1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "../include/proxmark3.h"
14 #include "../include/hitag2.h"
15 #include "../common/crc16.h"
18 #include "mifareutil.h"
20 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
22 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
23 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
24 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
25 else if (divisor
== 0)
26 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
28 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
30 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
32 // Connect the A/D to the peak-detected low-frequency path.
33 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
35 // Give it a bit of time for the resonant antenna to settle.
38 // Now set up the SSC to get the ADC samples that are now streaming at us.
42 void AcquireRawAdcSamples125k(int divisor
)
44 LFSetupFPGAForADC(divisor
, true);
45 DoAcquisition125k(-1);
48 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
50 LFSetupFPGAForADC(divisor
, false);
51 DoAcquisition125k(trigger_threshold
);
54 // split into two routines so we can avoid timing issues after sending commands //
55 void DoAcquisition125k(int trigger_threshold
)
57 uint8_t *dest
= mifare_get_bigbufptr();
61 memset(dest
, 0x00, n
);
64 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
65 AT91C_BASE_SSC
->SSC_THR
= 0x43;
68 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
69 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
71 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
74 trigger_threshold
= -1;
78 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
79 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
83 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
87 /* Make sure the tag is reset */
88 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
89 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
92 // see if 'h' was specified
93 if (command
[strlen((char *) command
) - 1] == 'h')
99 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
101 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
103 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
105 // Give it a bit of time for the resonant antenna to settle.
107 // And a little more time for the tag to fully power up
110 // Now set up the SSC to get the ADC samples that are now streaming at us.
113 // now modulate the reader field
114 while(*command
!= '\0' && *command
!= ' ') {
115 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
117 SpinDelayUs(delay_off
);
119 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
121 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
123 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
125 if(*(command
++) == '0')
126 SpinDelayUs(period_0
);
128 SpinDelayUs(period_1
);
130 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
132 SpinDelayUs(delay_off
);
134 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
136 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
138 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
141 DoAcquisition125k(-1);
144 /* blank r/w tag data stream
145 ...0000000000000000 01111111
146 1010101010101010101010101010101010101010101010101010101010101010
149 101010101010101[0]000...
151 [5555fe852c5555555555555555fe0000]
155 // some hardcoded initial params
156 // when we read a TI tag we sample the zerocross line at 2Mhz
157 // TI tags modulate a 1 as 16 cycles of 123.2Khz
158 // TI tags modulate a 0 as 16 cycles of 134.2Khz
159 #define FSAMPLE 2000000
160 #define FREQLO 123200
161 #define FREQHI 134200
163 signed char *dest
= (signed char *)BigBuf
;
164 int n
= sizeof(BigBuf
);
165 // int *dest = GraphBuffer;
166 // int n = GraphTraceLen;
168 // 128 bit shift register [shift3:shift2:shift1:shift0]
169 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
171 int i
, cycles
=0, samples
=0;
172 // how many sample points fit in 16 cycles of each frequency
173 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
174 // when to tell if we're close enough to one freq or another
175 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
177 // TI tags charge at 134.2Khz
178 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
179 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
181 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
182 // connects to SSP_DIN and the SSP_DOUT logic level controls
183 // whether we're modulating the antenna (high)
184 // or listening to the antenna (low)
185 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
187 // get TI tag data into the buffer
190 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
192 for (i
=0; i
<n
-1; i
++) {
193 // count cycles by looking for lo to hi zero crossings
194 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
196 // after 16 cycles, measure the frequency
199 samples
=i
-samples
; // number of samples in these 16 cycles
201 // TI bits are coming to us lsb first so shift them
202 // right through our 128 bit right shift register
203 shift0
= (shift0
>>1) | (shift1
<< 31);
204 shift1
= (shift1
>>1) | (shift2
<< 31);
205 shift2
= (shift2
>>1) | (shift3
<< 31);
208 // check if the cycles fall close to the number
209 // expected for either the low or high frequency
210 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
211 // low frequency represents a 1
213 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
214 // high frequency represents a 0
216 // probably detected a gay waveform or noise
217 // use this as gaydar or discard shift register and start again
218 shift3
= shift2
= shift1
= shift0
= 0;
222 // for each bit we receive, test if we've detected a valid tag
224 // if we see 17 zeroes followed by 6 ones, we might have a tag
225 // remember the bits are backwards
226 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
227 // if start and end bytes match, we have a tag so break out of the loop
228 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
229 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
237 // if flag is set we have a tag
239 DbpString("Info: No valid tag detected.");
241 // put 64 bit data into shift1 and shift0
242 shift0
= (shift0
>>24) | (shift1
<< 8);
243 shift1
= (shift1
>>24) | (shift2
<< 8);
245 // align 16 bit crc into lower half of shift2
246 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
248 // if r/w tag, check ident match
249 if ( shift3
&(1<<15) ) {
250 DbpString("Info: TI tag is rewriteable");
251 // only 15 bits compare, last bit of ident is not valid
252 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
253 DbpString("Error: Ident mismatch!");
255 DbpString("Info: TI tag ident is valid");
258 DbpString("Info: TI tag is readonly");
261 // WARNING the order of the bytes in which we calc crc below needs checking
262 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
263 // bytes in reverse or something
267 crc
= update_crc16(crc
, (shift0
)&0xff);
268 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
269 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
270 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
271 crc
= update_crc16(crc
, (shift1
)&0xff);
272 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
273 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
274 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
276 Dbprintf("Info: Tag data: %x%08x, crc=%x",
277 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
278 if (crc
!= (shift2
&0xffff)) {
279 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
281 DbpString("Info: CRC is good");
286 void WriteTIbyte(uint8_t b
)
290 // modulate 8 bits out to the antenna
294 // stop modulating antenna
301 // stop modulating antenna
311 void AcquireTiType(void)
314 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
315 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
316 #define TIBUFLEN 1250
319 memset(BigBuf
,0,sizeof(BigBuf
));
321 // Set up the synchronous serial port
322 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
323 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
325 // steal this pin from the SSP and use it to control the modulation
326 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
327 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
329 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
330 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
332 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
333 // 48/2 = 24 MHz clock must be divided by 12
334 AT91C_BASE_SSC
->SSC_CMR
= 12;
336 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
337 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
338 AT91C_BASE_SSC
->SSC_TCMR
= 0;
339 AT91C_BASE_SSC
->SSC_TFMR
= 0;
346 // Charge TI tag for 50ms.
349 // stop modulating antenna and listen
356 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
357 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
358 i
++; if(i
>= TIBUFLEN
) break;
363 // return stolen pin to SSP
364 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
365 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
367 char *dest
= (char *)BigBuf
;
370 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
371 for (j
=0; j
<32; j
++) {
372 if(BigBuf
[i
] & (1 << j
)) {
381 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
382 // if crc provided, it will be written with the data verbatim (even if bogus)
383 // if not provided a valid crc will be computed from the data and written.
384 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
386 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
388 crc
= update_crc16(crc
, (idlo
)&0xff);
389 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
390 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
391 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
392 crc
= update_crc16(crc
, (idhi
)&0xff);
393 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
394 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
395 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
397 Dbprintf("Writing to tag: %x%08x, crc=%x",
398 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
400 // TI tags charge at 134.2Khz
401 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
402 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
403 // connects to SSP_DIN and the SSP_DOUT logic level controls
404 // whether we're modulating the antenna (high)
405 // or listening to the antenna (low)
406 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
409 // steal this pin from the SSP and use it to control the modulation
410 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
411 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
413 // writing algorithm:
414 // a high bit consists of a field off for 1ms and field on for 1ms
415 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
416 // initiate a charge time of 50ms (field on) then immediately start writing bits
417 // start by writing 0xBB (keyword) and 0xEB (password)
418 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
419 // finally end with 0x0300 (write frame)
420 // all data is sent lsb firts
421 // finish with 15ms programming time
425 SpinDelay(50); // charge time
427 WriteTIbyte(0xbb); // keyword
428 WriteTIbyte(0xeb); // password
429 WriteTIbyte( (idlo
)&0xff );
430 WriteTIbyte( (idlo
>>8 )&0xff );
431 WriteTIbyte( (idlo
>>16)&0xff );
432 WriteTIbyte( (idlo
>>24)&0xff );
433 WriteTIbyte( (idhi
)&0xff );
434 WriteTIbyte( (idhi
>>8 )&0xff );
435 WriteTIbyte( (idhi
>>16)&0xff );
436 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
437 WriteTIbyte( (crc
)&0xff ); // crc lo
438 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
439 WriteTIbyte(0x00); // write frame lo
440 WriteTIbyte(0x03); // write frame hi
442 SpinDelay(50); // programming time
446 // get TI tag data into the buffer
449 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
450 DbpString("Now use tiread to check");
453 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
456 uint8_t *tab
= (uint8_t *)BigBuf
;
458 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
459 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
461 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
463 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
464 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
466 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
467 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
471 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
473 DbpString("Stopped");
490 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
492 DbpString("Stopped");
509 #define DEBUG_FRAME_CONTENTS 1
510 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
514 // compose fc/8 fc/10 waveform
515 static void fc(int c
, int *n
) {
516 uint8_t *dest
= (uint8_t *)BigBuf
;
519 // for when we want an fc8 pattern every 4 logical bits
530 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
532 for (idx
=0; idx
<6; idx
++) {
544 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
546 for (idx
=0; idx
<5; idx
++) {
561 // prepare a waveform pattern in the buffer based on the ID given then
562 // simulate a HID tag until the button is pressed
563 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
567 HID tag bitstream format
568 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
569 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
570 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
571 A fc8 is inserted before every 4 bits
572 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
573 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
577 DbpString("Tags can only have 44 bits.");
581 // special start of frame marker containing invalid bit sequences
582 fc(8, &n
); fc(8, &n
); // invalid
583 fc(8, &n
); fc(10, &n
); // logical 0
584 fc(10, &n
); fc(10, &n
); // invalid
585 fc(8, &n
); fc(10, &n
); // logical 0
588 // manchester encode bits 43 to 32
589 for (i
=11; i
>=0; i
--) {
590 if ((i
%4)==3) fc(0,&n
);
592 fc(10, &n
); fc(8, &n
); // low-high transition
594 fc(8, &n
); fc(10, &n
); // high-low transition
599 // manchester encode bits 31 to 0
600 for (i
=31; i
>=0; i
--) {
601 if ((i
%4)==3) fc(0,&n
);
603 fc(10, &n
); fc(8, &n
); // low-high transition
605 fc(8, &n
); fc(10, &n
); // high-low transition
611 SimulateTagLowFrequency(n
, 0, ledcontrol
);
618 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
619 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
621 uint8_t *dest
= (uint8_t *)BigBuf
;
622 int m
=0, n
=0, i
=0, idx
=0, found
=0, lastval
=0;
623 uint32_t hi2
=0, hi
=0, lo
=0;
625 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
626 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
627 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
629 // Connect the A/D to the peak-detected low-frequency path.
630 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
632 // Give it a bit of time for the resonant antenna to settle.
635 // Now set up the SSC to get the ADC samples that are now streaming at us.
643 DbpString("Stopped");
653 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
654 AT91C_BASE_SSC
->SSC_THR
= 0x43;
658 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
659 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
660 // we don't care about actual value, only if it's more or less than a
661 // threshold essentially we capture zero crossings for later analysis
662 if(dest
[i
] < 127) dest
[i
] = 0; else dest
[i
] = 1;
674 // sync to first lo-hi transition
675 for( idx
=1; idx
<m
; idx
++) {
676 if (dest
[idx
-1]<dest
[idx
])
682 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
683 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
684 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
685 for( i
=0; idx
<m
; idx
++) {
686 if (dest
[idx
-1]<dest
[idx
]) {
701 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
706 for( idx
=0; idx
<m
; idx
++) {
707 if (dest
[idx
]==lastval
) {
710 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
711 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
712 // swallowed up by rounding
713 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
714 // special start of frame markers use invalid manchester states (no transitions) by using sequences
717 n
=(n
+1)/6; // fc/8 in sets of 6
719 n
=(n
+1)/5; // fc/10 in sets of 5
721 switch (n
) { // stuff appropriate bits in buffer
724 dest
[i
++]=dest
[idx
-1];
727 dest
[i
++]=dest
[idx
-1];
728 dest
[i
++]=dest
[idx
-1];
730 case 3: // 3 bit start of frame markers
731 dest
[i
++]=dest
[idx
-1];
732 dest
[i
++]=dest
[idx
-1];
733 dest
[i
++]=dest
[idx
-1];
735 // When a logic 0 is immediately followed by the start of the next transmisson
736 // (special pattern) a pattern of 4 bit duration lengths is created.
738 dest
[i
++]=dest
[idx
-1];
739 dest
[i
++]=dest
[idx
-1];
740 dest
[i
++]=dest
[idx
-1];
741 dest
[i
++]=dest
[idx
-1];
743 default: // this shouldn't happen, don't stuff any bits
753 // final loop, go over previously decoded manchester data and decode into usable tag ID
754 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
755 for( idx
=0; idx
<m
-6; idx
++) {
756 // search for a start of frame marker
757 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
761 if (found
&& (hi2
|hi
|lo
)) {
763 Dbprintf("TAG ID: %x%08x%08x (%d)",
764 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
767 Dbprintf("TAG ID: %x%08x (%d)",
768 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
770 /* if we're only looking for one tag */
784 if (dest
[idx
] && (!dest
[idx
+1]) ) {
785 hi2
=(hi2
<<1)|(hi
>>31);
788 } else if ( (!dest
[idx
]) && dest
[idx
+1]) {
789 hi2
=(hi2
<<1)|(hi
>>31);
800 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
804 if (found
&& (hi
|lo
)) {
806 Dbprintf("TAG ID: %x%08x%08x (%d)",
807 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
810 Dbprintf("TAG ID: %x%08x (%d)",
811 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
813 /* if we're only looking for one tag */
831 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
833 uint8_t *dest
= mifare_get_bigbufptr();
834 int m
=0, n
=0, i
=0, idx
=0, lastval
=0;
836 uint32_t code
=0, code2
=0;
838 LFSetupFPGAForADC(0, true);
845 DbpString("Stopped");
855 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
856 AT91C_BASE_SSC
->SSC_THR
= 0x43;
860 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
861 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
862 // we don't care about actual value, only if it's more or less than a
863 // threshold essentially we capture zero crossings for later analysis
864 dest
[i
] = (dest
[i
] < 127) ? 0 : 1;
875 // sync to first lo-hi transition
876 for( idx
=1; idx
<m
; idx
++) {
877 if (dest
[idx
-1]<dest
[idx
])
883 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
884 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
885 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
886 for( i
=0; idx
<m
; idx
++) {
887 if (dest
[idx
-1]<dest
[idx
]) {
889 dest
[i
] = (dest
[i
] <= 8) ? 1:0;
897 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
902 for( idx
=0; idx
<m
; idx
++) {
903 if (dest
[idx
]==lastval
) {
906 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
907 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
908 // swallowed up by rounding
909 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
910 // special start of frame markers use invalid manchester states (no transitions) by using sequences
913 n
=(n
+1)/7; // fc/8 in sets of 7
915 n
=(n
+1)/6; // fc/10 in sets of 6
918 // stuff appropriate bits in buffer
920 dest
[i
++]=dest
[idx
-1]^1;
923 for(int j
=0; j
<n
; j
++){
924 dest
[i
++]=dest
[idx
-1]^1;
937 for( idx
=0; idx
<m
-9; idx
++) {
938 if ( !(dest
[idx
]) && !(dest
[idx
+1]) && !(dest
[idx
+2]) && !(dest
[idx
+3]) && !(dest
[idx
+4]) && !(dest
[idx
+5]) && !(dest
[idx
+6]) && !(dest
[idx
+7]) && !(dest
[idx
+8])&& (dest
[idx
+9])){
942 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7]);
943 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+8], dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15]);
944 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+16],dest
[idx
+17],dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23]);
945 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+24],dest
[idx
+25],dest
[idx
+26],dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31]);
946 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35],dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39]);
947 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44],dest
[idx
+45],dest
[idx
+46],dest
[idx
+47]);
948 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53],dest
[idx
+54],dest
[idx
+55]);
949 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
951 short version
='\x00';
954 for(int j
=14;j
<18;j
++){
955 //Dbprintf("%d",dest[idx+j]);
957 if (dest
[idx
+j
]) version
|= 1;
959 for(int j
=19;j
<27;j
++){
960 //Dbprintf("%d",dest[idx+j]);
962 if (dest
[idx
+j
]) unknown
|= 1;
964 for(int j
=37;j
<45;j
++){
965 //Dbprintf("%d",dest[idx+j]);
967 if (dest
[idx
+j
]) number
|= 1;
969 for(int j
=46;j
<53;j
++){
970 //Dbprintf("%d",dest[idx+j]);
972 if (dest
[idx
+j
]) number
|= 1;
975 for(int j
=0; j
<32; j
++){
977 if(dest
[idx
+j
]) code
|= 1;
979 for(int j
=32; j
<64; j
++){
981 if(dest
[idx
+j
]) code2
|= 1;
984 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version
,unknown
,number
,code
,code2
);
988 // if we're only looking for one tag
1001 /*------------------------------
1002 * T5555/T5557/T5567 routines
1003 *------------------------------
1006 /* T55x7 configuration register definitions */
1007 #define T55x7_POR_DELAY 0x00000001
1008 #define T55x7_ST_TERMINATOR 0x00000008
1009 #define T55x7_PWD 0x00000010
1010 #define T55x7_MAXBLOCK_SHIFT 5
1011 #define T55x7_AOR 0x00000200
1012 #define T55x7_PSKCF_RF_2 0
1013 #define T55x7_PSKCF_RF_4 0x00000400
1014 #define T55x7_PSKCF_RF_8 0x00000800
1015 #define T55x7_MODULATION_DIRECT 0
1016 #define T55x7_MODULATION_PSK1 0x00001000
1017 #define T55x7_MODULATION_PSK2 0x00002000
1018 #define T55x7_MODULATION_PSK3 0x00003000
1019 #define T55x7_MODULATION_FSK1 0x00004000
1020 #define T55x7_MODULATION_FSK2 0x00005000
1021 #define T55x7_MODULATION_FSK1a 0x00006000
1022 #define T55x7_MODULATION_FSK2a 0x00007000
1023 #define T55x7_MODULATION_MANCHESTER 0x00008000
1024 #define T55x7_MODULATION_BIPHASE 0x00010000
1025 #define T55x7_BITRATE_RF_8 0
1026 #define T55x7_BITRATE_RF_16 0x00040000
1027 #define T55x7_BITRATE_RF_32 0x00080000
1028 #define T55x7_BITRATE_RF_40 0x000C0000
1029 #define T55x7_BITRATE_RF_50 0x00100000
1030 #define T55x7_BITRATE_RF_64 0x00140000
1031 #define T55x7_BITRATE_RF_100 0x00180000
1032 #define T55x7_BITRATE_RF_128 0x001C0000
1034 /* T5555 (Q5) configuration register definitions */
1035 #define T5555_ST_TERMINATOR 0x00000001
1036 #define T5555_MAXBLOCK_SHIFT 0x00000001
1037 #define T5555_MODULATION_MANCHESTER 0
1038 #define T5555_MODULATION_PSK1 0x00000010
1039 #define T5555_MODULATION_PSK2 0x00000020
1040 #define T5555_MODULATION_PSK3 0x00000030
1041 #define T5555_MODULATION_FSK1 0x00000040
1042 #define T5555_MODULATION_FSK2 0x00000050
1043 #define T5555_MODULATION_BIPHASE 0x00000060
1044 #define T5555_MODULATION_DIRECT 0x00000070
1045 #define T5555_INVERT_OUTPUT 0x00000080
1046 #define T5555_PSK_RF_2 0
1047 #define T5555_PSK_RF_4 0x00000100
1048 #define T5555_PSK_RF_8 0x00000200
1049 #define T5555_USE_PWD 0x00000400
1050 #define T5555_USE_AOR 0x00000800
1051 #define T5555_BITRATE_SHIFT 12
1052 #define T5555_FAST_WRITE 0x00004000
1053 #define T5555_PAGE_SELECT 0x00008000
1056 * Relevant times in microsecond
1057 * To compensate antenna falling times shorten the write times
1058 * and enlarge the gap ones.
1060 #define START_GAP 30*8 // 10 - 50fc 250
1061 #define WRITE_GAP 20*8 // 8 - 30fc
1062 #define WRITE_0 24*8 // 16 - 31fc 24fc 192
1063 #define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
1065 // VALUES TAKEN FROM EM4x function: SendForward
1066 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1067 // WRITE_GAP = 128; (16*8)
1068 // WRITE_1 = 256 32*8; (32*8)
1070 // These timings work for 4469/4269/4305 (with the 55*8 above)
1071 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1073 #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
1075 // Write one bit to card
1076 void T55xxWriteBit(int bit
)
1078 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1079 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1080 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1082 SpinDelayUs(WRITE_0
);
1084 SpinDelayUs(WRITE_1
);
1085 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1086 SpinDelayUs(WRITE_GAP
);
1089 // Write one card block in page 0, no lock
1090 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1094 // Set up FPGA, 125kHz
1095 // Wait for config.. (192+8190xPOW)x8 == 67ms
1096 LFSetupFPGAForADC(0, true);
1098 // Now start writting
1099 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1100 SpinDelayUs(START_GAP
);
1104 T55xxWriteBit(0); //Page 0
1107 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1108 T55xxWriteBit(Pwd
& i
);
1114 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1115 T55xxWriteBit(Data
& i
);
1118 for (i
= 0x04; i
!= 0; i
>>= 1)
1119 T55xxWriteBit(Block
& i
);
1121 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1122 // so wait a little more)
1123 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1124 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1126 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1129 // Read one card block in page 0
1130 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1132 uint8_t *dest
= mifare_get_bigbufptr();
1133 uint16_t bufferlength
= T55xx_SAMPLES_SIZE
;
1136 // Clear destination buffer before sending the command 0x80 = average.
1137 memset(dest
, 0x80, bufferlength
);
1139 // Set up FPGA, 125kHz
1140 // Wait for config.. (192+8190xPOW)x8 == 67ms
1141 LFSetupFPGAForADC(0, true);
1143 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1144 SpinDelayUs(START_GAP
);
1148 T55xxWriteBit(0); //Page 0
1151 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1152 T55xxWriteBit(Pwd
& i
);
1157 for (i
= 0x04; i
!= 0; i
>>= 1)
1158 T55xxWriteBit(Block
& i
);
1160 // Turn field on to read the response
1163 // Now do the acquisition
1166 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1167 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1170 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1171 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1174 if (i
> bufferlength
) break;
1178 cmd_send(CMD_ACK
,0,0,0,0,0);
1179 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1183 // Read card traceability data (page 1)
1184 void T55xxReadTrace(void){
1185 uint8_t *dest
= mifare_get_bigbufptr();
1186 uint16_t bufferlength
= T55xx_SAMPLES_SIZE
;
1189 // Clear destination buffer before sending the command 0x80 = average
1190 memset(dest
, 0x80, bufferlength
);
1192 LFSetupFPGAForADC(0, true);
1194 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1195 SpinDelayUs(START_GAP
);
1199 T55xxWriteBit(1); //Page 1
1201 // Turn field on to read the response
1204 // Now do the acquisition
1206 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1207 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1210 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1211 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1215 if (i
>= bufferlength
) break;
1219 cmd_send(CMD_ACK
,0,0,0,0,0);
1220 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1224 void TurnReadLFOn(){
1225 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1226 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1227 // Give it a bit of time for the resonant antenna to settle.
1232 /*-------------- Cloning routines -----------*/
1233 // Copy HID id to card and setup block 0 config
1234 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1236 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1240 // Ensure no more than 84 bits supplied
1242 DbpString("Tags can only have 84 bits.");
1245 // Build the 6 data blocks for supplied 84bit ID
1247 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1248 for (int i
=0;i
<4;i
++) {
1249 if (hi2
& (1<<(19-i
)))
1250 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1252 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1256 for (int i
=0;i
<16;i
++) {
1257 if (hi2
& (1<<(15-i
)))
1258 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1260 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1264 for (int i
=0;i
<16;i
++) {
1265 if (hi
& (1<<(31-i
)))
1266 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1268 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1272 for (int i
=0;i
<16;i
++) {
1273 if (hi
& (1<<(15-i
)))
1274 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1276 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1280 for (int i
=0;i
<16;i
++) {
1281 if (lo
& (1<<(31-i
)))
1282 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1284 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1288 for (int i
=0;i
<16;i
++) {
1289 if (lo
& (1<<(15-i
)))
1290 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1292 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1296 // Ensure no more than 44 bits supplied
1298 DbpString("Tags can only have 44 bits.");
1302 // Build the 3 data blocks for supplied 44bit ID
1305 data1
= 0x1D000000; // load preamble
1307 for (int i
=0;i
<12;i
++) {
1308 if (hi
& (1<<(11-i
)))
1309 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1311 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1315 for (int i
=0;i
<16;i
++) {
1316 if (lo
& (1<<(31-i
)))
1317 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1319 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1323 for (int i
=0;i
<16;i
++) {
1324 if (lo
& (1<<(15-i
)))
1325 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1327 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1332 // Program the data blocks for supplied ID
1333 // and the block 0 for HID format
1334 T55xxWriteBlock(data1
,1,0,0);
1335 T55xxWriteBlock(data2
,2,0,0);
1336 T55xxWriteBlock(data3
,3,0,0);
1338 if (longFMT
) { // if long format there are 6 blocks
1339 T55xxWriteBlock(data4
,4,0,0);
1340 T55xxWriteBlock(data5
,5,0,0);
1341 T55xxWriteBlock(data6
,6,0,0);
1344 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1345 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1346 T55x7_MODULATION_FSK2a
|
1347 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1355 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1357 int data1
=0, data2
=0; //up to six blocks for long format
1359 data1
= hi
; // load preamble
1363 // Program the data blocks for supplied ID
1364 // and the block 0 for HID format
1365 T55xxWriteBlock(data1
,1,0,0);
1366 T55xxWriteBlock(data2
,2,0,0);
1369 T55xxWriteBlock(0x00147040,0,0,0);
1375 // Define 9bit header for EM410x tags
1376 #define EM410X_HEADER 0x1FF
1377 #define EM410X_ID_LENGTH 40
1379 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1382 uint64_t id
= EM410X_HEADER
;
1383 uint64_t rev_id
= 0; // reversed ID
1384 int c_parity
[4]; // column parity
1385 int r_parity
= 0; // row parity
1388 // Reverse ID bits given as parameter (for simpler operations)
1389 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1391 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1394 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1399 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1400 id_bit
= rev_id
& 1;
1403 // Don't write row parity bit at start of parsing
1405 id
= (id
<< 1) | r_parity
;
1406 // Start counting parity for new row
1413 // First elements in column?
1415 // Fill out first elements
1416 c_parity
[i
] = id_bit
;
1418 // Count column parity
1419 c_parity
[i
% 4] ^= id_bit
;
1422 id
= (id
<< 1) | id_bit
;
1426 // Insert parity bit of last row
1427 id
= (id
<< 1) | r_parity
;
1429 // Fill out column parity at the end of tag
1430 for (i
= 0; i
< 4; ++i
)
1431 id
= (id
<< 1) | c_parity
[i
];
1436 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1440 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1441 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1443 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1445 // Clock rate is stored in bits 8-15 of the card value
1446 clock
= (card
& 0xFF00) >> 8;
1447 Dbprintf("Clock rate: %d", clock
);
1451 clock
= T55x7_BITRATE_RF_32
;
1454 clock
= T55x7_BITRATE_RF_16
;
1457 // A value of 0 is assumed to be 64 for backwards-compatibility
1460 clock
= T55x7_BITRATE_RF_64
;
1463 Dbprintf("Invalid clock rate: %d", clock
);
1467 // Writing configuration for T55x7 tag
1468 T55xxWriteBlock(clock
|
1469 T55x7_MODULATION_MANCHESTER
|
1470 2 << T55x7_MAXBLOCK_SHIFT
,
1474 // Writing configuration for T5555(Q5) tag
1475 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1476 T5555_MODULATION_MANCHESTER
|
1477 2 << T5555_MAXBLOCK_SHIFT
,
1481 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1482 (uint32_t)(id
>> 32), (uint32_t)id
);
1485 // Clone Indala 64-bit tag by UID to T55x7
1486 void CopyIndala64toT55x7(int hi
, int lo
)
1488 //Program the 2 data blocks for supplied 64bit UID
1489 // and the block 0 for Indala64 format
1490 T55xxWriteBlock(hi
,1,0,0);
1491 T55xxWriteBlock(lo
,2,0,0);
1492 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1493 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1494 T55x7_MODULATION_PSK1
|
1495 2 << T55x7_MAXBLOCK_SHIFT
,
1497 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1498 // T5567WriteBlock(0x603E1042,0);
1503 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1505 //Program the 7 data blocks for supplied 224bit UID
1506 // and the block 0 for Indala224 format
1507 T55xxWriteBlock(uid1
,1,0,0);
1508 T55xxWriteBlock(uid2
,2,0,0);
1509 T55xxWriteBlock(uid3
,3,0,0);
1510 T55xxWriteBlock(uid4
,4,0,0);
1511 T55xxWriteBlock(uid5
,5,0,0);
1512 T55xxWriteBlock(uid6
,6,0,0);
1513 T55xxWriteBlock(uid7
,7,0,0);
1514 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1515 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1516 T55x7_MODULATION_PSK1
|
1517 7 << T55x7_MAXBLOCK_SHIFT
,
1519 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1520 // T5567WriteBlock(0x603E10E2,0);
1526 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1527 #define max(x,y) ( x<y ? y:x)
1529 int DemodPCF7931(uint8_t **outBlocks
) {
1530 uint8_t BitStream
[256];
1531 uint8_t Blocks
[8][16];
1532 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1533 int GraphTraceLen
= sizeof(BigBuf
);
1534 int i
, j
, lastval
, bitidx
, half_switch
;
1536 int tolerance
= clock
/ 8;
1537 int pmc
, block_done
;
1538 int lc
, warnings
= 0;
1540 int lmin
=128, lmax
=128;
1543 AcquireRawAdcSamples125k(0);
1550 /* Find first local max/min */
1551 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1552 while(i
< GraphTraceLen
) {
1553 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1560 while(i
< GraphTraceLen
) {
1561 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1573 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1575 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1580 // Switch depending on lc length:
1581 // Tolerance is 1/8 of clock rate (arbitrary)
1582 if (abs(lc
-clock
/4) < tolerance
) {
1584 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1586 i
+= (128+127+16+32+33+16)-1;
1594 } else if (abs(lc
-clock
/2) < tolerance
) {
1596 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1598 i
+= (128+127+16+32+33)-1;
1603 else if(half_switch
== 1) {
1604 BitStream
[bitidx
++] = 0;
1609 } else if (abs(lc
-clock
) < tolerance
) {
1611 BitStream
[bitidx
++] = 1;
1617 Dbprintf("Error: too many detection errors, aborting.");
1622 if(block_done
== 1) {
1624 for(j
=0; j
<16; j
++) {
1625 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1626 64*BitStream
[j
*8+6]+
1627 32*BitStream
[j
*8+5]+
1628 16*BitStream
[j
*8+4]+
1640 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1646 if(num_blocks
== 4) break;
1648 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1652 int IsBlock0PCF7931(uint8_t *Block
) {
1653 // Assume RFU means 0 :)
1654 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1656 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1661 int IsBlock1PCF7931(uint8_t *Block
) {
1662 // Assume RFU means 0 :)
1663 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1664 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1671 void ReadPCF7931() {
1672 uint8_t Blocks
[8][17];
1673 uint8_t tmpBlocks
[4][16];
1674 int i
, j
, ind
, ind2
, n
;
1681 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1684 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1685 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1688 if(error
==10 && num_blocks
== 0) {
1689 Dbprintf("Error, no tag or bad tag");
1692 else if (tries
==20 || error
==10) {
1693 Dbprintf("Error reading the tag");
1694 Dbprintf("Here is the partial content");
1699 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1700 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1701 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1703 for(i
=0; i
<n
; i
++) {
1704 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1706 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1710 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1711 Blocks
[0][ALLOC
] = 1;
1712 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1713 Blocks
[1][ALLOC
] = 1;
1714 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1716 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1718 // Handle following blocks
1719 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1722 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1723 Blocks
[ind2
][ALLOC
] = 1;
1731 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1732 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1733 for(j
=0; j
<max_blocks
; j
++) {
1734 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1735 // Found an identical block
1736 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1739 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1740 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1741 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1742 Blocks
[ind2
][ALLOC
] = 1;
1744 if(num_blocks
== max_blocks
) goto end
;
1747 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1748 if(ind2
> max_blocks
)
1750 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1751 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1752 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1753 Blocks
[ind2
][ALLOC
] = 1;
1755 if(num_blocks
== max_blocks
) goto end
;
1764 if (BUTTON_PRESS()) return;
1765 } while (num_blocks
!= max_blocks
);
1767 Dbprintf("-----------------------------------------");
1768 Dbprintf("Memory content:");
1769 Dbprintf("-----------------------------------------");
1770 for(i
=0; i
<max_blocks
; i
++) {
1771 if(Blocks
[i
][ALLOC
]==1)
1772 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1773 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1774 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1776 Dbprintf("<missing block %d>", i
);
1778 Dbprintf("-----------------------------------------");
1784 //-----------------------------------
1785 // EM4469 / EM4305 routines
1786 //-----------------------------------
1787 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1788 #define FWD_CMD_WRITE 0xA
1789 #define FWD_CMD_READ 0x9
1790 #define FWD_CMD_DISABLE 0x5
1793 uint8_t forwardLink_data
[64]; //array of forwarded bits
1794 uint8_t * forward_ptr
; //ptr for forward message preparation
1795 uint8_t fwd_bit_sz
; //forwardlink bit counter
1796 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1798 //====================================================================
1799 // prepares command bits
1801 //====================================================================
1802 //--------------------------------------------------------------------
1803 uint8_t Prepare_Cmd( uint8_t cmd
) {
1804 //--------------------------------------------------------------------
1806 *forward_ptr
++ = 0; //start bit
1807 *forward_ptr
++ = 0; //second pause for 4050 code
1809 *forward_ptr
++ = cmd
;
1811 *forward_ptr
++ = cmd
;
1813 *forward_ptr
++ = cmd
;
1815 *forward_ptr
++ = cmd
;
1817 return 6; //return number of emited bits
1820 //====================================================================
1821 // prepares address bits
1823 //====================================================================
1825 //--------------------------------------------------------------------
1826 uint8_t Prepare_Addr( uint8_t addr
) {
1827 //--------------------------------------------------------------------
1829 register uint8_t line_parity
;
1834 *forward_ptr
++ = addr
;
1835 line_parity
^= addr
;
1839 *forward_ptr
++ = (line_parity
& 1);
1841 return 7; //return number of emited bits
1844 //====================================================================
1845 // prepares data bits intreleaved with parity bits
1847 //====================================================================
1849 //--------------------------------------------------------------------
1850 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1851 //--------------------------------------------------------------------
1853 register uint8_t line_parity
;
1854 register uint8_t column_parity
;
1855 register uint8_t i
, j
;
1856 register uint16_t data
;
1861 for(i
=0; i
<4; i
++) {
1863 for(j
=0; j
<8; j
++) {
1864 line_parity
^= data
;
1865 column_parity
^= (data
& 1) << j
;
1866 *forward_ptr
++ = data
;
1869 *forward_ptr
++ = line_parity
;
1874 for(j
=0; j
<8; j
++) {
1875 *forward_ptr
++ = column_parity
;
1876 column_parity
>>= 1;
1880 return 45; //return number of emited bits
1883 //====================================================================
1884 // Forward Link send function
1885 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1886 // fwd_bit_count set with number of bits to be sent
1887 //====================================================================
1888 void SendForward(uint8_t fwd_bit_count
) {
1890 fwd_write_ptr
= forwardLink_data
;
1891 fwd_bit_sz
= fwd_bit_count
;
1896 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1897 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1898 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1900 // Give it a bit of time for the resonant antenna to settle.
1901 // And for the tag to fully power up
1904 // force 1st mod pulse (start gap must be longer for 4305)
1905 fwd_bit_sz
--; //prepare next bit modulation
1907 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1908 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1909 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1910 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1911 SpinDelayUs(16*8); //16 cycles on (8us each)
1913 // now start writting
1914 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1915 if(((*fwd_write_ptr
++) & 1) == 1)
1916 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1918 //These timings work for 4469/4269/4305 (with the 55*8 above)
1919 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1920 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1921 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1922 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1923 SpinDelayUs(9*8); //16 cycles on (8us each)
1929 void EM4xLogin(uint32_t Password
) {
1931 uint8_t fwd_bit_count
;
1933 forward_ptr
= forwardLink_data
;
1934 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1935 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1937 SendForward(fwd_bit_count
);
1939 //Wait for command to complete
1944 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1946 uint8_t *dest
= mifare_get_bigbufptr();
1947 uint16_t bufferlength
= 12000;
1950 // Clear destination buffer before sending the command 0x80 = average.
1951 memset(dest
, 0x80, bufferlength
);
1953 uint8_t fwd_bit_count
;
1955 //If password mode do login
1956 if (PwdMode
== 1) EM4xLogin(Pwd
);
1958 forward_ptr
= forwardLink_data
;
1959 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1960 fwd_bit_count
+= Prepare_Addr( Address
);
1962 // Connect the A/D to the peak-detected low-frequency path.
1963 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1964 // Now set up the SSC to get the ADC samples that are now streaming at us.
1967 SendForward(fwd_bit_count
);
1969 // // Turn field on to read the response
1972 // Now do the acquisition
1975 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1976 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1978 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1979 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1981 if (i
>= bufferlength
) break;
1985 cmd_send(CMD_ACK
,0,0,0,0,0);
1986 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1990 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1992 uint8_t fwd_bit_count
;
1994 //If password mode do login
1995 if (PwdMode
== 1) EM4xLogin(Pwd
);
1997 forward_ptr
= forwardLink_data
;
1998 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1999 fwd_bit_count
+= Prepare_Addr( Address
);
2000 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
2002 SendForward(fwd_bit_count
);
2004 //Wait for write to complete
2006 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off