULL
) { // list is empty yet. Add first entry.
151 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
152 } else { // add new entry at end of existing list.
153 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
155 } else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
156 if (p2
== NULL
) { // need to insert at start of list
157 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
159 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
161 } else { // we have seen this 2nd byte before. Nothing to add or insert.
165 // add or insert new data
167 p2
->nonce_enc
= nonce_enc
;
168 p2
->par_enc
= par_enc
;
170 nonces
[first_byte
].num
++;
171 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
172 nonces
[first_byte
].updated
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
174 return (1); // new nonce added
178 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
181 for (uint16_t j
= 0; j
< 16; j
++) {
183 uint16_t part_sum
= 0;
184 if (odd_even
== ODD_STATE
) {
185 for (uint16_t i
= 0; i
< 5; i
++) {
186 part_sum
^= filter(st
);
187 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
189 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
191 for (uint16_t i
= 0; i
< 4; i
++) {
192 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
193 part_sum
^= filter(st
);
202 static uint16_t SumProperty(struct Crypto1State
*s
)
204 uint16_t sum_odd
= PartialSumProperty(s
->odd
, ODD_STATE
);
205 uint16_t sum_even
= PartialSumProperty(s
->even
, EVEN_STATE
);
206 return (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
);
210 static double p_hypergeometric(uint16_t N
, uint16_t K
, uint16_t n
, uint16_t k
)
212 // for efficient computation we are using the recursive definition
214 // P(X=k) = P(X=k-1) * --------------------
217 // (N-K)*(N-K-1)*...*(N-K-n+1)
218 // P(X=0) = -----------------------------
219 // N*(N-1)*...*(N-n+1)
221 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
223 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
224 double log_result
= 0.0;
225 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
226 log_result
+= log(i
);
228 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
229 log_result
-= log(i
);
231 return exp(log_result
);
233 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
234 double log_result
= 0.0;
235 for (int16_t i
= k
+1; i
<= n
; i
++) {
236 log_result
+= log(i
);
238 for (int16_t i
= K
+1; i
<= N
; i
++) {
239 log_result
-= log(i
);
241 return exp(log_result
);
242 } else { // recursion
243 return (p_hypergeometric(N
, K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
249 static float sum_probability(uint16_t K
, uint16_t n
, uint16_t k
)
251 const uint16_t N
= 256;
255 if (k
> K
|| p_K
[K
] == 0.0) return 0.0;
257 double p_T_is_k_when_S_is_K
= p_hypergeometric(N
, K
, n
, k
);
258 double p_S_is_K
= p_K
[K
];
260 for (uint16_t i
= 0; i
<= 256; i
++) {
262 p_T_is_k
+= p_K
[i
] * p_hypergeometric(N
, i
, n
, k
);
265 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
271 printf("Tests: Partial Statelist sizes\n");
272 for (uint16_t i
= 0; i
<= 16; i
+=2) {
273 printf("Partial State List Odd [%2d] has %8d entries\n", i
, partial_statelist
[i
].len
[ODD_STATE
]);
275 for (uint16_t i
= 0; i
<= 16; i
+=2) {
276 printf("Partial State List Even [%2d] has %8d entries\n", i
, partial_statelist
[i
].len
[EVEN_STATE
]);
279 // #define NUM_STATISTICS 100000
280 // uint32_t statistics_odd[17];
281 // uint64_t statistics[257];
282 // uint32_t statistics_even[17];
283 // struct Crypto1State cs;
284 // time_t time1 = clock();
286 // for (uint16_t i = 0; i < 257; i++) {
287 // statistics[i] = 0;
289 // for (uint16_t i = 0; i < 17; i++) {
290 // statistics_odd[i] = 0;
291 // statistics_even[i] = 0;
294 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
295 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
296 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
297 // uint16_t sum_property = SumProperty(&cs);
298 // statistics[sum_property] += 1;
299 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
300 // statistics_even[sum_property]++;
301 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
302 // statistics_odd[sum_property]++;
303 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
306 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
307 // for (uint16_t i = 0; i < 257; i++) {
308 // if (statistics[i] != 0) {
309 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
312 // for (uint16_t i = 0; i <= 16; i++) {
313 // if (statistics_odd[i] != 0) {
314 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
317 // for (uint16_t i = 0; i <= 16; i++) {
318 // if (statistics_odd[i] != 0) {
319 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
323 // printf("Tests: Sum Probabilities based on Partial Sums\n");
324 // for (uint16_t i = 0; i < 257; i++) {
325 // statistics[i] = 0;
327 // uint64_t num_states = 0;
328 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
329 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
330 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
331 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
332 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
335 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
336 // for (uint16_t i = 0; i < 257; i++) {
337 // if (statistics[i] != 0) {
338 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
342 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
343 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
344 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
345 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
346 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
347 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
348 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
350 struct Crypto1State
*pcs
;
351 pcs
= crypto1_create(0xffffffffffff);
352 printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
353 SumProperty(pcs
), pcs
->odd
& 0x00ffffff, pcs
->even
& 0x00ffffff);
354 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
355 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
358 pcs
->odd
& 0x00ffffff, pcs
->even
& 0x00ffffff);
359 //test_state_odd = pcs->odd & 0x00ffffff;
360 //test_state_even = pcs->even & 0x00ffffff;
361 crypto1_destroy(pcs
);
362 pcs
= crypto1_create(0xa0a1a2a3a4a5);
363 printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
364 SumProperty(pcs
), pcs
->odd
& 0x00ffffff, pcs
->even
& 0x00ffffff);
365 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
366 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
369 pcs
->odd
& 0x00ffffff, pcs
->even
& 0x00ffffff);
370 // test_state_odd = pcs->odd & 0x00ffffff;
371 // test_state_even = pcs->even & 0x00ffffff;
372 crypto1_destroy(pcs
);
373 pcs
= crypto1_create(0xa6b9aa97b955);
374 printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
375 SumProperty(pcs
), pcs
->odd
& 0x00ffffff, pcs
->even
& 0x00ffffff);
376 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
377 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
380 pcs
->odd
& 0x00ffffff, pcs
->even
& 0x00ffffff);
381 //test_state_odd = pcs->odd & 0x00ffffff;
382 //test_state_even = pcs->even & 0x00ffffff;
383 crypto1_destroy(pcs
);
387 printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip
.len
[0], 100.0 * statelist_bitflip
.len
[0] / (1<<20));
389 printf("\nTests: Actual BitFlipProperties odd/even:\n");
390 for (uint16_t i
= 0; i
< 256; i
++) {
391 printf("[%02x]:%c%c ", i
, nonces
[i
].BitFlip
[ODD_STATE
]?'o':' ', nonces
[i
].BitFlip
[EVEN_STATE
]?'e':' ');
397 printf("\nTests: Best %d first bytes:\n", MAX_BEST_BYTES
);
398 for (uint16_t i
= 0; i
< MAX_BEST_BYTES
; i
++) {
399 uint8_t best_byte
= best_first_bytes
[i
];
400 uint16_t best_num
= nonces
[best_byte
].num
;
401 uint16_t best_sum
= nonces
[best_byte
].Sum
;
402 uint16_t best_sum8
= nonces
[best_byte
].Sum8_guess
;
403 float confidence
= nonces
[best_byte
].Sum8_prob
;
404 printf("#%03d Byte: %02x, n = %2d, k = %2d, Sum(a8): %3d, Confidence: %2.1f%%\n", i
, best_byte
, best_num
, best_sum
, best_sum8
, confidence
*100);
407 // printf("\nTests: parity performance\n");
408 // time_t time1p = clock();
409 // uint32_t par_sum = 0;
410 // for (uint32_t i = 0; i < 100000000; i++) {
411 // par_sum += parity(i);
413 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
417 // for (uint32_t i = 0; i < 100000000; i++) {
418 // par_sum += evenparity32(i);
420 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
425 static int common_bits(uint8_t byte1
, uint8_t byte2
)
427 uint8_t common_bits
= byte1
^ byte2
;
429 while ((common_bits
& 0x01) == 0 && j
< 8) {
437 static void sort_best_first_bytes(void)
439 // first, sort based on probability for correct guess
440 for (uint16_t i
= 0; i
< 256; i
++ ) {
442 float prob1
= nonces
[i
].Sum8_prob
;
443 float prob2
= nonces
[best_first_bytes
[0]].Sum8_prob
;
444 while (prob1
< prob2
&& j
< MAX_BEST_BYTES
-1) {
445 prob2
= nonces
[best_first_bytes
[++j
]].Sum8_prob
;
447 if (prob1
>= prob2
) {
448 for (uint16_t k
= MAX_BEST_BYTES
-1; k
> j
; k
--) {
449 best_first_bytes
[k
] = best_first_bytes
[k
-1];
451 best_first_bytes
[j
] = i
;
455 // determine, how many are above the CONFIDENCE_THRESHOLD
456 uint16_t num_good_nonces
= 0;
457 for (uint16_t i
= 0; i
< MAX_BEST_BYTES
; i
++) {
458 if (nonces
[best_first_bytes
[i
]].Sum8_prob
> CONFIDENCE_THRESHOLD
) {
463 uint16_t best_first_byte
= 0;
465 // select the best possible first byte based on number of common bits with all {b'}
466 // uint16_t max_common_bits = 0;
467 // for (uint16_t i = 0; i < num_good_nonces; i++) {
468 // uint16_t sum_common_bits = 0;
469 // for (uint16_t j = 0; j < num_good_nonces; j++) {
471 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
474 // if (sum_common_bits > max_common_bits) {
475 // max_common_bits = sum_common_bits;
476 // best_first_byte = i;
480 // select best possible first byte {b} based on least likely sum/bitflip property
482 for (uint16_t i
= 0; i
< num_good_nonces
; i
++ ) {
483 uint16_t sum8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
484 float bitflip_prob
= 1.0;
485 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
]) {
486 bitflip_prob
= 0.09375;
488 if (p_K
[sum8
] * bitflip_prob
<= min_p_K
) {
489 min_p_K
= p_K
[sum8
] * bitflip_prob
;
494 // use number of commmon bits as a tie breaker
495 uint16_t max_common_bits
= 0;
496 for (uint16_t i
= 0; i
< num_good_nonces
; i
++) {
497 float bitflip_prob
= 1.0;
498 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
]) {
499 bitflip_prob
= 0.09375;
501 if (p_K
[nonces
[best_first_bytes
[i
]].Sum8_guess
] * bitflip_prob
== min_p_K
) {
502 uint16_t sum_common_bits
= 0;
503 for (uint16_t j
= 0; j
< num_good_nonces
; j
++) {
504 sum_common_bits
+= common_bits(best_first_bytes
[i
],best_first_bytes
[j
]);
506 if (sum_common_bits
> max_common_bits
) {
507 max_common_bits
= sum_common_bits
;
513 // swap best possible first bytes to the pole position
514 uint16_t temp
= best_first_bytes
[0];
515 best_first_bytes
[0] = best_first_bytes
[best_first_byte
];
516 best_first_bytes
[best_first_byte
] = temp
;
521 static uint16_t estimate_second_byte_sum(void)
523 for (uint16_t i
= 0; i
< MAX_BEST_BYTES
; i
++) {
524 best_first_bytes
[i
] = 0;
527 for (uint16_t first_byte
= 0; first_byte
< 256; first_byte
++) {
528 float Sum8_prob
= 0.0;
530 if (nonces
[first_byte
].updated
) {
531 for (uint16_t sum
= 0; sum
<= 256; sum
++) {
532 float prob
= sum_probability(sum
, nonces
[first_byte
].num
, nonces
[first_byte
].Sum
);
533 if (prob
> Sum8_prob
) {
538 nonces
[first_byte
].Sum8_guess
= Sum8
;
539 nonces
[first_byte
].Sum8_prob
= Sum8_prob
;
540 nonces
[first_byte
].updated
= false;
544 sort_best_first_bytes();
546 uint16_t num_good_nonces
= 0;
547 for (uint16_t i
= 0; i
< MAX_BEST_BYTES
; i
++) {
548 if (nonces
[best_first_bytes
[i
]].Sum8_prob
> CONFIDENCE_THRESHOLD
) {
553 return num_good_nonces
;
557 static int read_nonce_file(void)
559 FILE *fnonces
= NULL
;
563 uint32_t nt_enc1
, nt_enc2
;
565 int total_num_nonces
= 0;
567 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
568 PrintAndLog("Could not open file nonces.bin");
572 PrintAndLog("Reading nonces from file nonces.bin...");
573 if (fread(read_buf
, 1, 6, fnonces
) == 0) {
574 PrintAndLog("File reading error.");
578 cuid
= bytes_to_num(read_buf
, 4);
579 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
580 trgKeyType
= bytes_to_num(read_buf
+5, 1);
582 while (fread(read_buf
, 1, 9, fnonces
) == 9) {
583 nt_enc1
= bytes_to_num(read_buf
, 4);
584 nt_enc2
= bytes_to_num(read_buf
+4, 4);
585 par_enc
= bytes_to_num(read_buf
+8, 1);
586 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
587 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
588 add_nonce(nt_enc1
, par_enc
>> 4);
589 add_nonce(nt_enc2
, par_enc
& 0x0f);
590 total_num_nonces
+= 2;
593 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces
, cuid
, trgBlockNo
, trgKeyType
==0?'A':'B');
599 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
601 clock_t time1
= clock();
602 bool initialize
= true;
603 bool field_off
= false;
604 bool finished
= false;
606 uint8_t write_buf
[9];
607 uint32_t total_num_nonces
= 0;
608 uint32_t next_fivehundred
= 500;
609 uint32_t total_added_nonces
= 0;
610 FILE *fnonces
= NULL
;
613 printf("Acquiring nonces...\n");
615 clearCommandBuffer();
619 flags
|= initialize
? 0x0001 : 0;
620 flags
|= slow
? 0x0002 : 0;
621 flags
|= field_off
? 0x0004 : 0;
622 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {blockNo
+ keyType
* 0x100, trgBlockNo
+ trgKeyType
* 0x100, flags
}};
623 memcpy(c
.d
.asBytes
, key
, 6);
627 if (field_off
) finished
= true;
630 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1;
631 if (resp
.arg
[0]) return resp
.arg
[0]; // error during nested_hard
634 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
635 if (nonce_file_write
&& fnonces
== NULL
) {
636 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
637 PrintAndLog("Could not create file nonces.bin");
640 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
641 num_to_bytes(cuid
, 4, write_buf
);
642 fwrite(write_buf
, 1, 4, fnonces
);
643 fwrite(&trgBlockNo
, 1, 1, fnonces
);
644 fwrite(&trgKeyType
, 1, 1, fnonces
);
649 uint32_t nt_enc1
, nt_enc2
;
651 uint16_t num_acquired_nonces
= resp
.arg
[2];
652 uint8_t *bufp
= resp
.d
.asBytes
;
653 for (uint16_t i
= 0; i
< num_acquired_nonces
; i
+=2) {
654 nt_enc1
= bytes_to_num(bufp
, 4);
655 nt_enc2
= bytes_to_num(bufp
+4, 4);
656 par_enc
= bytes_to_num(bufp
+8, 1);
658 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
659 total_added_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
660 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
661 total_added_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
664 if (nonce_file_write
) {
665 fwrite(bufp
, 1, 9, fnonces
);
671 total_num_nonces
+= num_acquired_nonces
;
674 if (first_byte_num
== 256 ) {
675 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
676 num_good_first_bytes
= estimate_second_byte_sum();
677 if (total_num_nonces
> next_fivehundred
) {
678 next_fivehundred
= (total_num_nonces
/500+1) * 500;
679 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
682 CONFIDENCE_THRESHOLD
* 100.0,
683 num_good_first_bytes
);
685 if (num_good_first_bytes
>= GOOD_BYTES_REQUIRED
) {
686 field_off
= true; // switch off field with next SendCommand and then finish
691 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1;
692 if (resp
.arg
[0]) return resp
.arg
[0]; // error during nested_hard
700 if (nonce_file_write
) {
704 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
706 ((float)clock()-time1
)/CLOCKS_PER_SEC
,
707 total_num_nonces
*60.0*CLOCKS_PER_SEC
/((float)clock()-time1
));
713 static int init_partial_statelists(void)
715 const uint32_t sizes_odd
[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
716 const uint32_t sizes_even
[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
718 printf("Allocating memory for partial statelists...\n");
719 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
720 for (uint16_t i
= 0; i
<= 16; i
+=2) {
721 partial_statelist
[i
].len
[odd_even
] = 0;
722 uint32_t num_of_states
= odd_even
== ODD_STATE
? sizes_odd
[i
] : sizes_even
[i
];
723 partial_statelist
[i
].states
[odd_even
] = malloc(sizeof(uint32_t) * num_of_states
);
724 if (partial_statelist
[i
].states
[odd_even
] == NULL
) {
725 PrintAndLog("Cannot allocate enough memory. Aborting");
728 for (uint32_t j
= 0; j
< STATELIST_INDEX_SIZE
; j
++) {
729 partial_statelist
[i
].index
[odd_even
][j
] = NULL
;
734 printf("Generating partial statelists...\n");
735 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
737 uint32_t num_of_states
= 1<<20;
738 for (uint32_t state
= 0; state
< num_of_states
; state
++) {
739 uint16_t sum_property
= PartialSumProperty(state
, odd_even
);
740 uint32_t *p
= partial_statelist
[sum_property
].states
[odd_even
];
741 p
+= partial_statelist
[sum_property
].len
[odd_even
];
743 partial_statelist
[sum_property
].len
[odd_even
]++;
744 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
745 if ((state
& index_mask
) != index
) {
746 index
= state
& index_mask
;
748 if (partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
749 partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
752 // add End Of List markers
753 for (uint16_t i
= 0; i
<= 16; i
+= 2) {
754 uint32_t *p
= partial_statelist
[i
].states
[odd_even
];
755 p
+= partial_statelist
[i
].len
[odd_even
];
764 static void init_BitFlip_statelist(void)
766 printf("Generating bitflip statelist...\n");
767 uint32_t *p
= statelist_bitflip
.states
[0] = malloc(sizeof(uint32_t) * 1<<20);
769 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
770 for (uint32_t state
= 0; state
< (1 << 20); state
++) {
771 if (filter(state
) != filter(state
^1)) {
772 if ((state
& index_mask
) != index
) {
773 index
= state
& index_mask
;
775 if (statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
776 statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
781 // set len and add End Of List marker
782 statelist_bitflip
.len
[0] = p
- statelist_bitflip
.states
[0];
784 statelist_bitflip
.states
[0] = realloc(statelist_bitflip
.states
[0], sizeof(uint32_t) * (statelist_bitflip
.len
[0] + 1));
788 static void add_state(statelist_t
*sl
, uint32_t state
, odd_even_t odd_even
)
792 p
= sl
->states
[odd_even
];
793 p
+= sl
->len
[odd_even
];
799 static uint32_t *find_first_state(uint32_t state
, uint32_t mask
, partial_indexed_statelist_t
*sl
, odd_even_t odd_even
)
801 uint32_t *p
= sl
->index
[odd_even
][(state
& mask
) >> (20-STATELIST_INDEX_WIDTH
)]; // first Bits as index
803 if (p
== NULL
) return NULL
;
804 while ((*p
& mask
) < (state
& mask
)) p
++;
805 if (*p
== 0xffffffff) return NULL
; // reached end of list, no match
806 if ((*p
& mask
) == (state
& mask
)) return p
; // found a match.
807 return NULL
; // no match
811 static bool remaining_bits_match(uint8_t num_common_bits
, uint8_t byte1
, uint8_t byte2
, uint32_t state1
, uint32_t state2
, odd_even_t odd_even
)
813 uint8_t j
= num_common_bits
;
814 if (odd_even
== ODD_STATE
) {
815 j
|= 0x01; // consider the next odd bit
817 j
= (j
+1) & 0xfe; // consider the next even bit
821 if (j
!= num_common_bits
) { // this is not the first differing bit, we need first to check if the invariant still holds
822 uint32_t bit_diff
= ((byte1
^ byte2
) << (17-j
)) & 0x00010000; // difference of (j-1)th bit -> bit 16
823 uint32_t filter_diff
= filter(state1
>> (4-j
/2)) ^ filter(state2
>> (4-j
/2)); // difference in filter function -> bit 0
824 uint32_t mask_y12_y13
= 0x000000c0 >> (j
/2);
825 uint32_t state_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13 -> bits 6/7 ... 3/4
826 uint32_t all_diff
= parity(bit_diff
| state_diff
| filter_diff
); // use parity function to XOR all 4 bits
827 if (all_diff
) { // invariant doesn't hold any more. Accept this state.
828 // if ((odd_even == ODD_STATE && state1 == test_state_odd)
829 // || (odd_even == EVEN_STATE && state1 == test_state_even)) {
830 // printf("remaining_bits_match(): %s test state: Invariant doesn't hold. Bytes = %02x, %02x, Common Bits=%d, Testing Bit %d, State1=0x%08x, State2=0x%08x\n",
831 // odd_even==ODD_STATE?"odd":"even", byte1, byte2, num_common_bits, j, state1, state2);
836 // check for validity of state candidate
837 uint32_t bit_diff
= ((byte1
^ byte2
) << (16-j
)) & 0x00010000; // difference of jth bit -> bit 16
838 uint32_t mask_y13_y16
= 0x00000048 >> (j
/2);
839 uint32_t state_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16 -> bits 3/6 ... 0/3
840 uint32_t all_diff
= parity(bit_diff
| state_diff
); // use parity function to XOR all 3 bits
841 if (all_diff
) { // not a valid state
842 // if ((odd_even == ODD_STATE && state1 == test_state_odd)
843 // || (odd_even == EVEN_STATE && state1 == test_state_even)) {
844 // printf("remaining_bits_match(): %s test state: Invalid state. Bytes = %02x, %02x, Common Bits=%d, Testing Bit %d, State1=0x%08x, State2=0x%08x\n",
845 // odd_even==ODD_STATE?"odd":"even", byte1, byte2, num_common_bits, j, state1, state2);
846 // printf(" byte1^byte2: 0x%02x, bit_diff: 0x%08x, state_diff: 0x%08x, all_diff: 0x%08x\n",
847 // byte1^byte2, bit_diff, state_diff, all_diff);
851 // continue checking for the next bit
855 return true; // valid state
859 static bool all_other_first_bytes_match(uint32_t state
, odd_even_t odd_even
)
861 for (uint16_t i
= 1; i
< num_good_first_bytes
; i
++) {
862 uint16_t sum_a8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
863 uint8_t j
= 0; // number of common bits
864 uint8_t common_bits
= best_first_bytes
[0] ^ best_first_bytes
[i
];
865 uint32_t mask
= 0xfffffff0;
866 if (odd_even
== ODD_STATE
) {
867 while ((common_bits
& 0x01) == 0 && j
< 8) {
870 if (j
% 2 == 0) { // the odd bits
875 while ((common_bits
& 0x01) == 0 && j
< 8) {
878 if (j
% 2 == 1) { // the even bits
884 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
885 bool found_match
= false;
886 for (uint16_t r
= 0; r
<= 16 && !found_match
; r
+= 2) {
887 for (uint16_t s
= 0; s
<= 16 && !found_match
; s
+= 2) {
888 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
889 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
890 uint16_t part_sum_a8
= (odd_even
== ODD_STATE
) ? r
: s
;
891 uint32_t *p
= find_first_state(state
, mask
, &partial_statelist
[part_sum_a8
], odd_even
);
893 while ((state
& mask
) == (*p
& mask
) && (*p
!= 0xffffffff)) {
894 if (remaining_bits_match(j
, best_first_bytes
[0], best_first_bytes
[i
], state
, (state
&0x00fffff0) | *p
, odd_even
)) {
896 // if ((odd_even == ODD_STATE && state == test_state_odd)
897 // || (odd_even == EVEN_STATE && state == test_state_even)) {
898 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
899 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
903 // if ((odd_even == ODD_STATE && state == test_state_odd)
904 // || (odd_even == EVEN_STATE && state == test_state_even)) {
905 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
906 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
912 // if ((odd_even == ODD_STATE && state == test_state_odd)
913 // || (odd_even == EVEN_STATE && state == test_state_even)) {
914 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
915 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
923 // if ((odd_even == ODD_STATE && state == test_state_odd)
924 // || (odd_even == EVEN_STATE && state == test_state_even)) {
925 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
935 static bool all_bit_flips_match(uint32_t state
, odd_even_t odd_even
)
937 for (uint16_t i
= 0; i
< 256; i
++) {
938 if (nonces
[i
].BitFlip
[odd_even
] && i
!= best_first_bytes
[0]) {
939 uint8_t j
= 0; // number of common bits
940 uint8_t common_bits
= best_first_bytes
[0] ^ i
;
941 uint32_t mask
= 0xfffffff0;
942 if (odd_even
== ODD_STATE
) {
943 while ((common_bits
& 0x01) == 0 && j
< 8) {
946 if (j
% 2 == 0) { // the odd bits
951 while ((common_bits
& 0x01) == 0 && j
< 8) {
954 if (j
% 2 == 1) { // the even bits
960 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
961 bool found_match
= false;
962 uint32_t *p
= find_first_state(state
, mask
, &statelist_bitflip
, 0);
964 while ((state
& mask
) == (*p
& mask
) && (*p
!= 0xffffffff)) {
965 if (remaining_bits_match(j
, best_first_bytes
[0], i
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
967 // if ((odd_even == ODD_STATE && state == test_state_odd)
968 // || (odd_even == EVEN_STATE && state == test_state_even)) {
969 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
970 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
974 // if ((odd_even == ODD_STATE && state == test_state_odd)
975 // || (odd_even == EVEN_STATE && state == test_state_even)) {
976 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
977 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
983 // if ((odd_even == ODD_STATE && state == test_state_odd)
984 // || (odd_even == EVEN_STATE && state == test_state_even)) {
985 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
986 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
990 // if ((odd_even == ODD_STATE && state == test_state_odd)
991 // || (odd_even == EVEN_STATE && state == test_state_even)) {
992 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1004 #define INVALID_BIT (1<<30)
1005 #define SET_INVALID(pstate) (*(pstate) |= INVALID_BIT)
1006 #define IS_INVALID(state) (state & INVALID_BIT)
1008 static int add_matching_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
1010 uint32_t worstcase_size
= 1<<20;
1012 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1013 if (candidates
->states
[odd_even
] == NULL
) {
1014 PrintAndLog("Out of memory error.\n");
1017 for (uint32_t *p1
= partial_statelist
[part_sum_a0
].states
[odd_even
]; *p1
!= 0xffffffff; p1
++) {
1018 uint32_t search_mask
= 0x000ffff0;
1019 uint32_t *p2
= find_first_state((*p1
<< 4), search_mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1021 while (((*p1
<< 4) & search_mask
) == (*p2
& search_mask
) && *p2
!= 0xffffffff) {
1022 if (all_other_first_bytes_match((*p1
<< 4) | *p2
, odd_even
)) {
1023 if (all_bit_flips_match((*p1
<< 4) | *p2
, odd_even
)) {
1024 add_state(candidates
, (*p1
<< 4) | *p2
, odd_even
);
1032 // set end of list marker
1033 uint32_t *p
= candidates
->states
[odd_even
];
1034 p
+= candidates
->len
[odd_even
];
1037 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1043 static statelist_t
*add_more_candidates(statelist_t
*current_candidates
)
1045 statelist_t
*new_candidates
= NULL
;
1046 if (current_candidates
== NULL
) {
1047 if (candidates
== NULL
) {
1048 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
1050 new_candidates
= candidates
;
1052 new_candidates
= current_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
1054 new_candidates
->next
= NULL
;
1055 new_candidates
->len
[ODD_STATE
] = 0;
1056 new_candidates
->len
[EVEN_STATE
] = 0;
1057 new_candidates
->states
[ODD_STATE
] = NULL
;
1058 new_candidates
->states
[EVEN_STATE
] = NULL
;
1059 return new_candidates
;
1063 static void TestIfKeyExists(uint64_t key
)
1065 struct Crypto1State
*pcs
;
1066 pcs
= crypto1_create(key
);
1067 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1069 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1070 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1071 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
1074 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1075 bool found_odd
= false;
1076 bool found_even
= false;
1077 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1078 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1079 while (*p_odd
!= 0xffffffff) {
1080 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1086 while (*p_even
!= 0xffffffff) {
1087 if ((*p_even
& 0x00ffffff) == state_even
) {
1092 count
+= (p_odd
- p
->states
[ODD_STATE
]) * (p_even
- p
->states
[EVEN_STATE
]);
1093 if (found_odd
&& found_even
) {
1094 PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. A brute force would have taken approx %lld minutes.",
1095 count
, log(count
)/log(2),
1096 maximum_states
, log(maximum_states
)/log(2),
1098 crypto1_destroy(pcs
);
1103 printf("Key NOT found!\n");
1104 crypto1_destroy(pcs
);
1108 static void generate_candidates(uint16_t sum_a0
, uint16_t sum_a8
)
1110 printf("Generating crypto1 state candidates... \n");
1112 statelist_t
*current_candidates
= NULL
;
1113 // estimate maximum candidate states
1115 for (uint16_t sum_odd
= 0; sum_odd
<= 16; sum_odd
+= 2) {
1116 for (uint16_t sum_even
= 0; sum_even
<= 16; sum_even
+= 2) {
1117 if (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
== sum_a0
) {
1118 maximum_states
+= (uint64_t)partial_statelist
[sum_odd
].len
[ODD_STATE
] * partial_statelist
[sum_even
].len
[EVEN_STATE
] * (1<<8);
1122 printf("Number of possible keys with Sum(a0) = %d: %lld (2^%1.1f)\n", sum_a0
, maximum_states
, log(maximum_states
)/log(2.0));
1124 for (uint16_t p
= 0; p
<= 16; p
+= 2) {
1125 for (uint16_t q
= 0; q
<= 16; q
+= 2) {
1126 if (p
*(16-q
) + (16-p
)*q
== sum_a0
) {
1127 printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1128 p
, q
, partial_statelist
[p
].len
[ODD_STATE
], partial_statelist
[q
].len
[EVEN_STATE
]);
1129 for (uint16_t r
= 0; r
<= 16; r
+= 2) {
1130 for (uint16_t s
= 0; s
<= 16; s
+= 2) {
1131 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1132 current_candidates
= add_more_candidates(current_candidates
);
1133 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1134 printf("Odd state candidates: %d (2^%0.1f)\n", current_candidates
->len
[ODD_STATE
], log(current_candidates
->len
[ODD_STATE
])/log(2));
1135 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1136 printf("Even state candidates: %d (2^%0.1f)\n", current_candidates
->len
[EVEN_STATE
], log(current_candidates
->len
[EVEN_STATE
])/log(2));
1146 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
1147 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
1149 printf("Number of remaining possible keys: %lld (2^%1.1f)\n", maximum_states
, log(maximum_states
)/log(2.0));
1154 static void Check_for_FilterFlipProperties(void)
1156 printf("Checking for Filter Flip Properties...\n");
1158 for (uint16_t i
= 0; i
< 256; i
++) {
1159 nonces
[i
].BitFlip
[ODD_STATE
] = false;
1160 nonces
[i
].BitFlip
[EVEN_STATE
] = false;
1163 for (uint16_t i
= 0; i
< 256; i
++) {
1164 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
1165 uint8_t parity2_odd
= (nonces
[i
^0x80].first
->par_enc
) >> 3; // XOR 0x80 = last bit flipped
1166 uint8_t parity2_even
= (nonces
[i
^0x40].first
->par_enc
) >> 3; // XOR 0x40 = second last bit flipped
1168 if (parity1
== parity2_odd
) { // has Bit Flip Property for odd bits
1169 nonces
[i
].BitFlip
[ODD_STATE
] = true;
1170 } else if (parity1
== parity2_even
) { // has Bit Flip Property for even bits
1171 nonces
[i
].BitFlip
[EVEN_STATE
] = true;
1177 static void brute_force(void)
1179 if (known_target_key
!= -1) {
1180 PrintAndLog("Looking for known target key in remaining key space...");
1181 TestIfKeyExists(known_target_key
);
1184 PrintAndLog("Brute Force phase is not implemented.");
1192 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
)
1194 if (trgkey
!= NULL
) {
1195 known_target_key
= bytes_to_num(trgkey
, 6);
1197 known_target_key
= -1;
1200 // initialize the list of nonces
1201 for (uint16_t i
= 0; i
< 256; i
++) {
1204 nonces
[i
].Sum8_guess
= 0;
1205 nonces
[i
].Sum8_prob
= 0.0;
1206 nonces
[i
].updated
= true;
1207 nonces
[i
].first
= NULL
;
1211 num_good_first_bytes
= 0;
1213 init_partial_statelists();
1214 init_BitFlip_statelist();
1216 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
1217 if (read_nonce_file() != 0) {
1220 num_good_first_bytes
= MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED
);
1221 } else { // acquire nonces.
1222 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
1228 Check_for_FilterFlipProperties();
1233 PrintAndLog("Sum(a0) = %d", first_byte_Sum
);
1234 // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
1235 // best_first_bytes[0],
1236 // best_first_bytes[1],
1237 // best_first_bytes[2],
1238 // best_first_bytes[3],
1239 // best_first_bytes[4],
1240 // best_first_bytes[5],
1241 // best_first_bytes[6],
1242 // best_first_bytes[7],
1243 // best_first_bytes[8],
1244 // best_first_bytes[9] );
1245 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD
*100.0, num_good_first_bytes
);
1247 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);