]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
Refactor parity functions
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" // for usb_poll_validate_length
21
22 /**
23 * Function to do a modulation and then get samples.
24 * @param delay_off
25 * @param period_0
26 * @param period_1
27 * @param command
28 */
29 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
30 {
31
32 int divisor_used = 95; // 125 KHz
33 // see if 'h' was specified
34
35 if (command[strlen((char *) command) - 1] == 'h')
36 divisor_used = 88; // 134.8 KHz
37
38 sample_config sc = { 0,0,1, divisor_used, 0};
39 setSamplingConfig(&sc);
40 //clear read buffer
41 BigBuf_Clear_keep_EM();
42
43 /* Make sure the tag is reset */
44 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
45 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
46 SpinDelay(2500);
47
48 LFSetupFPGAForADC(sc.divisor, 1);
49
50 // And a little more time for the tag to fully power up
51 SpinDelay(2000);
52
53 // now modulate the reader field
54 while(*command != '\0' && *command != ' ') {
55 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
56 LED_D_OFF();
57 SpinDelayUs(delay_off);
58 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
59
60 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
61 LED_D_ON();
62 if(*(command++) == '0')
63 SpinDelayUs(period_0);
64 else
65 SpinDelayUs(period_1);
66 }
67 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
68 LED_D_OFF();
69 SpinDelayUs(delay_off);
70 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
71
72 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
73
74 // now do the read
75 DoAcquisition_config(false);
76 }
77
78 /* blank r/w tag data stream
79 ...0000000000000000 01111111
80 1010101010101010101010101010101010101010101010101010101010101010
81 0011010010100001
82 01111111
83 101010101010101[0]000...
84
85 [5555fe852c5555555555555555fe0000]
86 */
87 void ReadTItag(void)
88 {
89 // some hardcoded initial params
90 // when we read a TI tag we sample the zerocross line at 2Mhz
91 // TI tags modulate a 1 as 16 cycles of 123.2Khz
92 // TI tags modulate a 0 as 16 cycles of 134.2Khz
93 #define FSAMPLE 2000000
94 #define FREQLO 123200
95 #define FREQHI 134200
96
97 signed char *dest = (signed char *)BigBuf_get_addr();
98 uint16_t n = BigBuf_max_traceLen();
99 // 128 bit shift register [shift3:shift2:shift1:shift0]
100 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
101
102 int i, cycles=0, samples=0;
103 // how many sample points fit in 16 cycles of each frequency
104 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
105 // when to tell if we're close enough to one freq or another
106 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
107
108 // TI tags charge at 134.2Khz
109 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
110 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
111
112 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
113 // connects to SSP_DIN and the SSP_DOUT logic level controls
114 // whether we're modulating the antenna (high)
115 // or listening to the antenna (low)
116 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
117
118 // get TI tag data into the buffer
119 AcquireTiType();
120
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
122
123 for (i=0; i<n-1; i++) {
124 // count cycles by looking for lo to hi zero crossings
125 if ( (dest[i]<0) && (dest[i+1]>0) ) {
126 cycles++;
127 // after 16 cycles, measure the frequency
128 if (cycles>15) {
129 cycles=0;
130 samples=i-samples; // number of samples in these 16 cycles
131
132 // TI bits are coming to us lsb first so shift them
133 // right through our 128 bit right shift register
134 shift0 = (shift0>>1) | (shift1 << 31);
135 shift1 = (shift1>>1) | (shift2 << 31);
136 shift2 = (shift2>>1) | (shift3 << 31);
137 shift3 >>= 1;
138
139 // check if the cycles fall close to the number
140 // expected for either the low or high frequency
141 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
142 // low frequency represents a 1
143 shift3 |= (1<<31);
144 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
145 // high frequency represents a 0
146 } else {
147 // probably detected a gay waveform or noise
148 // use this as gaydar or discard shift register and start again
149 shift3 = shift2 = shift1 = shift0 = 0;
150 }
151 samples = i;
152
153 // for each bit we receive, test if we've detected a valid tag
154
155 // if we see 17 zeroes followed by 6 ones, we might have a tag
156 // remember the bits are backwards
157 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
158 // if start and end bytes match, we have a tag so break out of the loop
159 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
160 cycles = 0xF0B; //use this as a flag (ugly but whatever)
161 break;
162 }
163 }
164 }
165 }
166 }
167
168 // if flag is set we have a tag
169 if (cycles!=0xF0B) {
170 DbpString("Info: No valid tag detected.");
171 } else {
172 // put 64 bit data into shift1 and shift0
173 shift0 = (shift0>>24) | (shift1 << 8);
174 shift1 = (shift1>>24) | (shift2 << 8);
175
176 // align 16 bit crc into lower half of shift2
177 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
178
179 // if r/w tag, check ident match
180 if (shift3 & (1<<15) ) {
181 DbpString("Info: TI tag is rewriteable");
182 // only 15 bits compare, last bit of ident is not valid
183 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
184 DbpString("Error: Ident mismatch!");
185 } else {
186 DbpString("Info: TI tag ident is valid");
187 }
188 } else {
189 DbpString("Info: TI tag is readonly");
190 }
191
192 // WARNING the order of the bytes in which we calc crc below needs checking
193 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
194 // bytes in reverse or something
195 // calculate CRC
196 uint32_t crc=0;
197
198 crc = update_crc16(crc, (shift0)&0xff);
199 crc = update_crc16(crc, (shift0>>8)&0xff);
200 crc = update_crc16(crc, (shift0>>16)&0xff);
201 crc = update_crc16(crc, (shift0>>24)&0xff);
202 crc = update_crc16(crc, (shift1)&0xff);
203 crc = update_crc16(crc, (shift1>>8)&0xff);
204 crc = update_crc16(crc, (shift1>>16)&0xff);
205 crc = update_crc16(crc, (shift1>>24)&0xff);
206
207 Dbprintf("Info: Tag data: %x%08x, crc=%x",
208 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
209 if (crc != (shift2&0xffff)) {
210 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
211 } else {
212 DbpString("Info: CRC is good");
213 }
214 }
215 }
216
217 void WriteTIbyte(uint8_t b)
218 {
219 int i = 0;
220
221 // modulate 8 bits out to the antenna
222 for (i=0; i<8; i++)
223 {
224 if (b&(1<<i)) {
225 // stop modulating antenna
226 LOW(GPIO_SSC_DOUT);
227 SpinDelayUs(1000);
228 // modulate antenna
229 HIGH(GPIO_SSC_DOUT);
230 SpinDelayUs(1000);
231 } else {
232 // stop modulating antenna
233 LOW(GPIO_SSC_DOUT);
234 SpinDelayUs(300);
235 // modulate antenna
236 HIGH(GPIO_SSC_DOUT);
237 SpinDelayUs(1700);
238 }
239 }
240 }
241
242 void AcquireTiType(void)
243 {
244 int i, j, n;
245 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
246 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
247 #define TIBUFLEN 1250
248
249 // clear buffer
250 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
251 BigBuf_Clear_ext(false);
252
253 // Set up the synchronous serial port
254 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
255 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
256
257 // steal this pin from the SSP and use it to control the modulation
258 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
259 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
260
261 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
262 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
263
264 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
265 // 48/2 = 24 MHz clock must be divided by 12
266 AT91C_BASE_SSC->SSC_CMR = 12;
267
268 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
269 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
270 AT91C_BASE_SSC->SSC_TCMR = 0;
271 AT91C_BASE_SSC->SSC_TFMR = 0;
272
273 LED_D_ON();
274
275 // modulate antenna
276 HIGH(GPIO_SSC_DOUT);
277
278 // Charge TI tag for 50ms.
279 SpinDelay(50);
280
281 // stop modulating antenna and listen
282 LOW(GPIO_SSC_DOUT);
283
284 LED_D_OFF();
285
286 i = 0;
287 for(;;) {
288 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
289 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
290 i++; if(i >= TIBUFLEN) break;
291 }
292 WDT_HIT();
293 }
294
295 // return stolen pin to SSP
296 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
297 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
298
299 char *dest = (char *)BigBuf_get_addr();
300 n = TIBUFLEN*32;
301 // unpack buffer
302 for (i=TIBUFLEN-1; i>=0; i--) {
303 for (j=0; j<32; j++) {
304 if(BigBuf[i] & (1 << j)) {
305 dest[--n] = 1;
306 } else {
307 dest[--n] = -1;
308 }
309 }
310 }
311 }
312
313 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
314 // if crc provided, it will be written with the data verbatim (even if bogus)
315 // if not provided a valid crc will be computed from the data and written.
316 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
317 {
318 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
319 if(crc == 0) {
320 crc = update_crc16(crc, (idlo)&0xff);
321 crc = update_crc16(crc, (idlo>>8)&0xff);
322 crc = update_crc16(crc, (idlo>>16)&0xff);
323 crc = update_crc16(crc, (idlo>>24)&0xff);
324 crc = update_crc16(crc, (idhi)&0xff);
325 crc = update_crc16(crc, (idhi>>8)&0xff);
326 crc = update_crc16(crc, (idhi>>16)&0xff);
327 crc = update_crc16(crc, (idhi>>24)&0xff);
328 }
329 Dbprintf("Writing to tag: %x%08x, crc=%x",
330 (unsigned int) idhi, (unsigned int) idlo, crc);
331
332 // TI tags charge at 134.2Khz
333 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
334 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
335 // connects to SSP_DIN and the SSP_DOUT logic level controls
336 // whether we're modulating the antenna (high)
337 // or listening to the antenna (low)
338 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
339 LED_A_ON();
340
341 // steal this pin from the SSP and use it to control the modulation
342 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
343 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
344
345 // writing algorithm:
346 // a high bit consists of a field off for 1ms and field on for 1ms
347 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
348 // initiate a charge time of 50ms (field on) then immediately start writing bits
349 // start by writing 0xBB (keyword) and 0xEB (password)
350 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
351 // finally end with 0x0300 (write frame)
352 // all data is sent lsb firts
353 // finish with 15ms programming time
354
355 // modulate antenna
356 HIGH(GPIO_SSC_DOUT);
357 SpinDelay(50); // charge time
358
359 WriteTIbyte(0xbb); // keyword
360 WriteTIbyte(0xeb); // password
361 WriteTIbyte( (idlo )&0xff );
362 WriteTIbyte( (idlo>>8 )&0xff );
363 WriteTIbyte( (idlo>>16)&0xff );
364 WriteTIbyte( (idlo>>24)&0xff );
365 WriteTIbyte( (idhi )&0xff );
366 WriteTIbyte( (idhi>>8 )&0xff );
367 WriteTIbyte( (idhi>>16)&0xff );
368 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
369 WriteTIbyte( (crc )&0xff ); // crc lo
370 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
371 WriteTIbyte(0x00); // write frame lo
372 WriteTIbyte(0x03); // write frame hi
373 HIGH(GPIO_SSC_DOUT);
374 SpinDelay(50); // programming time
375
376 LED_A_OFF();
377
378 // get TI tag data into the buffer
379 AcquireTiType();
380
381 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
382 DbpString("Now use `lf ti read` to check");
383 }
384
385 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
386 {
387 int i;
388 uint8_t *tab = BigBuf_get_addr();
389
390 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
391 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
392
393 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
394
395 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
396 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
397
398 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
399 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
400
401 i = 0;
402 for(;;) {
403 //wait until SSC_CLK goes HIGH
404 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
405 if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
406 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
407 DbpString("Stopped");
408 return;
409 }
410 WDT_HIT();
411 }
412 if (ledcontrol)
413 LED_D_ON();
414
415 if(tab[i])
416 OPEN_COIL();
417 else
418 SHORT_COIL();
419
420 if (ledcontrol)
421 LED_D_OFF();
422 //wait until SSC_CLK goes LOW
423 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
424 if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
425 DbpString("Stopped");
426 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
427 return;
428 }
429 WDT_HIT();
430 }
431
432 i++;
433 if(i == period) {
434
435 i = 0;
436 if (gap) {
437 SHORT_COIL();
438 SpinDelayUs(gap);
439 }
440 }
441
442 }
443 }
444
445 #define DEBUG_FRAME_CONTENTS 1
446 void SimulateTagLowFrequencyBidir(int divisor, int t0)
447 {
448 }
449
450 // compose fc/8 fc/10 waveform (FSK2)
451 static void fc(int c, int *n)
452 {
453 uint8_t *dest = BigBuf_get_addr();
454 int idx;
455
456 // for when we want an fc8 pattern every 4 logical bits
457 if(c==0) {
458 dest[((*n)++)]=1;
459 dest[((*n)++)]=1;
460 dest[((*n)++)]=1;
461 dest[((*n)++)]=1;
462 dest[((*n)++)]=0;
463 dest[((*n)++)]=0;
464 dest[((*n)++)]=0;
465 dest[((*n)++)]=0;
466 }
467
468 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
469 if(c==8) {
470 for (idx=0; idx<6; idx++) {
471 dest[((*n)++)]=1;
472 dest[((*n)++)]=1;
473 dest[((*n)++)]=1;
474 dest[((*n)++)]=1;
475 dest[((*n)++)]=0;
476 dest[((*n)++)]=0;
477 dest[((*n)++)]=0;
478 dest[((*n)++)]=0;
479 }
480 }
481
482 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
483 if(c==10) {
484 for (idx=0; idx<5; idx++) {
485 dest[((*n)++)]=1;
486 dest[((*n)++)]=1;
487 dest[((*n)++)]=1;
488 dest[((*n)++)]=1;
489 dest[((*n)++)]=1;
490 dest[((*n)++)]=0;
491 dest[((*n)++)]=0;
492 dest[((*n)++)]=0;
493 dest[((*n)++)]=0;
494 dest[((*n)++)]=0;
495 }
496 }
497 }
498 // compose fc/X fc/Y waveform (FSKx)
499 static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
500 {
501 uint8_t *dest = BigBuf_get_addr();
502 uint8_t halfFC = fc/2;
503 uint8_t wavesPerClock = clock/fc;
504 uint8_t mod = clock % fc; //modifier
505 uint8_t modAdj = fc/mod; //how often to apply modifier
506 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
507 // loop through clock - step field clock
508 for (uint8_t idx=0; idx < wavesPerClock; idx++){
509 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
510 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
511 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
512 *n += fc;
513 }
514 if (mod>0) (*modCnt)++;
515 if ((mod>0) && modAdjOk){ //fsk2
516 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
517 memset(dest+(*n), 0, fc-halfFC);
518 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
519 *n += fc;
520 }
521 }
522 if (mod>0 && !modAdjOk){ //fsk1
523 memset(dest+(*n), 0, mod-(mod/2));
524 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
525 *n += mod;
526 }
527 }
528
529 // prepare a waveform pattern in the buffer based on the ID given then
530 // simulate a HID tag until the button is pressed
531 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
532 {
533 int n=0, i=0;
534 /*
535 HID tag bitstream format
536 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
537 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
538 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
539 A fc8 is inserted before every 4 bits
540 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
541 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
542 */
543
544 if (hi>0xFFF) {
545 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
546 return;
547 }
548 fc(0,&n);
549 // special start of frame marker containing invalid bit sequences
550 fc(8, &n); fc(8, &n); // invalid
551 fc(8, &n); fc(10, &n); // logical 0
552 fc(10, &n); fc(10, &n); // invalid
553 fc(8, &n); fc(10, &n); // logical 0
554
555 WDT_HIT();
556 // manchester encode bits 43 to 32
557 for (i=11; i>=0; i--) {
558 if ((i%4)==3) fc(0,&n);
559 if ((hi>>i)&1) {
560 fc(10, &n); fc(8, &n); // low-high transition
561 } else {
562 fc(8, &n); fc(10, &n); // high-low transition
563 }
564 }
565
566 WDT_HIT();
567 // manchester encode bits 31 to 0
568 for (i=31; i>=0; i--) {
569 if ((i%4)==3) fc(0,&n);
570 if ((lo>>i)&1) {
571 fc(10, &n); fc(8, &n); // low-high transition
572 } else {
573 fc(8, &n); fc(10, &n); // high-low transition
574 }
575 }
576
577 if (ledcontrol)
578 LED_A_ON();
579 SimulateTagLowFrequency(n, 0, ledcontrol);
580
581 if (ledcontrol)
582 LED_A_OFF();
583 }
584
585 // prepare a waveform pattern in the buffer based on the ID given then
586 // simulate a FSK tag until the button is pressed
587 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
588 void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
589 {
590 int ledcontrol=1;
591 int n=0, i=0;
592 uint8_t fcHigh = arg1 >> 8;
593 uint8_t fcLow = arg1 & 0xFF;
594 uint16_t modCnt = 0;
595 uint8_t clk = arg2 & 0xFF;
596 uint8_t invert = (arg2 >> 8) & 1;
597
598 for (i=0; i<size; i++){
599 if (BitStream[i] == invert){
600 fcAll(fcLow, &n, clk, &modCnt);
601 } else {
602 fcAll(fcHigh, &n, clk, &modCnt);
603 }
604 }
605 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
606 /*Dbprintf("DEBUG: First 32:");
607 uint8_t *dest = BigBuf_get_addr();
608 i=0;
609 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
610 i+=16;
611 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
612 */
613 if (ledcontrol)
614 LED_A_ON();
615
616 SimulateTagLowFrequency(n, 0, ledcontrol);
617
618 if (ledcontrol)
619 LED_A_OFF();
620 }
621
622 // compose ask waveform for one bit(ASK)
623 static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
624 {
625 uint8_t *dest = BigBuf_get_addr();
626 uint8_t halfClk = clock/2;
627 // c = current bit 1 or 0
628 if (manchester==1){
629 memset(dest+(*n), c, halfClk);
630 memset(dest+(*n) + halfClk, c^1, halfClk);
631 } else {
632 memset(dest+(*n), c, clock);
633 }
634 *n += clock;
635 }
636
637 static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
638 {
639 uint8_t *dest = BigBuf_get_addr();
640 uint8_t halfClk = clock/2;
641 if (c){
642 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
643 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
644 } else {
645 memset(dest+(*n), c ^ *phase, clock);
646 *phase ^= 1;
647 }
648 *n += clock;
649 }
650
651 static void stAskSimBit(int *n, uint8_t clock) {
652 uint8_t *dest = BigBuf_get_addr();
653 uint8_t halfClk = clock/2;
654 //ST = .5 high .5 low 1.5 high .5 low 1 high
655 memset(dest+(*n), 1, halfClk);
656 memset(dest+(*n) + halfClk, 0, halfClk);
657 memset(dest+(*n) + clock, 1, clock + halfClk);
658 memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
659 memset(dest+(*n) + clock*3, 1, clock);
660 *n += clock*4;
661 }
662
663 // args clock, ask/man or askraw, invert, transmission separator
664 void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
665 {
666 int ledcontrol = 1;
667 int n=0, i=0;
668 uint8_t clk = (arg1 >> 8) & 0xFF;
669 uint8_t encoding = arg1 & 0xFF;
670 uint8_t separator = arg2 & 1;
671 uint8_t invert = (arg2 >> 8) & 1;
672
673 if (encoding==2){ //biphase
674 uint8_t phase=0;
675 for (i=0; i<size; i++){
676 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
677 }
678 if (phase==1) { //run a second set inverted to keep phase in check
679 for (i=0; i<size; i++){
680 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
681 }
682 }
683 } else { // ask/manchester || ask/raw
684 for (i=0; i<size; i++){
685 askSimBit(BitStream[i]^invert, &n, clk, encoding);
686 }
687 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
688 for (i=0; i<size; i++){
689 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
690 }
691 }
692 }
693 if (separator==1 && encoding == 1)
694 stAskSimBit(&n, clk);
695 else if (separator==1)
696 Dbprintf("sorry but separator option not yet available");
697
698 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
699 //DEBUG
700 //Dbprintf("First 32:");
701 //uint8_t *dest = BigBuf_get_addr();
702 //i=0;
703 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
704 //i+=16;
705 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
706
707 if (ledcontrol) LED_A_ON();
708 SimulateTagLowFrequency(n, 0, ledcontrol);
709 if (ledcontrol) LED_A_OFF();
710 }
711
712 //carrier can be 2,4 or 8
713 static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
714 {
715 uint8_t *dest = BigBuf_get_addr();
716 uint8_t halfWave = waveLen/2;
717 //uint8_t idx;
718 int i = 0;
719 if (phaseChg){
720 // write phase change
721 memset(dest+(*n), *curPhase^1, halfWave);
722 memset(dest+(*n) + halfWave, *curPhase, halfWave);
723 *n += waveLen;
724 *curPhase ^= 1;
725 i += waveLen;
726 }
727 //write each normal clock wave for the clock duration
728 for (; i < clk; i+=waveLen){
729 memset(dest+(*n), *curPhase, halfWave);
730 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
731 *n += waveLen;
732 }
733 }
734
735 // args clock, carrier, invert,
736 void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
737 {
738 int ledcontrol=1;
739 int n=0, i=0;
740 uint8_t clk = arg1 >> 8;
741 uint8_t carrier = arg1 & 0xFF;
742 uint8_t invert = arg2 & 0xFF;
743 uint8_t curPhase = 0;
744 for (i=0; i<size; i++){
745 if (BitStream[i] == curPhase){
746 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
747 } else {
748 pskSimBit(carrier, &n, clk, &curPhase, TRUE);
749 }
750 }
751 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
752 //Dbprintf("DEBUG: First 32:");
753 //uint8_t *dest = BigBuf_get_addr();
754 //i=0;
755 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
756 //i+=16;
757 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
758
759 if (ledcontrol) LED_A_ON();
760 SimulateTagLowFrequency(n, 0, ledcontrol);
761 if (ledcontrol) LED_A_OFF();
762 }
763
764 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
765 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
766 {
767 uint8_t *dest = BigBuf_get_addr();
768 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
769 size_t size;
770 uint32_t hi2=0, hi=0, lo=0;
771 int idx=0;
772 // Configure to go in 125Khz listen mode
773 LFSetupFPGAForADC(95, true);
774
775 //clear read buffer
776 BigBuf_Clear_keep_EM();
777
778 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
779
780 WDT_HIT();
781 if (ledcontrol) LED_A_ON();
782
783 DoAcquisition_default(-1,true);
784 // FSK demodulator
785 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
786 size = 50*128*2; //big enough to catch 2 sequences of largest format
787 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
788
789 if (idx>0 && lo>0 && (size==96 || size==192)){
790 // go over previously decoded manchester data and decode into usable tag ID
791 if (hi2 != 0){ //extra large HID tags 88/192 bits
792 Dbprintf("TAG ID: %x%08x%08x (%d)",
793 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
794 }else { //standard HID tags 44/96 bits
795 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
796 uint8_t bitlen = 0;
797 uint32_t fc = 0;
798 uint32_t cardnum = 0;
799 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
800 uint32_t lo2=0;
801 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
802 uint8_t idx3 = 1;
803 while(lo2 > 1){ //find last bit set to 1 (format len bit)
804 lo2=lo2 >> 1;
805 idx3++;
806 }
807 bitlen = idx3+19;
808 fc =0;
809 cardnum=0;
810 if(bitlen == 26){
811 cardnum = (lo>>1)&0xFFFF;
812 fc = (lo>>17)&0xFF;
813 }
814 if(bitlen == 37){
815 cardnum = (lo>>1)&0x7FFFF;
816 fc = ((hi&0xF)<<12)|(lo>>20);
817 }
818 if(bitlen == 34){
819 cardnum = (lo>>1)&0xFFFF;
820 fc= ((hi&1)<<15)|(lo>>17);
821 }
822 if(bitlen == 35){
823 cardnum = (lo>>1)&0xFFFFF;
824 fc = ((hi&1)<<11)|(lo>>21);
825 }
826 }
827 else { //if bit 38 is not set then 37 bit format is used
828 bitlen= 37;
829 fc =0;
830 cardnum=0;
831 if(bitlen==37){
832 cardnum = (lo>>1)&0x7FFFF;
833 fc = ((hi&0xF)<<12)|(lo>>20);
834 }
835 }
836 //Dbprintf("TAG ID: %x%08x (%d)",
837 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
838 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
839 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
840 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
841 }
842 if (findone){
843 if (ledcontrol) LED_A_OFF();
844 *high = hi;
845 *low = lo;
846 break;
847 }
848 // reset
849 }
850 hi2 = hi = lo = idx = 0;
851 WDT_HIT();
852 }
853
854 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
855 DbpString("Stopped");
856 if (ledcontrol) LED_A_OFF();
857 }
858
859 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
860 void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
861 {
862 uint8_t *dest = BigBuf_get_addr();
863 size_t size;
864 int idx=0;
865 //clear read buffer
866 BigBuf_Clear_keep_EM();
867 // Configure to go in 125Khz listen mode
868 LFSetupFPGAForADC(95, true);
869
870 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
871
872 WDT_HIT();
873 if (ledcontrol) LED_A_ON();
874
875 DoAcquisition_default(-1,true);
876 // FSK demodulator
877 size = 50*128*2; //big enough to catch 2 sequences of largest format
878 idx = AWIDdemodFSK(dest, &size);
879
880 if (idx<=0 || size!=96) continue;
881 // Index map
882 // 0 10 20 30 40 50 60
883 // | | | | | | |
884 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
885 // -----------------------------------------------------------------------------
886 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
887 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
888 // |---26 bit---| |-----117----||-------------142-------------|
889 // b = format bit len, o = odd parity of last 3 bits
890 // f = facility code, c = card number
891 // w = wiegand parity
892 // (26 bit format shown)
893
894 //get raw ID before removing parities
895 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
896 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
897 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
898
899 size = removeParity(dest, idx+8, 4, 1, 88);
900 if (size != 66) continue;
901 // ok valid card found!
902
903 // Index map
904 // 0 10 20 30 40 50 60
905 // | | | | | | |
906 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
907 // -----------------------------------------------------------------------------
908 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
909 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
910 // |26 bit| |-117--| |-----142------|
911 // b = format bit len, o = odd parity of last 3 bits
912 // f = facility code, c = card number
913 // w = wiegand parity
914 // (26 bit format shown)
915
916 uint32_t fc = 0;
917 uint32_t cardnum = 0;
918 uint32_t code1 = 0;
919 uint32_t code2 = 0;
920 uint8_t fmtLen = bytebits_to_byte(dest,8);
921 if (fmtLen==26){
922 fc = bytebits_to_byte(dest+9, 8);
923 cardnum = bytebits_to_byte(dest+17, 16);
924 code1 = bytebits_to_byte(dest+8,fmtLen);
925 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
926 } else {
927 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
928 if (fmtLen>32){
929 code1 = bytebits_to_byte(dest+8,fmtLen-32);
930 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
931 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
932 } else{
933 code1 = bytebits_to_byte(dest+8,fmtLen);
934 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
935 }
936 }
937 if (findone){
938 if (ledcontrol) LED_A_OFF();
939 break;
940 }
941 // reset
942 idx = 0;
943 WDT_HIT();
944 }
945 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
946 DbpString("Stopped");
947 if (ledcontrol) LED_A_OFF();
948 }
949
950 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
951 {
952 uint8_t *dest = BigBuf_get_addr();
953
954 size_t size=0, idx=0;
955 int clk=0, invert=0, errCnt=0, maxErr=20;
956 uint32_t hi=0;
957 uint64_t lo=0;
958 //clear read buffer
959 BigBuf_Clear_keep_EM();
960 // Configure to go in 125Khz listen mode
961 LFSetupFPGAForADC(95, true);
962
963 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
964
965 WDT_HIT();
966 if (ledcontrol) LED_A_ON();
967
968 DoAcquisition_default(-1,true);
969 size = BigBuf_max_traceLen();
970 //askdemod and manchester decode
971 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
972 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
973 WDT_HIT();
974
975 if (errCnt<0) continue;
976
977 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
978 if (errCnt){
979 if (size>64){
980 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
981 hi,
982 (uint32_t)(lo>>32),
983 (uint32_t)lo,
984 (uint32_t)(lo&0xFFFF),
985 (uint32_t)((lo>>16LL) & 0xFF),
986 (uint32_t)(lo & 0xFFFFFF));
987 } else {
988 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
989 (uint32_t)(lo>>32),
990 (uint32_t)lo,
991 (uint32_t)(lo&0xFFFF),
992 (uint32_t)((lo>>16LL) & 0xFF),
993 (uint32_t)(lo & 0xFFFFFF));
994 }
995
996 if (findone){
997 if (ledcontrol) LED_A_OFF();
998 *high=lo>>32;
999 *low=lo & 0xFFFFFFFF;
1000 break;
1001 }
1002 }
1003 WDT_HIT();
1004 hi = lo = size = idx = 0;
1005 clk = invert = errCnt = 0;
1006 }
1007 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1008 DbpString("Stopped");
1009 if (ledcontrol) LED_A_OFF();
1010 }
1011
1012 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
1013 {
1014 uint8_t *dest = BigBuf_get_addr();
1015 int idx=0;
1016 uint32_t code=0, code2=0;
1017 uint8_t version=0;
1018 uint8_t facilitycode=0;
1019 uint16_t number=0;
1020 //clear read buffer
1021 BigBuf_Clear_keep_EM();
1022 // Configure to go in 125Khz listen mode
1023 LFSetupFPGAForADC(95, true);
1024
1025 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1026 WDT_HIT();
1027 if (ledcontrol) LED_A_ON();
1028 DoAcquisition_default(-1,true);
1029 //fskdemod and get start index
1030 WDT_HIT();
1031 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
1032 if (idx<0) continue;
1033 //valid tag found
1034
1035 //Index map
1036 //0 10 20 30 40 50 60
1037 //| | | | | | |
1038 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1039 //-----------------------------------------------------------------------------
1040 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1041 //
1042 //XSF(version)facility:codeone+codetwo
1043 //Handle the data
1044 if(findone){ //only print binary if we are doing one
1045 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1046 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1047 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1048 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1049 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1050 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1051 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1052 }
1053 code = bytebits_to_byte(dest+idx,32);
1054 code2 = bytebits_to_byte(dest+idx+32,32);
1055 version = bytebits_to_byte(dest+idx+27,8); //14,4
1056 facilitycode = bytebits_to_byte(dest+idx+18,8);
1057 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1058
1059 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
1060 // if we're only looking for one tag
1061 if (findone){
1062 if (ledcontrol) LED_A_OFF();
1063 //LED_A_OFF();
1064 *high=code;
1065 *low=code2;
1066 break;
1067 }
1068 code=code2=0;
1069 version=facilitycode=0;
1070 number=0;
1071 idx=0;
1072
1073 WDT_HIT();
1074 }
1075 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1076 DbpString("Stopped");
1077 if (ledcontrol) LED_A_OFF();
1078 }
1079
1080 /*------------------------------
1081 * T5555/T5557/T5567/T5577 routines
1082 *------------------------------
1083 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1084 *
1085 * Relevant communication times in microsecond
1086 * To compensate antenna falling times shorten the write times
1087 * and enlarge the gap ones.
1088 * Q5 tags seems to have issues when these values changes.
1089 */
1090 #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1091 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1092 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1093 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1094 #define READ_GAP 15*8
1095
1096 void TurnReadLFOn(int delay) {
1097 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1098 // Give it a bit of time for the resonant antenna to settle.
1099 SpinDelayUs(delay); //155*8 //50*8
1100 }
1101
1102 // Write one bit to card
1103 void T55xxWriteBit(int bit) {
1104 if (!bit)
1105 TurnReadLFOn(WRITE_0);
1106 else
1107 TurnReadLFOn(WRITE_1);
1108 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1109 SpinDelayUs(WRITE_GAP);
1110 }
1111
1112 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1113 void T55xxResetRead(void) {
1114 LED_A_ON();
1115 //clear buffer now so it does not interfere with timing later
1116 BigBuf_Clear_keep_EM();
1117
1118 // Set up FPGA, 125kHz
1119 LFSetupFPGAForADC(95, true);
1120
1121 // Trigger T55x7 in mode.
1122 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1123 SpinDelayUs(START_GAP);
1124
1125 // reset tag - op code 00
1126 T55xxWriteBit(0);
1127 T55xxWriteBit(0);
1128
1129 // Turn field on to read the response
1130 TurnReadLFOn(READ_GAP);
1131
1132 // Acquisition
1133 doT55x7Acquisition(BigBuf_max_traceLen());
1134
1135 // Turn the field off
1136 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1137 cmd_send(CMD_ACK,0,0,0,0,0);
1138 LED_A_OFF();
1139 }
1140
1141 // Write one card block in page 0, no lock
1142 void T55xxWriteBlockExt(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1143 LED_A_ON();
1144 bool PwdMode = arg & 0x1;
1145 uint8_t Page = (arg & 0x2)>>1;
1146 uint32_t i = 0;
1147
1148 // Set up FPGA, 125kHz
1149 LFSetupFPGAForADC(95, true);
1150
1151 // Trigger T55x7 in mode.
1152 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1153 SpinDelayUs(START_GAP);
1154
1155 // Opcode 10
1156 T55xxWriteBit(1);
1157 T55xxWriteBit(Page); //Page 0
1158 if (PwdMode){
1159 // Send Pwd
1160 for (i = 0x80000000; i != 0; i >>= 1)
1161 T55xxWriteBit(Pwd & i);
1162 }
1163 // Send Lock bit
1164 T55xxWriteBit(0);
1165
1166 // Send Data
1167 for (i = 0x80000000; i != 0; i >>= 1)
1168 T55xxWriteBit(Data & i);
1169
1170 // Send Block number
1171 for (i = 0x04; i != 0; i >>= 1)
1172 T55xxWriteBit(Block & i);
1173
1174 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1175 // so wait a little more)
1176 TurnReadLFOn(20 * 1000);
1177 //could attempt to do a read to confirm write took
1178 // as the tag should repeat back the new block
1179 // until it is reset, but to confirm it we would
1180 // need to know the current block 0 config mode
1181
1182 // turn field off
1183 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1184 LED_A_OFF();
1185 }
1186
1187 // Write one card block in page 0, no lock
1188 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1189 T55xxWriteBlockExt(Data, Block, Pwd, arg);
1190 cmd_send(CMD_ACK,0,0,0,0,0);
1191 }
1192
1193 // Read one card block in page [page]
1194 void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
1195 LED_A_ON();
1196 bool PwdMode = arg0 & 0x1;
1197 uint8_t Page = (arg0 & 0x2) >> 1;
1198 uint32_t i = 0;
1199 bool RegReadMode = (Block == 0xFF);
1200
1201 //clear buffer now so it does not interfere with timing later
1202 BigBuf_Clear_ext(false);
1203
1204 //make sure block is at max 7
1205 Block &= 0x7;
1206
1207 // Set up FPGA, 125kHz to power up the tag
1208 LFSetupFPGAForADC(95, true);
1209
1210 // Trigger T55x7 Direct Access Mode with start gap
1211 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1212 SpinDelayUs(START_GAP);
1213
1214 // Opcode 1[page]
1215 T55xxWriteBit(1);
1216 T55xxWriteBit(Page); //Page 0
1217
1218 if (PwdMode){
1219 // Send Pwd
1220 for (i = 0x80000000; i != 0; i >>= 1)
1221 T55xxWriteBit(Pwd & i);
1222 }
1223 // Send a zero bit separation
1224 T55xxWriteBit(0);
1225
1226 // Send Block number (if direct access mode)
1227 if (!RegReadMode)
1228 for (i = 0x04; i != 0; i >>= 1)
1229 T55xxWriteBit(Block & i);
1230
1231 // Turn field on to read the response
1232 TurnReadLFOn(READ_GAP);
1233
1234 // Acquisition
1235 doT55x7Acquisition(12000);
1236
1237 // Turn the field off
1238 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1239 cmd_send(CMD_ACK,0,0,0,0,0);
1240 LED_A_OFF();
1241 }
1242
1243 void T55xxWakeUp(uint32_t Pwd){
1244 LED_B_ON();
1245 uint32_t i = 0;
1246
1247 // Set up FPGA, 125kHz
1248 LFSetupFPGAForADC(95, true);
1249
1250 // Trigger T55x7 Direct Access Mode
1251 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1252 SpinDelayUs(START_GAP);
1253
1254 // Opcode 10
1255 T55xxWriteBit(1);
1256 T55xxWriteBit(0); //Page 0
1257
1258 // Send Pwd
1259 for (i = 0x80000000; i != 0; i >>= 1)
1260 T55xxWriteBit(Pwd & i);
1261
1262 // Turn and leave field on to let the begin repeating transmission
1263 TurnReadLFOn(20*1000);
1264 }
1265
1266 /*-------------- Cloning routines -----------*/
1267
1268 void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
1269 // write last block first and config block last (if included)
1270 for (uint8_t i = numblocks+startblock; i > startblock; i--) {
1271 T55xxWriteBlockExt(blockdata[i-1],i-1,0,0);
1272 }
1273 }
1274
1275 // Copy HID id to card and setup block 0 config
1276 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
1277 uint32_t data[] = {0,0,0,0,0,0,0};
1278 uint8_t last_block = 0;
1279
1280 if (longFMT) {
1281 // Ensure no more than 84 bits supplied
1282 if (hi2>0xFFFFF) {
1283 DbpString("Tags can only have 84 bits.");
1284 return;
1285 }
1286 // Build the 6 data blocks for supplied 84bit ID
1287 last_block = 6;
1288 // load preamble (1D) & long format identifier (9E manchester encoded)
1289 data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
1290 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1291 data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
1292 data[3] = manchesterEncode2Bytes(hi >> 16);
1293 data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
1294 data[5] = manchesterEncode2Bytes(lo >> 16);
1295 data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
1296 } else {
1297 // Ensure no more than 44 bits supplied
1298 if (hi>0xFFF) {
1299 DbpString("Tags can only have 44 bits.");
1300 return;
1301 }
1302 // Build the 3 data blocks for supplied 44bit ID
1303 last_block = 3;
1304 // load preamble
1305 data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
1306 data[2] = manchesterEncode2Bytes(lo >> 16);
1307 data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
1308 }
1309 // load chip config block
1310 data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
1311
1312 //TODO add selection of chip for Q5 or T55x7
1313 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1314
1315 LED_D_ON();
1316 // Program the data blocks for supplied ID
1317 // and the block 0 for HID format
1318 WriteT55xx(data, 0, last_block+1);
1319
1320 LED_D_OFF();
1321
1322 DbpString("DONE!");
1323 }
1324
1325 void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
1326 uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1327 //TODO add selection of chip for Q5 or T55x7
1328 // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1329
1330 LED_D_ON();
1331 // Program the data blocks for supplied ID
1332 // and the block 0 config
1333 WriteT55xx(data, 0, 3);
1334
1335 LED_D_OFF();
1336
1337 DbpString("DONE!");
1338 }
1339
1340 // Clone Indala 64-bit tag by UID to T55x7
1341 void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
1342 //Program the 2 data blocks for supplied 64bit UID
1343 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1344 uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1345 //TODO add selection of chip for Q5 or T55x7
1346 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1347
1348 WriteT55xx(data, 0, 3);
1349 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1350 // T5567WriteBlock(0x603E1042,0);
1351 DbpString("DONE!");
1352 }
1353 // Clone Indala 224-bit tag by UID to T55x7
1354 void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
1355 //Program the 7 data blocks for supplied 224bit UID
1356 uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
1357 // and the block 0 for Indala224 format
1358 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1359 data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
1360 //TODO add selection of chip for Q5 or T55x7
1361 // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1362 WriteT55xx(data, 0, 8);
1363 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1364 // T5567WriteBlock(0x603E10E2,0);
1365 DbpString("DONE!");
1366 }
1367 // clone viking tag to T55xx
1368 void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
1369 uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
1370 if (Q5) data[0] = ( ((32-2)>>1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
1371 // Program the data blocks for supplied ID and the block 0 config
1372 WriteT55xx(data, 0, 3);
1373 LED_D_OFF();
1374 cmd_send(CMD_ACK,0,0,0,0,0);
1375 }
1376
1377 // Define 9bit header for EM410x tags
1378 #define EM410X_HEADER 0x1FF
1379 #define EM410X_ID_LENGTH 40
1380
1381 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
1382 int i, id_bit;
1383 uint64_t id = EM410X_HEADER;
1384 uint64_t rev_id = 0; // reversed ID
1385 int c_parity[4]; // column parity
1386 int r_parity = 0; // row parity
1387 uint32_t clock = 0;
1388
1389 // Reverse ID bits given as parameter (for simpler operations)
1390 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1391 if (i < 32) {
1392 rev_id = (rev_id << 1) | (id_lo & 1);
1393 id_lo >>= 1;
1394 } else {
1395 rev_id = (rev_id << 1) | (id_hi & 1);
1396 id_hi >>= 1;
1397 }
1398 }
1399
1400 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1401 id_bit = rev_id & 1;
1402
1403 if (i % 4 == 0) {
1404 // Don't write row parity bit at start of parsing
1405 if (i)
1406 id = (id << 1) | r_parity;
1407 // Start counting parity for new row
1408 r_parity = id_bit;
1409 } else {
1410 // Count row parity
1411 r_parity ^= id_bit;
1412 }
1413
1414 // First elements in column?
1415 if (i < 4)
1416 // Fill out first elements
1417 c_parity[i] = id_bit;
1418 else
1419 // Count column parity
1420 c_parity[i % 4] ^= id_bit;
1421
1422 // Insert ID bit
1423 id = (id << 1) | id_bit;
1424 rev_id >>= 1;
1425 }
1426
1427 // Insert parity bit of last row
1428 id = (id << 1) | r_parity;
1429
1430 // Fill out column parity at the end of tag
1431 for (i = 0; i < 4; ++i)
1432 id = (id << 1) | c_parity[i];
1433
1434 // Add stop bit
1435 id <<= 1;
1436
1437 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1438 LED_D_ON();
1439
1440 // Write EM410x ID
1441 uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
1442
1443 clock = (card & 0xFF00) >> 8;
1444 clock = (clock == 0) ? 64 : clock;
1445 Dbprintf("Clock rate: %d", clock);
1446 if (card & 0xFF) { //t55x7
1447 clock = GetT55xxClockBit(clock);
1448 if (clock == 0) {
1449 Dbprintf("Invalid clock rate: %d", clock);
1450 return;
1451 }
1452 data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
1453 } else { //t5555 (Q5)
1454 clock = (clock-2)>>1; //n = (RF-2)/2
1455 data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
1456 }
1457
1458 WriteT55xx(data, 0, 3);
1459
1460 LED_D_OFF();
1461 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1462 (uint32_t)(id >> 32), (uint32_t)id);
1463 }
1464
1465 //-----------------------------------
1466 // EM4469 / EM4305 routines
1467 //-----------------------------------
1468 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1469 #define FWD_CMD_WRITE 0xA
1470 #define FWD_CMD_READ 0x9
1471 #define FWD_CMD_DISABLE 0x5
1472
1473 uint8_t forwardLink_data[64]; //array of forwarded bits
1474 uint8_t * forward_ptr; //ptr for forward message preparation
1475 uint8_t fwd_bit_sz; //forwardlink bit counter
1476 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1477
1478 //====================================================================
1479 // prepares command bits
1480 // see EM4469 spec
1481 //====================================================================
1482 //--------------------------------------------------------------------
1483 // VALUES TAKEN FROM EM4x function: SendForward
1484 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1485 // WRITE_GAP = 128; (16*8)
1486 // WRITE_1 = 256 32*8; (32*8)
1487
1488 // These timings work for 4469/4269/4305 (with the 55*8 above)
1489 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1490
1491 uint8_t Prepare_Cmd( uint8_t cmd ) {
1492
1493 *forward_ptr++ = 0; //start bit
1494 *forward_ptr++ = 0; //second pause for 4050 code
1495
1496 *forward_ptr++ = cmd;
1497 cmd >>= 1;
1498 *forward_ptr++ = cmd;
1499 cmd >>= 1;
1500 *forward_ptr++ = cmd;
1501 cmd >>= 1;
1502 *forward_ptr++ = cmd;
1503
1504 return 6; //return number of emited bits
1505 }
1506
1507 //====================================================================
1508 // prepares address bits
1509 // see EM4469 spec
1510 //====================================================================
1511 uint8_t Prepare_Addr( uint8_t addr ) {
1512
1513 register uint8_t line_parity;
1514
1515 uint8_t i;
1516 line_parity = 0;
1517 for(i=0;i<6;i++) {
1518 *forward_ptr++ = addr;
1519 line_parity ^= addr;
1520 addr >>= 1;
1521 }
1522
1523 *forward_ptr++ = (line_parity & 1);
1524
1525 return 7; //return number of emited bits
1526 }
1527
1528 //====================================================================
1529 // prepares data bits intreleaved with parity bits
1530 // see EM4469 spec
1531 //====================================================================
1532 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1533
1534 register uint8_t line_parity;
1535 register uint8_t column_parity;
1536 register uint8_t i, j;
1537 register uint16_t data;
1538
1539 data = data_low;
1540 column_parity = 0;
1541
1542 for(i=0; i<4; i++) {
1543 line_parity = 0;
1544 for(j=0; j<8; j++) {
1545 line_parity ^= data;
1546 column_parity ^= (data & 1) << j;
1547 *forward_ptr++ = data;
1548 data >>= 1;
1549 }
1550 *forward_ptr++ = line_parity;
1551 if(i == 1)
1552 data = data_hi;
1553 }
1554
1555 for(j=0; j<8; j++) {
1556 *forward_ptr++ = column_parity;
1557 column_parity >>= 1;
1558 }
1559 *forward_ptr = 0;
1560
1561 return 45; //return number of emited bits
1562 }
1563
1564 //====================================================================
1565 // Forward Link send function
1566 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1567 // fwd_bit_count set with number of bits to be sent
1568 //====================================================================
1569 void SendForward(uint8_t fwd_bit_count) {
1570
1571 fwd_write_ptr = forwardLink_data;
1572 fwd_bit_sz = fwd_bit_count;
1573
1574 // Set up FPGA, 125kHz or 95 divisor
1575 LFSetupFPGAForADC(95, true);
1576
1577 // force 1st mod pulse (start gap must be longer for 4305)
1578 fwd_bit_sz--; //prepare next bit modulation
1579 fwd_write_ptr++;
1580 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1581 WaitUS(55*8); //55 cycles off (8us each)for 4305 //another reader has 37 here...
1582 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1583 WaitUS(18*8); //18 cycles on (8us each)
1584
1585 // now start writting
1586 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1587 if(((*fwd_write_ptr++) & 1) == 1)
1588 WaitUS(32*8); //32 cycles at 125Khz (8us each)
1589 else {
1590 //These timings work for 4469/4269/4305 (with the 55*8 above)
1591 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1592 WaitUS(23*8); //23 cycles off (8us each)
1593 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1594 WaitUS(18*8); //18 cycles on (8us each)
1595 }
1596 }
1597 }
1598
1599 void EM4xLogin(uint32_t Password) {
1600
1601 uint8_t fwd_bit_count;
1602
1603 forward_ptr = forwardLink_data;
1604 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1605 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1606
1607 SendForward(fwd_bit_count);
1608
1609 //Wait for command to complete
1610 SpinDelay(20);
1611 }
1612
1613 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1614
1615 uint8_t fwd_bit_count;
1616
1617 // Clear destination buffer before sending the command
1618 BigBuf_Clear_ext(false);
1619
1620 LED_A_ON();
1621 StartTicks();
1622 //If password mode do login
1623 if (PwdMode == 1) EM4xLogin(Pwd);
1624
1625 forward_ptr = forwardLink_data;
1626 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1627 fwd_bit_count += Prepare_Addr( Address );
1628
1629 SendForward(fwd_bit_count);
1630 WaitUS(400);
1631 // Now do the acquisition
1632 DoPartialAcquisition(20, true, 6000);
1633
1634 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1635 LED_A_OFF();
1636 cmd_send(CMD_ACK,0,0,0,0,0);
1637 }
1638
1639 void EM4xWriteWord(uint32_t flag, uint32_t Data, uint32_t Pwd) {
1640
1641 bool PwdMode = (flag & 0xF);
1642 uint8_t Address = (flag >> 8) & 0xFF;
1643 uint8_t fwd_bit_count;
1644
1645 //clear buffer now so it does not interfere with timing later
1646 BigBuf_Clear_ext(false);
1647
1648 LED_A_ON();
1649 StartTicks();
1650 //If password mode do login
1651 if (PwdMode) EM4xLogin(Pwd);
1652
1653 forward_ptr = forwardLink_data;
1654 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1655 fwd_bit_count += Prepare_Addr( Address );
1656 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1657
1658 SendForward(fwd_bit_count);
1659
1660 //Wait for write to complete
1661 //SpinDelay(10);
1662
1663 WaitUS(6500);
1664 //Capture response if one exists
1665 DoPartialAcquisition(20, true, 6000);
1666
1667 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1668 LED_A_OFF();
1669 cmd_send(CMD_ACK,0,0,0,0,0);
1670 }
1671 /*
1672 Reading a COTAG.
1673
1674 COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
1675 because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
1676
1677 READER START SEQUENCE:
1678 burst 800 us, gap 2.2 msecs
1679 burst 3.6 msecs gap 2.2 msecs
1680 burst 800 us gap 2.2 msecs
1681 pulse 3.6 msecs
1682
1683 This triggers a COTAG tag to response
1684 */
1685 void Cotag(uint32_t arg0) {
1686
1687 #define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
1688 #define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
1689
1690 uint8_t rawsignal = arg0 & 0xF;
1691
1692 LED_A_ON();
1693
1694 // Switching to LF image on FPGA. This might empty BigBuff
1695 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1696
1697 //clear buffer now so it does not interfere with timing later
1698 BigBuf_Clear_ext(false);
1699
1700 // Set up FPGA, 132kHz to power up the tag
1701 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
1702 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1703
1704 // Connect the A/D to the peak-detected low-frequency path.
1705 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1706
1707 // Now set up the SSC to get the ADC samples that are now streaming at us.
1708 FpgaSetupSsc();
1709
1710 // start clock - 1.5ticks is 1us
1711 StartTicks();
1712
1713 //send COTAG start pulse
1714 ON(740) OFF
1715 ON(3330) OFF
1716 ON(740) OFF
1717 ON(1000)
1718
1719 switch(rawsignal) {
1720 case 0: doCotagAcquisition(50000); break;
1721 case 1: doCotagAcquisitionManchester(); break;
1722 case 2: DoAcquisition_config(TRUE); break;
1723 }
1724
1725 // Turn the field off
1726 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1727 cmd_send(CMD_ACK,0,0,0,0,0);
1728 LED_A_OFF();
1729 }
Impressum, Datenschutz