1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
17 #include "proxmark3.h"
24 #include "legicrfsim.h"
28 #include "lfsampling.h"
30 #include "mifareutil.h"
37 static uint32_t hw_capabilities
;
39 // Craig Young - 14a stand-alone code
41 #include "iso14443a.h"
44 //=============================================================================
45 // A buffer where we can queue things up to be sent through the FPGA, for
46 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
47 // is the order in which they go out on the wire.
48 //=============================================================================
50 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
51 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
54 struct common_area common_area
__attribute__((section(".commonarea")));
56 void ToSendReset(void)
62 void ToSendStuffBit(int b
)
66 ToSend
[ToSendMax
] = 0;
71 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
76 if(ToSendMax
>= sizeof(ToSend
)) {
78 DbpString("ToSendStuffBit overflowed!");
82 //=============================================================================
83 // Debug print functions, to go out over USB, to the usual PC-side client.
84 //=============================================================================
86 void DbpString(char *str
)
88 byte_t len
= strlen(str
);
89 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
93 void DbpIntegers(int x1
, int x2
, int x3
)
95 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
99 void Dbprintf(const char *fmt
, ...) {
100 // should probably limit size here; oh well, let's just use a big buffer
101 char output_string
[128];
105 kvsprintf(fmt
, output_string
, 10, ap
);
108 DbpString(output_string
);
111 // prints HEX & ASCII
112 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
125 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
128 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
130 Dbprintf("%*D",l
,d
," ");
138 //-----------------------------------------------------------------------------
139 // Read an ADC channel and block till it completes, then return the result
140 // in ADC units (0 to 1023). Also a routine to average 32 samples and
142 //-----------------------------------------------------------------------------
143 static int ReadAdc(int ch
)
145 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
146 // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
147 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
150 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
152 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
154 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
155 AT91C_BASE_ADC
->ADC_MR
=
156 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
157 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
158 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
160 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
161 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
163 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) {};
165 return AT91C_BASE_ADC
->ADC_CDR
[ch
] & 0x3ff;
168 int AvgAdc(int ch
) // was static - merlok
173 for(i
= 0; i
< 32; i
++) {
177 return (a
+ 15) >> 5;
180 static int AvgAdc_Voltage_HF(void)
182 int AvgAdc_Voltage_Low
, AvgAdc_Voltage_High
;
184 AvgAdc_Voltage_Low
= (MAX_ADC_HF_VOLTAGE_LOW
* AvgAdc(ADC_CHAN_HF_LOW
)) >> 10;
185 // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
186 if (AvgAdc_Voltage_Low
> MAX_ADC_HF_VOLTAGE_LOW
- 300) {
187 AvgAdc_Voltage_High
= (MAX_ADC_HF_VOLTAGE_HIGH
* AvgAdc(ADC_CHAN_HF_HIGH
)) >> 10;
188 if (AvgAdc_Voltage_High
>= AvgAdc_Voltage_Low
) {
189 return AvgAdc_Voltage_High
;
192 return AvgAdc_Voltage_Low
;
195 static int AvgAdc_Voltage_LF(void)
197 return (MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10;
200 void MeasureAntennaTuningLfOnly(int *vLf125
, int *vLf134
, int *peakf
, int *peakv
, uint8_t LF_Results
[])
202 int i
, adcval
= 0, peak
= 0;
205 * Sweeps the useful LF range of the proxmark from
206 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
207 * read the voltage in the antenna, the result left
208 * in the buffer is a graph which should clearly show
209 * the resonating frequency of your LF antenna
210 * ( hopefully around 95 if it is tuned to 125kHz!)
213 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
214 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
217 for (i
=255; i
>=19; i
--) {
219 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
221 adcval
= AvgAdc_Voltage_LF();
222 if (i
==95) *vLf125
= adcval
; // voltage at 125Khz
223 if (i
==89) *vLf134
= adcval
; // voltage at 134Khz
225 LF_Results
[i
] = adcval
>> 9; // scale int to fit in byte for graphing purposes
226 if(LF_Results
[i
] > peak
) {
228 peak
= LF_Results
[i
];
234 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
239 void MeasureAntennaTuningHfOnly(int *vHf
)
241 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
243 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
244 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
246 *vHf
= AvgAdc_Voltage_HF();
251 void MeasureAntennaTuning(int mode
)
253 uint8_t LF_Results
[256] = {0};
254 int peakv
= 0, peakf
= 0;
255 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
259 if (((mode
& FLAG_TUNE_ALL
) == FLAG_TUNE_ALL
) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF
)) {
260 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
261 MeasureAntennaTuningHfOnly(&vHf
);
262 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
264 if (mode
& FLAG_TUNE_LF
) {
265 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
267 if (mode
& FLAG_TUNE_HF
) {
268 MeasureAntennaTuningHfOnly(&vHf
);
272 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
>>1 | (vLf134
>>1<<16), vHf
, peakf
| (peakv
>>1<<16), LF_Results
, 256);
273 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
278 void MeasureAntennaTuningHf(void)
280 int vHf
= 0; // in mV
282 DbpString("Measuring HF antenna, press button to exit");
284 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
285 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
286 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
290 vHf
= AvgAdc_Voltage_HF();
292 Dbprintf("%d mV",vHf
);
293 if (BUTTON_PRESS()) break;
295 DbpString("cancelled");
297 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
302 void ReadMem(int addr
)
304 const uint8_t *data
= ((uint8_t *)addr
);
306 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
307 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
310 /* osimage version information is linked in */
311 extern struct version_information version_information
;
312 /* bootrom version information is pointed to from _bootphase1_version_pointer */
313 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
316 void set_hw_capabilities(void)
318 if (I2C_is_available()) {
319 hw_capabilities
|= HAS_SMARTCARD_SLOT
;
322 if (false) { // TODO: implement a test
323 hw_capabilities
|= HAS_EXTRA_FLASH_MEM
;
328 void SendVersion(void)
330 set_hw_capabilities();
332 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
333 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
335 /* Try to find the bootrom version information. Expect to find a pointer at
336 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
337 * pointer, then use it.
339 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
340 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
341 strcat(VersionString
, "bootrom version information appears invalid\n");
343 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
344 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
347 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
348 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
350 for (int i
= 0; i
< fpga_bitstream_num
; i
++) {
351 strncat(VersionString
, fpga_version_information
[i
], sizeof(VersionString
) - strlen(VersionString
) - 1);
352 strncat(VersionString
, "\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
355 // test availability of SmartCard slot
356 if (I2C_is_available()) {
357 strncat(VersionString
, "SmartCard Slot: available\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
359 strncat(VersionString
, "SmartCard Slot: not available\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
362 // Send Chip ID and used flash memory
363 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
364 uint32_t compressed_data_section_size
= common_area
.arg1
;
365 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, hw_capabilities
, VersionString
, strlen(VersionString
));
368 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
369 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
370 void printUSBSpeed(void)
372 Dbprintf("USB Speed:");
373 Dbprintf(" Sending USB packets to client...");
375 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
376 uint8_t *test_data
= BigBuf_get_addr();
379 uint32_t start_time
= end_time
= GetTickCount();
380 uint32_t bytes_transferred
= 0;
383 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
384 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
385 end_time
= GetTickCount();
386 bytes_transferred
+= USB_CMD_DATA_SIZE
;
390 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
391 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
392 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
393 1000 * bytes_transferred
/ (end_time
- start_time
));
398 * Prints runtime information about the PM3.
400 void SendStatus(void)
402 BigBuf_print_status();
404 #ifdef WITH_SMARTCARD
407 printConfig(); //LF Sampling config
410 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
411 Dbprintf(" ToSendMax..........%d", ToSendMax
);
412 Dbprintf(" ToSendBit..........%d", ToSendBit
);
414 cmd_send(CMD_ACK
,1,0,0,0,0);
417 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
421 void StandAloneMode()
423 DbpString("Stand-alone mode! No PC necessary.");
424 // Oooh pretty -- notify user we're in elite samy mode now
426 LED(LED_ORANGE
, 200);
428 LED(LED_ORANGE
, 200);
430 LED(LED_ORANGE
, 200);
432 LED(LED_ORANGE
, 200);
441 #ifdef WITH_ISO14443a_StandAlone
442 void StandAloneMode14a()
445 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
448 bool playing
= false, GotoRecord
= false, GotoClone
= false;
449 bool cardRead
[OPTS
] = {false};
450 uint8_t readUID
[10] = {0};
451 uint32_t uid_1st
[OPTS
]={0};
452 uint32_t uid_2nd
[OPTS
]={0};
453 uint32_t uid_tmp1
= 0;
454 uint32_t uid_tmp2
= 0;
455 iso14a_card_select_t hi14a_card
[OPTS
];
457 LED(selected
+ 1, 0);
465 if (GotoRecord
|| !cardRead
[selected
])
469 LED(selected
+ 1, 0);
473 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
474 /* need this delay to prevent catching some weird data */
476 /* Code for reading from 14a tag */
477 uint8_t uid
[10] ={0};
479 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
484 if (BUTTON_PRESS()) {
485 if (cardRead
[selected
]) {
486 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
489 else if (cardRead
[(selected
+1)%OPTS
]) {
490 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
491 selected
= (selected
+1)%OPTS
;
495 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
499 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0, true))
503 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
504 memcpy(readUID
,uid
,10*sizeof(uint8_t));
505 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
506 // Set UID byte order
507 for (int i
=0; i
<4; i
++)
509 dst
= (uint8_t *)&uid_tmp2
;
510 for (int i
=0; i
<4; i
++)
512 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
513 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
517 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
518 uid_1st
[selected
] = (uid_tmp1
)>>8;
519 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
522 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
523 uid_1st
[selected
] = uid_tmp1
;
524 uid_2nd
[selected
] = uid_tmp2
;
530 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
531 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
534 LED(LED_ORANGE
, 200);
536 LED(LED_ORANGE
, 200);
539 LED(selected
+ 1, 0);
541 // Next state is replay:
544 cardRead
[selected
] = true;
546 /* MF Classic UID clone */
551 LED(selected
+ 1, 0);
552 LED(LED_ORANGE
, 250);
556 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
558 // wait for button to be released
559 while(BUTTON_PRESS())
561 // Delay cloning until card is in place
564 Dbprintf("Starting clone. [Bank: %u]", selected
);
565 // need this delay to prevent catching some weird data
567 // Begin clone function here:
568 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
569 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
570 memcpy(c.d.asBytes, data, 16);
573 Block read is similar:
574 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
575 We need to imitate that call with blockNo 0 to set a uid.
577 The get and set commands are handled in this file:
578 // Work with "magic Chinese" card
579 case CMD_MIFARE_CSETBLOCK:
580 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
582 case CMD_MIFARE_CGETBLOCK:
583 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
586 mfCSetUID provides example logic for UID set workflow:
587 -Read block0 from card in field with MifareCGetBlock()
588 -Configure new values without replacing reserved bytes
589 memcpy(block0, uid, 4); // Copy UID bytes from byte array
591 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
592 Bytes 5-7 are reserved SAK and ATQA for mifare classic
593 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
595 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
596 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
597 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
598 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
599 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
603 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
604 memcpy(newBlock0
,oldBlock0
,16);
605 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
607 newBlock0
[0] = uid_1st
[selected
]>>24;
608 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
609 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
610 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
611 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
612 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
613 MifareCSetBlock(0, 0xFF,0, newBlock0
);
614 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
615 if (memcmp(testBlock0
,newBlock0
,16)==0)
617 DbpString("Cloned successfull!");
618 cardRead
[selected
] = false; // Only if the card was cloned successfully should we clear it
621 selected
= (selected
+1) % OPTS
;
624 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
629 LED(selected
+ 1, 0);
632 // Change where to record (or begin playing)
633 else if (playing
) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
636 LED(selected
+ 1, 0);
638 // Begin transmitting
640 DbpString("Playing");
643 int button_action
= BUTTON_HELD(1000);
644 if (button_action
== 0) { // No button action, proceed with sim
645 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
646 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
647 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
648 DbpString("Mifare Classic");
649 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
651 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
652 DbpString("Mifare Ultralight");
653 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
655 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
656 DbpString("Mifare DESFire");
657 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
660 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
661 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
664 else if (button_action
== BUTTON_SINGLE_CLICK
) {
665 selected
= (selected
+ 1) % OPTS
;
666 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
670 else if (button_action
== BUTTON_HOLD
) {
671 Dbprintf("Playtime over. Begin cloning...");
678 /* We pressed a button so ignore it here with a delay */
681 LED(selected
+ 1, 0);
685 #elif WITH_LF_StandAlone
686 // samy's sniff and repeat routine
690 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
692 int tops
[OPTS
], high
[OPTS
], low
[OPTS
];
697 // Turn on selected LED
698 LED(selected
+ 1, 0);
705 // Was our button held down or pressed?
706 int button_pressed
= BUTTON_HELD(1000);
709 // Button was held for a second, begin recording
710 if (button_pressed
> 0 && cardRead
== 0)
713 LED(selected
+ 1, 0);
717 DbpString("Starting recording");
719 // wait for button to be released
720 while(BUTTON_PRESS())
723 /* need this delay to prevent catching some weird data */
726 CmdHIDdemodFSK(1, &tops
[selected
], &high
[selected
], &low
[selected
], 0);
727 if (tops
[selected
] > 0)
728 Dbprintf("Recorded %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
730 Dbprintf("Recorded %x %x%08x", selected
, high
[selected
], low
[selected
]);
733 LED(selected
+ 1, 0);
734 // Finished recording
736 // If we were previously playing, set playing off
737 // so next button push begins playing what we recorded
744 else if (button_pressed
> 0 && cardRead
== 1)
747 LED(selected
+ 1, 0);
751 if (tops
[selected
] > 0)
752 Dbprintf("Cloning %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
754 Dbprintf("Cloning %x %x%08x", selected
, high
[selected
], low
[selected
]);
756 // wait for button to be released
757 while(BUTTON_PRESS())
760 /* need this delay to prevent catching some weird data */
763 CopyHIDtoT55x7(tops
[selected
] & 0x000FFFFF, high
[selected
], low
[selected
], (tops
[selected
] != 0 && ((high
[selected
]& 0xFFFFFFC0) != 0)), 0x1D);
764 if (tops
[selected
] > 0)
765 Dbprintf("Cloned %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
767 Dbprintf("Cloned %x %x%08x", selected
, high
[selected
], low
[selected
]);
770 LED(selected
+ 1, 0);
771 // Finished recording
773 // If we were previously playing, set playing off
774 // so next button push begins playing what we recorded
781 // Change where to record (or begin playing)
782 else if (button_pressed
)
784 // Next option if we were previously playing
786 selected
= (selected
+ 1) % OPTS
;
790 LED(selected
+ 1, 0);
792 // Begin transmitting
796 DbpString("Playing");
797 // wait for button to be released
798 while(BUTTON_PRESS())
800 if (tops
[selected
] > 0)
801 Dbprintf("%x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
803 Dbprintf("%x %x%08x", selected
, high
[selected
], low
[selected
]);
805 CmdHIDsimTAG(tops
[selected
], high
[selected
], low
[selected
], 0);
806 DbpString("Done playing");
807 if (BUTTON_HELD(1000) > 0)
809 DbpString("Exiting");
814 /* We pressed a button so ignore it here with a delay */
817 // when done, we're done playing, move to next option
818 selected
= (selected
+ 1) % OPTS
;
821 LED(selected
+ 1, 0);
824 while(BUTTON_PRESS())
833 Listen and detect an external reader. Determine the best location
837 Inside the ListenReaderField() function, there is two mode.
838 By default, when you call the function, you will enter mode 1.
839 If you press the PM3 button one time, you will enter mode 2.
840 If you press the PM3 button a second time, you will exit the function.
842 DESCRIPTION OF MODE 1:
843 This mode just listens for an external reader field and lights up green
844 for HF and/or red for LF. This is the original mode of the detectreader
847 DESCRIPTION OF MODE 2:
848 This mode will visually represent, using the LEDs, the actual strength of the
849 current compared to the maximum current detected. Basically, once you know
850 what kind of external reader is present, it will help you spot the best location to place
851 your antenna. You will probably not get some good results if there is a LF and a HF reader
852 at the same place! :-)
856 static const char LIGHT_SCHEME
[] = {
857 0x0, /* ---- | No field detected */
858 0x1, /* X--- | 14% of maximum current detected */
859 0x2, /* -X-- | 29% of maximum current detected */
860 0x4, /* --X- | 43% of maximum current detected */
861 0x8, /* ---X | 57% of maximum current detected */
862 0xC, /* --XX | 71% of maximum current detected */
863 0xE, /* -XXX | 86% of maximum current detected */
864 0xF, /* XXXX | 100% of maximum current detected */
866 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
868 void ListenReaderField(int limit
)
870 int lf_av
, lf_av_new
=0, lf_baseline
= 0, lf_max
;
871 int hf_av
, hf_av_new
=0, hf_baseline
= 0, hf_max
;
872 int mode
=1, display_val
, display_max
, i
;
876 #define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT
877 #define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline
878 #define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline
881 // switch off FPGA - we don't want to measure our own signal
882 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
883 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
887 lf_av
= lf_max
= AvgAdc_Voltage_LF();
889 if(limit
!= HF_ONLY
) {
890 Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av
);
894 hf_av
= hf_max
= AvgAdc_Voltage_HF();
896 if (limit
!= LF_ONLY
) {
897 Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av
);
903 if (BUTTON_PRESS()) {
907 DbpString("Signal Strength Mode");
911 DbpString("Stopped");
916 while (BUTTON_PRESS());
920 if (limit
!= HF_ONLY
) {
922 if (lf_av
- lf_baseline
> MIN_LF_FIELD
)
928 lf_av_new
= AvgAdc_Voltage_LF();
929 // see if there's a significant change
930 if (ABS((lf_av
- lf_av_new
)*100/(lf_av
?lf_av
:1)) > REPORT_CHANGE_PERCENT
) {
931 Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new
);
938 if (limit
!= LF_ONLY
) {
940 if (hf_av
- hf_baseline
> MIN_HF_FIELD
)
946 hf_av_new
= AvgAdc_Voltage_HF();
948 // see if there's a significant change
949 if (ABS((hf_av
- hf_av_new
)*100/(hf_av
?hf_av
:1)) > REPORT_CHANGE_PERCENT
) {
950 Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new
);
958 if (limit
== LF_ONLY
) {
960 display_max
= lf_max
;
961 } else if (limit
== HF_ONLY
) {
963 display_max
= hf_max
;
964 } else { /* Pick one at random */
965 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
967 display_max
= hf_max
;
970 display_max
= lf_max
;
973 for (i
=0; i
<LIGHT_LEN
; i
++) {
974 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
975 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
976 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
977 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
978 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
986 void UsbPacketReceived(uint8_t *packet
, int len
)
988 UsbCommand
*c
= (UsbCommand
*)packet
;
990 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
994 case CMD_SET_LF_SAMPLING_CONFIG
:
995 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
997 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
998 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0], c
->arg
[1]),0,0,0,0);
1000 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
1001 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1003 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
1004 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
1006 case CMD_HID_DEMOD_FSK
:
1007 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 0, 1);
1009 case CMD_HID_SIM_TAG
:
1010 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], 1);
1012 case CMD_FSK_SIM_TAG
:
1013 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1015 case CMD_ASK_SIM_TAG
:
1016 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1018 case CMD_PSK_SIM_TAG
:
1019 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1021 case CMD_HID_CLONE_TAG
:
1022 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0], 0x1D);
1024 case CMD_PARADOX_CLONE_TAG
:
1025 // Paradox cards are the same as HID, with a different preamble, so we can reuse the same function
1026 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0], 0x0F);
1028 case CMD_IO_DEMOD_FSK
:
1029 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
1031 case CMD_IO_CLONE_TAG
:
1032 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
1034 case CMD_EM410X_DEMOD
:
1035 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
1037 case CMD_EM410X_WRITE_TAG
:
1038 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1040 case CMD_READ_TI_TYPE
:
1043 case CMD_WRITE_TI_TYPE
:
1044 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
1046 case CMD_SIMULATE_TAG_125K
:
1048 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
1051 case CMD_LF_SIMULATE_BIDIR
:
1052 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
1054 case CMD_INDALA_CLONE_TAG
:
1055 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
1057 case CMD_INDALA_CLONE_TAG_L
:
1058 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
1060 case CMD_T55XX_READ_BLOCK
:
1061 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1063 case CMD_T55XX_WRITE_BLOCK
:
1064 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1066 case CMD_T55XX_WAKEUP
:
1067 T55xxWakeUp(c
->arg
[0]);
1069 case CMD_T55XX_RESET_READ
:
1072 case CMD_PCF7931_READ
:
1075 case CMD_PCF7931_WRITE
:
1076 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1078 case CMD_PCF7931_BRUTEFORCE
:
1079 BruteForcePCF7931(c
->arg
[0], (c
->arg
[1] & 0xFF), c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128);
1081 case CMD_EM4X_READ_WORD
:
1082 EM4xReadWord(c
->arg
[0], c
->arg
[1],c
->arg
[2]);
1084 case CMD_EM4X_WRITE_WORD
:
1085 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1087 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1088 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1090 case CMD_VIKING_CLONE_TAG
:
1091 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1099 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1100 SnoopHitag(c
->arg
[0]);
1102 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1103 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1105 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1106 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1108 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1109 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1111 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1112 check_challenges_cmd((bool)c
->arg
[0], (byte_t
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1]);
1114 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1115 ReadHitagSCmd((hitag_function
)c
->arg
[0], (hitag_data
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1], (uint8_t)c
->arg
[2], false);
1117 case CMD_READ_HITAG_S_BLK
:
1118 ReadHitagSCmd((hitag_function
)c
->arg
[0], (hitag_data
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1], (uint8_t)c
->arg
[2], true);
1120 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1121 if ((hitag_function
)c
->arg
[0] < 10) {
1122 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1124 else if ((hitag_function
)c
->arg
[0] >= 10) {
1125 WriterHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
, c
->arg
[2]);
1130 #ifdef WITH_ISO15693
1131 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1132 AcquireRawAdcSamplesIso15693();
1135 case CMD_SNOOP_ISO_15693
:
1139 case CMD_ISO_15693_COMMAND
:
1140 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1143 case CMD_ISO_15693_FIND_AFI
:
1144 BruteforceIso15693Afi(c
->arg
[0]);
1147 case CMD_ISO_15693_DEBUG
:
1148 SetDebugIso15693(c
->arg
[0]);
1151 case CMD_READER_ISO_15693
:
1152 ReaderIso15693(c
->arg
[0]);
1154 case CMD_SIMTAG_ISO_15693
:
1155 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1160 case CMD_SIMULATE_TAG_LEGIC_RF
:
1161 LegicRfSimulate(c
->arg
[0]);
1164 case CMD_WRITER_LEGIC_RF
:
1165 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1168 case CMD_READER_LEGIC_RF
:
1169 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1173 #ifdef WITH_ISO14443b
1174 case CMD_READ_SRI512_TAG
:
1175 ReadSTMemoryIso14443b(0x0F);
1177 case CMD_READ_SRIX4K_TAG
:
1178 ReadSTMemoryIso14443b(0x7F);
1180 case CMD_SNOOP_ISO_14443B
:
1183 case CMD_SIMULATE_TAG_ISO_14443B
:
1184 SimulateIso14443bTag();
1186 case CMD_ISO_14443B_COMMAND
:
1187 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1191 #ifdef WITH_ISO14443a
1192 case CMD_SNOOP_ISO_14443a
:
1193 SnoopIso14443a(c
->arg
[0]);
1195 case CMD_READER_ISO_14443a
:
1198 case CMD_SIMULATE_TAG_ISO_14443a
:
1199 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1202 case CMD_EPA_PACE_COLLECT_NONCE
:
1203 EPA_PACE_Collect_Nonce(c
);
1205 case CMD_EPA_PACE_REPLAY
:
1209 case CMD_READER_MIFARE
:
1210 ReaderMifare(c
->arg
[0]);
1212 case CMD_MIFARE_READBL
:
1213 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1215 case CMD_MIFAREU_READBL
:
1216 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1218 case CMD_MIFAREUC_AUTH
:
1219 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1221 case CMD_MIFAREU_READCARD
:
1222 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1224 case CMD_MIFAREUC_SETPWD
:
1225 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1227 case CMD_MIFARE_READSC
:
1228 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1230 case CMD_MIFARE_WRITEBL
:
1231 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1233 //case CMD_MIFAREU_WRITEBL_COMPAT:
1234 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1236 case CMD_MIFAREU_WRITEBL
:
1237 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1239 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1240 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1242 case CMD_MIFARE_NESTED
:
1243 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1245 case CMD_MIFARE_CHKKEYS
:
1246 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1248 case CMD_SIMULATE_MIFARE_CARD
:
1249 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1253 case CMD_MIFARE_SET_DBGMODE
:
1254 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1256 case CMD_MIFARE_EML_MEMCLR
:
1257 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1259 case CMD_MIFARE_EML_MEMSET
:
1260 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1262 case CMD_MIFARE_EML_MEMGET
:
1263 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1265 case CMD_MIFARE_EML_CARDLOAD
:
1266 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1269 // Work with "magic Chinese" card
1270 case CMD_MIFARE_CWIPE
:
1271 MifareCWipe(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1273 case CMD_MIFARE_CSETBLOCK
:
1274 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1276 case CMD_MIFARE_CGETBLOCK
:
1277 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1279 case CMD_MIFARE_CIDENT
:
1284 case CMD_MIFARE_SNIFFER
:
1285 SniffMifare(c
->arg
[0]);
1291 // Makes use of ISO14443a FPGA Firmware
1292 case CMD_SNOOP_ICLASS
:
1295 case CMD_SIMULATE_TAG_ICLASS
:
1296 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1298 case CMD_READER_ICLASS
:
1299 ReaderIClass(c
->arg
[0]);
1301 case CMD_READER_ICLASS_REPLAY
:
1302 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1304 case CMD_ICLASS_EML_MEMSET
:
1305 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1307 case CMD_ICLASS_WRITEBLOCK
:
1308 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1310 case CMD_ICLASS_READCHECK
: // auth step 1
1311 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1313 case CMD_ICLASS_READBLOCK
:
1314 iClass_ReadBlk(c
->arg
[0]);
1316 case CMD_ICLASS_AUTHENTICATION
: //check
1317 iClass_Authentication(c
->d
.asBytes
);
1319 case CMD_ICLASS_DUMP
:
1320 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1322 case CMD_ICLASS_CLONE
:
1323 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1327 case CMD_HF_SNIFFER
:
1328 HfSnoop(c
->arg
[0], c
->arg
[1]);
1331 #ifdef WITH_SMARTCARD
1332 case CMD_SMART_ATR
: {
1336 case CMD_SMART_SETCLOCK
:{
1337 SmartCardSetClock(c
->arg
[0]);
1340 case CMD_SMART_RAW
: {
1341 SmartCardRaw(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1344 case CMD_SMART_UPLOAD
: {
1345 // upload file from client
1346 uint8_t *mem
= BigBuf_get_addr();
1347 memcpy( mem
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1348 cmd_send(CMD_ACK
,1,0,0,0,0);
1351 case CMD_SMART_UPGRADE
: {
1352 SmartCardUpgrade(c
->arg
[0]);
1357 case CMD_BUFF_CLEAR
:
1361 case CMD_MEASURE_ANTENNA_TUNING
:
1362 MeasureAntennaTuning(c
->arg
[0]);
1365 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1366 MeasureAntennaTuningHf();
1369 case CMD_LISTEN_READER_FIELD
:
1370 ListenReaderField(c
->arg
[0]);
1373 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1374 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1376 LED_D_OFF(); // LED D indicates field ON or OFF
1379 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1382 uint8_t *BigBuf
= BigBuf_get_addr();
1383 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1384 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1385 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1387 // Trigger a finish downloading signal with an ACK frame
1388 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1392 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1393 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1394 // to be able to use this one for uploading data to device
1395 // arg1 = 0 upload for LF usage
1396 // 1 upload for HF usage
1398 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1400 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1402 uint8_t *b
= BigBuf_get_addr();
1403 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1404 cmd_send(CMD_ACK
,0,0,0,0,0);
1411 case CMD_SET_LF_DIVISOR
:
1412 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1413 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1416 case CMD_SET_ADC_MUX
:
1418 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1419 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1420 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1421 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1432 cmd_send(CMD_ACK
,0,0,0,0,0);
1442 case CMD_SETUP_WRITE
:
1443 case CMD_FINISH_WRITE
:
1444 case CMD_HARDWARE_RESET
:
1448 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1450 // We're going to reset, and the bootrom will take control.
1454 case CMD_START_FLASH
:
1455 if(common_area
.flags
.bootrom_present
) {
1456 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1459 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1463 case CMD_DEVICE_INFO
: {
1464 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1465 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1466 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1470 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1475 void __attribute__((noreturn
)) AppMain(void)
1479 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1480 /* Initialize common area */
1481 memset(&common_area
, 0, sizeof(common_area
));
1482 common_area
.magic
= COMMON_AREA_MAGIC
;
1483 common_area
.version
= 1;
1485 common_area
.flags
.osimage_present
= 1;
1495 // The FPGA gets its clock from us from PCK0 output, so set that up.
1496 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1497 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1498 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1499 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1500 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1501 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1502 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1505 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1507 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1509 // Load the FPGA image, which we have stored in our flash.
1510 // (the HF version by default)
1511 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1519 byte_t rx
[sizeof(UsbCommand
)];
1524 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1526 UsbPacketReceived(rx
,rx_len
);
1531 #ifdef WITH_LF_StandAlone
1532 #ifndef WITH_ISO14443a_StandAlone
1533 if (BUTTON_HELD(1000) > 0)
1537 #ifdef WITH_ISO14443a
1538 #ifdef WITH_ISO14443a_StandAlone
1539 if (BUTTON_HELD(1000) > 0)
1540 StandAloneMode14a();