1 //-----------------------------------------------------------------------------
3 // Jonathan Westhues, April 2006
4 //-----------------------------------------------------------------------------
6 module hi_read_rx_xcorr(
7 pck0, ck_1356meg, ck_1356megb,
8 pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
10 ssp_frame, ssp_din, ssp_dout, ssp_clk,
13 xcorr_is_848, snoop, xcorr_quarter_freq
15 input pck0, ck_1356meg, ck_1356megb;
16 output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
20 output ssp_frame, ssp_din, ssp_clk;
21 input cross_hi, cross_lo;
23 input xcorr_is_848, snoop, xcorr_quarter_freq;
25 // Carrier is steady on through this, unless we're snooping.
26 assign pwr_hi = ck_1356megb & (~snoop);
27 assign pwr_oe1 = 1'b0;
28 assign pwr_oe2 = 1'b0;
29 assign pwr_oe3 = 1'b0;
30 assign pwr_oe4 = 1'b0;
36 always @(posedge ck_1356meg)
40 always @(posedge fc_div_2)
44 always @(posedge fc_div_4)
49 always @(xcorr_is_848 or xcorr_quarter_freq or ck_1356meg)
50 if(~xcorr_quarter_freq)
53 // The subcarrier frequency is fc/16; we will sample at fc, so that
54 // means the subcarrier is 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 ...
55 adc_clk <= ck_1356meg;
57 // The subcarrier frequency is fc/32; we will sample at fc/2, and
58 // the subcarrier will look identical.
64 // The subcarrier frequency is fc/64
67 // The subcarrier frequency is fc/128
71 // When we're a reader, we just need to do the BPSK demod; but when we're an
72 // eavesdropper, we also need to pick out the commands sent by the reader,
73 // using AM. Do this the same way that we do it for the simulated tag.
74 reg after_hysteresis, after_hysteresis_prev;
75 reg [11:0] has_been_low_for;
76 always @(negedge adc_clk)
78 if(& adc_d[7:0]) after_hysteresis <= 1'b1;
79 else if(~(| adc_d[7:0])) after_hysteresis <= 1'b0;
83 has_been_low_for <= 7'b0;
87 if(has_been_low_for == 12'd4095)
89 has_been_low_for <= 12'd0;
90 after_hysteresis <= 1'b1;
93 has_been_low_for <= has_been_low_for + 1;
97 // Let us report a correlation every 4 subcarrier cycles, or 4*16 samples,
98 // so we need a 6-bit counter.
100 reg [5:0] corr_q_cnt;
101 // And a couple of registers in which to accumulate the correlations.
102 reg signed [15:0] corr_i_accum;
103 reg signed [15:0] corr_q_accum;
104 reg signed [7:0] corr_i_out;
105 reg signed [7:0] corr_q_out;
107 // ADC data appears on the rising edge, so sample it on the falling edge
108 always @(negedge adc_clk)
110 // These are the correlators: we correlate against in-phase and quadrature
111 // versions of our reference signal, and keep the (signed) result to
112 // send out later over the SSP.
113 if(corr_i_cnt == 7'd63)
117 corr_i_out <= {corr_i_accum[12:6], after_hysteresis_prev};
118 corr_q_out <= {corr_q_accum[12:6], after_hysteresis};
122 // Only correlations need to be delivered.
123 corr_i_out <= corr_i_accum[13:6];
124 corr_q_out <= corr_q_accum[13:6];
127 corr_i_accum <= adc_d;
128 corr_q_accum <= adc_d;
135 corr_i_accum <= corr_i_accum - adc_d;
137 corr_i_accum <= corr_i_accum + adc_d;
140 corr_q_accum <= corr_q_accum - adc_d;
142 corr_q_accum <= corr_q_accum + adc_d;
144 corr_i_cnt <= corr_i_cnt + 1;
145 corr_q_cnt <= corr_q_cnt + 1;
148 // The logic in hi_simulate.v reports 4 samples per bit. We report two
149 // (I, Q) pairs per bit, so we should do 2 samples per pair.
150 if(corr_i_cnt == 6'd31)
151 after_hysteresis_prev <= after_hysteresis;
153 // Then the result from last time is serialized and send out to the ARM.
154 // We get one report each cycle, and each report is 16 bits, so the
155 // ssp_clk should be the adc_clk divided by 64/16 = 4.
157 if(corr_i_cnt[1:0] == 2'b10)
160 if(corr_i_cnt[1:0] == 2'b00)
163 // Don't shift if we just loaded new data, obviously.
164 if(corr_i_cnt != 7'd0)
166 corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]};
167 corr_q_out[7:1] <= corr_q_out[6:0];
171 if(corr_i_cnt[5:2] == 4'b000 || corr_i_cnt[5:2] == 4'b1000)
178 assign ssp_din = corr_i_out[7];
180 assign dbg = corr_i_cnt[3];
183 assign pwr_lo = 1'b0;