]>
cvs.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands - by marshmellow, holiman, iceman and
9 // many others who came before
12 // LF Demod functions are placed here to allow the flexability to use client or
13 // device side. Most BUT NOT ALL of these functions are currenlty safe for
14 // device side use currently. (DetectST for example...)
16 // There are likely many improvements to the code that could be made, please
17 // make suggestions...
19 // we tried to include author comments so any questions could be directed to
22 // There are 4 main sections of code below:
24 // for general utilities used by multiple other functions
25 // Clock / Bitrate Detection Section:
26 // for clock detection functions for each modulation
27 // Modulation Demods &/or Decoding Section:
28 // for main general modulation demodulating and encoding decoding code.
29 // Tag format detection section:
30 // for detection of specific tag formats within demodulated data
33 //-----------------------------------------------------------------------------
35 #include <string.h> // for memset, memcmp and size_t
36 #include <stdint.h> // for uint_32+
37 #include <stdbool.h> // for bool
39 //**********************************************************************************************
40 //---------------------------------Utilities Section--------------------------------------------
41 //**********************************************************************************************
42 #define LOWEST_DEFAULT_CLOCK 32
43 #define FSK_PSK_THRESHOLD 123
45 //to allow debug print calls when used not on device
46 void dummy ( char * fmt
, ...){}
49 #include "cmdparser.h"
51 #define prnt PrintAndLog
53 uint8_t g_debugMode
= 0 ;
57 uint8_t justNoise ( uint8_t * BitStream
, size_t size
) {
58 //test samples are not just noise
59 uint8_t justNoise1
= 1 ;
60 for ( size_t idx
= 0 ; idx
< size
&& justNoise1
; idx
++){
61 justNoise1
= BitStream
[ idx
] < FSK_PSK_THRESHOLD
;
67 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
68 int getHiLo ( uint8_t * BitStream
, size_t size
, int * high
, int * low
, uint8_t fuzzHi
, uint8_t fuzzLo
) {
71 // get high and low thresholds
72 for ( size_t i
= 0 ; i
< size
; i
++){
73 if ( BitStream
[ i
] > * high
) * high
= BitStream
[ i
];
74 if ( BitStream
[ i
] < * low
) * low
= BitStream
[ i
];
76 if (* high
< FSK_PSK_THRESHOLD
) return - 1 ; // just noise
77 * high
= ((* high
- 128 )* fuzzHi
+ 12800 )/ 100 ;
78 * low
= ((* low
- 128 )* fuzzLo
+ 12800 )/ 100 ;
83 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
84 // returns 1 if passed
85 uint8_t parityTest ( uint32_t bits
, uint8_t bitLen
, uint8_t pType
) {
87 for ( uint8_t i
= 0 ; i
< bitLen
; i
++){
88 ans
^= (( bits
>> i
) & 1 );
90 if ( g_debugMode
) prnt ( "DEBUG: ans: %d, ptype: %d, bits: %08X" , ans
, pType
, bits
);
91 return ( ans
== pType
);
95 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
96 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
97 size_t removeParity ( uint8_t * BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
) {
98 uint32_t parityWd
= 0 ;
99 size_t j
= 0 , bitCnt
= 0 ;
100 for ( int word
= 0 ; word
< ( bLen
); word
+= pLen
) {
101 for ( int bit
= 0 ; bit
< pLen
; bit
++) {
102 parityWd
= ( parityWd
<< 1 ) | BitStream
[ startIdx
+ word
+ bit
];
103 BitStream
[ j
++] = ( BitStream
[ startIdx
+ word
+ bit
]);
105 if ( word
+ pLen
> bLen
) break ;
107 j
--; // overwrite parity with next data
108 // if parity fails then return 0
110 case 3 : if ( BitStream
[ j
]== 1 ) { return 0 ;} break ; //should be 0 spacer bit
111 case 2 : if ( BitStream
[ j
]== 0 ) { return 0 ;} break ; //should be 1 spacer bit
112 default : if ( parityTest ( parityWd
, pLen
, pType
) == 0 ) { return 0 ;} break ; //test parity
117 // if we got here then all the parities passed
118 //return ID start index and size
123 // takes a array of binary values, length of bits per parity (includes parity bit),
124 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
125 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
126 size_t addParity ( uint8_t * BitSource
, uint8_t * dest
, uint8_t sourceLen
, uint8_t pLen
, uint8_t pType
) {
127 uint32_t parityWd
= 0 ;
128 size_t j
= 0 , bitCnt
= 0 ;
129 for ( int word
= 0 ; word
< sourceLen
; word
+= pLen
- 1 ) {
130 for ( int bit
= 0 ; bit
< pLen
- 1 ; bit
++){
131 parityWd
= ( parityWd
<< 1 ) | BitSource
[ word
+ bit
];
132 dest
[ j
++] = ( BitSource
[ word
+ bit
]);
134 // if parity fails then return 0
136 case 3 : dest
[ j
++]= 0 ; break ; // marker bit which should be a 0
137 case 2 : dest
[ j
++]= 1 ; break ; // marker bit which should be a 1
139 dest
[ j
++] = parityTest ( parityWd
, pLen
- 1 , pType
) ^ 1 ;
145 // if we got here then all the parities passed
146 //return ID start index and size
150 uint32_t bytebits_to_byte ( uint8_t * src
, size_t numbits
) {
152 for ( int i
= 0 ; i
< numbits
; i
++)
154 num
= ( num
<< 1 ) | (* src
);
160 //least significant bit first
161 uint32_t bytebits_to_byteLSBF ( uint8_t * src
, size_t numbits
) {
163 for ( int i
= 0 ; i
< numbits
; i
++)
165 num
= ( num
<< 1 ) | *( src
+ ( numbits
-( i
+ 1 )));
170 // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found) and length if not fineone
171 // fineone does not look for a repeating preamble for em4x05/4x69 sends preamble once, so look for it once in the first pLen bits
172 bool preambleSearchEx ( uint8_t * BitStream
, uint8_t * preamble
, size_t pLen
, size_t * size
, size_t * startIdx
, bool findone
) {
173 // Sanity check. If preamble length is bigger than bitstream length.
174 if ( * size
<= pLen
) return false ;
176 uint8_t foundCnt
= 0 ;
177 for ( size_t idx
= 0 ; idx
< * size
- pLen
; idx
++) {
178 if ( memcmp ( BitStream
+ idx
, preamble
, pLen
) == 0 ) {
182 if ( g_debugMode
) prnt ( "DEBUG: preamble found at %u" , idx
);
184 if ( findone
) return true ;
185 } else if ( foundCnt
== 2 ) {
186 * size
= idx
- * startIdx
;
195 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
196 uint8_t preambleSearch ( uint8_t * BitStream
, uint8_t * preamble
, size_t pLen
, size_t * size
, size_t * startIdx
) {
197 return ( preambleSearchEx ( BitStream
, preamble
, pLen
, size
, startIdx
, false )) ? 1 : 0 ;
200 // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup.
201 size_t findModStart ( uint8_t dest
[], size_t size
, uint8_t expWaveSize
) {
203 size_t waveSizeCnt
= 0 ;
204 uint8_t thresholdCnt
= 0 ;
205 bool isAboveThreshold
= dest
[ i
++] >= FSK_PSK_THRESHOLD
;
206 for (; i
< size
- 20 ; i
++ ) {
207 if ( dest
[ i
] < FSK_PSK_THRESHOLD
&& isAboveThreshold
) {
209 if ( thresholdCnt
> 2 && waveSizeCnt
< expWaveSize
+ 1 ) break ;
210 isAboveThreshold
= false ;
212 } else if ( dest
[ i
] >= FSK_PSK_THRESHOLD
&& ! isAboveThreshold
) {
214 if ( thresholdCnt
> 2 && waveSizeCnt
< expWaveSize
+ 1 ) break ;
215 isAboveThreshold
= true ;
220 if ( thresholdCnt
> 10 ) break ;
222 if ( g_debugMode
== 2 ) prnt ( "DEBUG: threshold Count reached at %u, count: %u" , i
, thresholdCnt
);
226 int getClosestClock ( int testclk
) {
227 uint8_t fndClk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 128 };
229 for ( uint8_t clkCnt
= 0 ; clkCnt
< 7 ; clkCnt
++)
230 if ( testclk
>= fndClk
[ clkCnt
]-( fndClk
[ clkCnt
]/ 8 ) && testclk
<= fndClk
[ clkCnt
]+ 1 )
231 return fndClk
[ clkCnt
];
236 void getNextLow ( uint8_t samples
[], size_t size
, int low
, size_t * i
) {
237 while (( samples
[* i
] > low
) && (* i
< size
))
241 void getNextHigh ( uint8_t samples
[], size_t size
, int high
, size_t * i
) {
242 while (( samples
[* i
] < high
) && (* i
< size
))
246 // load wave counters
247 bool loadWaveCounters ( uint8_t samples
[], size_t size
, int lowToLowWaveLen
[], int highToLowWaveLen
[], int * waveCnt
, int * skip
, int * minClk
, int * high
, int * low
) {
248 size_t i
= 0 , firstLow
, firstHigh
;
249 size_t testsize
= ( size
< 512 ) ? size
: 512 ;
251 if ( getHiLo ( samples
, testsize
, high
, low
, 80 , 80 ) == - 1 ) {
252 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: just noise detected - quitting" );
253 return false ; //just noise
256 // get to first full low to prime loop and skip incomplete first pulse
257 getNextHigh ( samples
, size
, * high
, & i
);
258 getNextLow ( samples
, size
, * low
, & i
);
261 // populate tmpbuff buffer with pulse lengths
263 // measure from low to low
265 //find first high point for this wave
266 getNextHigh ( samples
, size
, * high
, & i
);
269 getNextLow ( samples
, size
, * low
, & i
);
271 if (* waveCnt
>= ( size
/ LOWEST_DEFAULT_CLOCK
))
274 highToLowWaveLen
[* waveCnt
] = i
- firstHigh
; //first high to first low
275 lowToLowWaveLen
[* waveCnt
] = i
- firstLow
;
277 if ( i
- firstLow
< * minClk
&& i
< size
) {
278 * minClk
= i
- firstLow
;
285 //amplify based on ask edge detection - not accurate enough to use all the time
286 void askAmp ( uint8_t * BitStream
, size_t size
) {
288 for ( size_t i
= 1 ; i
< size
; i
++){
289 if ( BitStream
[ i
]- BitStream
[ i
- 1 ]>= 30 ) //large jump up
291 else if ( BitStream
[ i
- 1 ]- BitStream
[ i
]>= 20 ) //large jump down
294 BitStream
[ i
- 1 ] = Last
;
299 uint32_t manchesterEncode2Bytes ( uint16_t datain
) {
302 for ( uint8_t i
= 0 ; i
< 16 ; i
++) {
303 curBit
= ( datain
>> ( 15 - i
) & 1 );
304 output
|= ( 1 <<((( 15 - i
)* 2 )+ curBit
));
310 //encode binary data into binary manchester
311 //NOTE: BitStream must have triple the size of "size" available in memory to do the swap
312 int ManchesterEncode ( uint8_t * BitStream
, size_t size
) {
313 //allow up to 4K out (means BitStream must be at least 2048+4096 to handle the swap)
314 size
= ( size
> 2048 ) ? 2048 : size
;
315 size_t modIdx
= size
;
317 for ( size_t idx
= 0 ; idx
< size
; idx
++){
318 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
];
319 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
]^ 1 ;
321 for ( i
= 0 ; i
<( size
* 2 ); i
++){
322 BitStream
[ i
] = BitStream
[ i
+ size
];
328 // to detect a wave that has heavily clipped (clean) samples
329 uint8_t DetectCleanAskWave ( uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
) {
330 bool allArePeaks
= true ;
332 size_t loopEnd
= 512 + 160 ;
333 if ( loopEnd
> size
) loopEnd
= size
;
334 for ( size_t i
= 160 ; i
< loopEnd
; i
++){
335 if ( dest
[ i
]> low
&& dest
[ i
]< high
)
341 if ( cntPeaks
> 300 ) return true ;
346 //**********************************************************************************************
347 //-------------------Clock / Bitrate Detection Section------------------------------------------
348 //**********************************************************************************************
351 // to help detect clocks on heavily clipped samples
352 // based on count of low to low
353 int DetectStrongAskClock ( uint8_t dest
[], size_t size
, int high
, int low
, int * clock
) {
357 int shortestWaveIdx
= 0 ;
358 // get to first full low to prime loop and skip incomplete first pulse
359 getNextHigh ( dest
, size
, high
, & i
);
360 getNextLow ( dest
, size
, low
, & i
);
362 // loop through all samples
364 // measure from low to low
367 getNextHigh ( dest
, size
, high
, & i
);
368 getNextLow ( dest
, size
, low
, & i
);
369 //get minimum measured distance
370 if ( i
- startwave
< minClk
&& i
< size
) {
371 minClk
= i
- startwave
;
372 shortestWaveIdx
= startwave
;
376 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: DetectStrongAskClock smallest wave: %d" , minClk
);
377 * clock
= getClosestClock ( minClk
);
381 return shortestWaveIdx
;
385 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
386 // maybe somehow adjust peak trimming value based on samples to fix?
387 // return start index of best starting position for that clock and return clock (by reference)
388 int DetectASKClock ( uint8_t dest
[], size_t size
, int * clock
, int maxErr
) {
390 uint8_t clk
[] = { 255 , 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
392 uint8_t loopCnt
= 255 ; //don't need to loop through entire array...
393 if ( size
<= loopCnt
+ 60 ) return - 1 ; //not enough samples
394 size
-= 60 ; //sometimes there is a strange end wave - filter out this....
395 //if we already have a valid clock
398 if ( clk
[ i
] == * clock
) clockFnd
= i
;
399 //clock found but continue to find best startpos
401 //get high and low peak
403 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return - 1 ;
405 //test for large clean peaks
407 if ( DetectCleanAskWave ( dest
, size
, peak
, low
)== 1 ){
408 int ans
= DetectStrongAskClock ( dest
, size
, peak
, low
, clock
);
409 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %i, ShortestWave: %i" , clock
, ans
);
411 return ans
; //return shortest wave start position
416 uint8_t clkCnt
, tol
= 0 ;
417 uint16_t bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
418 uint8_t bestStart
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
420 size_t arrLoc
, loopEnd
;
428 //test each valid clock from smallest to greatest to see which lines up
429 for (; clkCnt
< clkEnd
; clkCnt
++){
430 if ( clk
[ clkCnt
] <= 32 ){
435 //if no errors allowed - keep start within the first clock
436 if (! maxErr
&& size
> clk
[ clkCnt
]* 2 + tol
&& clk
[ clkCnt
]< 128 ) loopCnt
= clk
[ clkCnt
]* 2 ;
437 bestErr
[ clkCnt
]= 1000 ;
438 //try lining up the peaks by moving starting point (try first few clocks)
439 for ( ii
= 0 ; ii
< loopCnt
; ii
++){
440 if ( dest
[ ii
] < peak
&& dest
[ ii
] > low
) continue ;
443 // now that we have the first one lined up test rest of wave array
444 loopEnd
= (( size
- ii
- tol
) / clk
[ clkCnt
]) - 1 ;
445 for ( i
= 0 ; i
< loopEnd
; ++ i
){
446 arrLoc
= ii
+ ( i
* clk
[ clkCnt
]);
447 if ( dest
[ arrLoc
] >= peak
|| dest
[ arrLoc
] <= low
){
448 } else if ( dest
[ arrLoc
- tol
] >= peak
|| dest
[ arrLoc
- tol
] <= low
){
449 } else if ( dest
[ arrLoc
+ tol
] >= peak
|| dest
[ arrLoc
+ tol
] <= low
){
450 } else { //error no peak detected
454 //if we found no errors then we can stop here and a low clock (common clocks)
455 // this is correct one - return this clock
456 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, err %d, startpos %d, endpos %d" , clk
[ clkCnt
], errCnt
, ii
, i
);
457 if ( errCnt
== 0 && clkCnt
< 7 ) {
458 if (! clockFnd
) * clock
= clk
[ clkCnt
];
461 //if we found errors see if it is lowest so far and save it as best run
462 if ( errCnt
< bestErr
[ clkCnt
]){
463 bestErr
[ clkCnt
]= errCnt
;
464 bestStart
[ clkCnt
]= ii
;
470 for ( iii
= 1 ; iii
< clkEnd
; ++ iii
){
471 if ( bestErr
[ iii
] < bestErr
[ best
]){
472 if ( bestErr
[ iii
] == 0 ) bestErr
[ iii
]= 1 ;
473 // current best bit to error ratio vs new bit to error ratio
474 if ( ( size
/ clk
[ best
])/ bestErr
[ best
] < ( size
/ clk
[ iii
])/ bestErr
[ iii
] ){
478 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d" , clk
[ iii
], bestErr
[ iii
], clk
[ best
], bestStart
[ best
]);
480 if (! clockFnd
) * clock
= clk
[ best
];
481 return bestStart
[ best
];
484 int DetectStrongNRZClk ( uint8_t * dest
, size_t size
, int peak
, int low
){
485 //find shortest transition from high to low
487 size_t transition1
= 0 ;
488 int lowestTransition
= 255 ;
489 bool lastWasHigh
= false ;
491 //find first valid beginning of a high or low wave
492 while (( dest
[ i
] >= peak
|| dest
[ i
] <= low
) && ( i
< size
))
494 while (( dest
[ i
] < peak
&& dest
[ i
] > low
) && ( i
< size
))
496 lastWasHigh
= ( dest
[ i
] >= peak
);
498 if ( i
== size
) return 0 ;
501 for (; i
< size
; i
++) {
502 if (( dest
[ i
] >= peak
&& ! lastWasHigh
) || ( dest
[ i
] <= low
&& lastWasHigh
)) {
503 lastWasHigh
= ( dest
[ i
] >= peak
);
504 if ( i
- transition1
< lowestTransition
) lowestTransition
= i
- transition1
;
508 if ( lowestTransition
== 255 ) lowestTransition
= 0 ;
509 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: detectstrongNRZclk smallest wave: %d" , lowestTransition
);
510 return lowestTransition
;
514 //detect nrz clock by reading #peaks vs no peaks(or errors)
515 int DetectNRZClock ( uint8_t dest
[], size_t size
, int clock
, size_t * clockStartIdx
) {
517 uint8_t clk
[]={ 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
518 size_t loopCnt
= 4096 ; //don't need to loop through entire array...
519 if ( size
== 0 ) return 0 ;
520 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
521 //if we already have a valid clock quit
523 if ( clk
[ i
] == clock
) return clock
;
525 //get high and low peak
527 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return 0 ;
529 int lowestTransition
= DetectStrongNRZClk ( dest
, size
- 20 , peak
, low
);
533 uint16_t smplCnt
= 0 ;
535 int16_t peaksdet
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
536 uint16_t maxPeak
= 255 ;
537 bool firstpeak
= false ;
538 //test for large clipped waves
539 for ( i
= 0 ; i
< loopCnt
; i
++){
540 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
){
541 if (! firstpeak
) continue ;
546 if ( maxPeak
> smplCnt
){
548 //prnt("maxPk: %d",maxPeak);
551 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
558 uint8_t ignoreCnt
= 0 ;
559 uint8_t ignoreWindow
= 4 ;
560 bool lastPeakHigh
= 0 ;
562 size_t bestStart
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
564 //test each valid clock from smallest to greatest to see which lines up
565 for ( clkCnt
= 0 ; clkCnt
< 8 ; ++ clkCnt
){
566 //ignore clocks smaller than smallest peak
567 if ( clk
[ clkCnt
] < maxPeak
- ( clk
[ clkCnt
]/ 4 )) continue ;
568 //try lining up the peaks by moving starting point (try first 256)
569 for ( ii
= 20 ; ii
< loopCnt
; ++ ii
){
570 if (( dest
[ ii
] >= peak
) || ( dest
[ ii
] <= low
)){
574 lastBit
= ii
- clk
[ clkCnt
];
575 //loop through to see if this start location works
576 for ( i
= ii
; i
< size
- 20 ; ++ i
) {
577 //if we are at a clock bit
578 if (( i
>= lastBit
+ clk
[ clkCnt
] - tol
) && ( i
<= lastBit
+ clk
[ clkCnt
] + tol
)) {
580 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
) {
581 //if same peak don't count it
582 if (( dest
[ i
] >= peak
&& ! lastPeakHigh
) || ( dest
[ i
] <= low
&& lastPeakHigh
)) {
585 lastPeakHigh
= ( dest
[ i
] >= peak
);
588 ignoreCnt
= ignoreWindow
;
589 lastBit
+= clk
[ clkCnt
];
590 } else if ( i
== lastBit
+ clk
[ clkCnt
] + tol
) {
591 lastBit
+= clk
[ clkCnt
];
593 //else if not a clock bit and no peaks
594 } else if ( dest
[ i
] < peak
&& dest
[ i
] > low
){
597 if ( errBitHigh
== true ) peakcnt
--;
602 // else if not a clock bit but we have a peak
603 } else if (( dest
[ i
]>= peak
|| dest
[ i
]<= low
) && (! bitHigh
)) {
604 //error bar found no clock...
608 if ( peakcnt
> peaksdet
[ clkCnt
]) {
609 bestStart
[ clkCnt
]= ii
;
610 peaksdet
[ clkCnt
]= peakcnt
;
617 for ( iii
= 7 ; iii
> 0 ; iii
--){
618 if (( peaksdet
[ iii
] >= ( peaksdet
[ best
]- 1 )) && ( peaksdet
[ iii
] <= peaksdet
[ best
]+ 1 ) && lowestTransition
) {
619 if ( clk
[ iii
] > ( lowestTransition
- ( clk
[ iii
]/ 8 )) && clk
[ iii
] < ( lowestTransition
+ ( clk
[ iii
]/ 8 ))) {
622 } else if ( peaksdet
[ iii
] > peaksdet
[ best
]){
625 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d" , clk
[ iii
], peaksdet
[ iii
], maxPeak
, clk
[ best
], lowestTransition
);
627 * clockStartIdx
= bestStart
[ best
];
632 //countFC is to detect the field clock lengths.
633 //counts and returns the 2 most common wave lengths
634 //mainly used for FSK field clock detection
635 uint16_t countFC ( uint8_t * BitStream
, size_t size
, uint8_t fskAdj
) {
636 uint8_t fcLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
637 uint16_t fcCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
638 uint8_t fcLensFnd
= 0 ;
639 uint8_t lastFCcnt
= 0 ;
640 uint8_t fcCounter
= 0 ;
642 if ( size
< 180 ) return 0 ;
644 // prime i to first up transition
645 for ( i
= 160 ; i
< size
- 20 ; i
++)
646 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ])
649 for (; i
< size
- 20 ; i
++){
650 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ]){
654 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
655 if ( lastFCcnt
== 5 && fcCounter
== 9 ) fcCounter
--;
656 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
657 if (( fcCounter
== 9 ) || fcCounter
== 4 ) fcCounter
++;
658 // save last field clock count (fc/xx)
659 lastFCcnt
= fcCounter
;
661 // find which fcLens to save it to:
662 for ( int ii
= 0 ; ii
< 15 ; ii
++){
663 if ( fcLens
[ ii
]== fcCounter
){
669 if ( fcCounter
> 0 && fcLensFnd
< 15 ){
672 fcLens
[ fcLensFnd
++]= fcCounter
;
681 uint8_t best1
= 14 , best2
= 14 , best3
= 14 ;
683 // go through fclens and find which ones are bigest 2
684 for ( i
= 0 ; i
< 15 ; i
++){
685 // get the 3 best FC values
686 if ( fcCnts
[ i
]> maxCnt1
) {
691 } else if ( fcCnts
[ i
]> fcCnts
[ best2
]){
694 } else if ( fcCnts
[ i
]> fcCnts
[ best3
]){
697 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u" , fcLens
[ i
], fcCnts
[ i
], fcLens
[ best1
], fcLens
[ best2
]);
699 if ( fcLens
[ best1
]== 0 ) return 0 ;
700 uint8_t fcH
= 0 , fcL
= 0 ;
701 if ( fcLens
[ best1
]> fcLens
[ best2
]){
708 if (( size
- 180 )/ fcH
/ 3 > fcCnts
[ best1
]+ fcCnts
[ best2
]) {
709 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: fc is too large: %u > %u. Not psk or fsk" ,( size
- 180 )/ fcH
/ 3 , fcCnts
[ best1
]+ fcCnts
[ best2
]);
710 return 0 ; //lots of waves not psk or fsk
712 // TODO: take top 3 answers and compare to known Field clocks to get top 2
714 uint16_t fcs
= ((( uint16_t ) fcH
)<< 8 ) | fcL
;
715 if ( fskAdj
) return fcs
;
716 return fcLens
[ best1
];
720 //detect psk clock by reading each phase shift
721 // a phase shift is determined by measuring the sample length of each wave
722 int DetectPSKClock_ext ( uint8_t dest
[], size_t size
, int clock
, int * firstPhaseShift
) {
723 uint8_t clk
[]={ 255 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 }; //255 is not a valid clock
724 uint16_t loopCnt
= 4096 ; //don't need to loop through entire array...
725 if ( size
== 0 ) return 0 ;
726 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
728 //if we already have a valid clock quit
731 if ( clk
[ i
] == clock
) return clock
;
733 size_t waveStart
= 0 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
734 uint8_t clkCnt
, fc
= 0 , fullWaveLen
= 0 , tol
= 1 ;
735 uint16_t peakcnt
= 0 , errCnt
= 0 , waveLenCnt
= 0 ;
736 uint16_t bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
737 uint16_t peaksdet
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
738 fc
= countFC ( dest
, size
, 0 );
739 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
740 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: FC: %d" , fc
);
742 //find first full wave
743 for ( i
= 160 ; i
< loopCnt
; i
++){
744 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
745 if ( waveStart
== 0 ) {
747 //prnt("DEBUG: waveStart: %d",waveStart);
750 //prnt("DEBUG: waveEnd: %d",waveEnd);
751 waveLenCnt
= waveEnd
- waveStart
;
752 if ( waveLenCnt
> fc
){
753 firstFullWave
= waveStart
;
754 fullWaveLen
= waveLenCnt
;
761 * firstPhaseShift
= firstFullWave
;
762 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %d, waveLen: %d" , firstFullWave
, fullWaveLen
);
763 //test each valid clock from greatest to smallest to see which lines up
764 for ( clkCnt
= 7 ; clkCnt
>= 1 ; clkCnt
--){
765 lastClkBit
= firstFullWave
; //set end of wave as clock align
769 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: clk: %d, lastClkBit: %d" , clk
[ clkCnt
], lastClkBit
);
771 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< loopCnt
- 2 ; i
++){
772 //top edge of wave = start of new wave
773 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
774 if ( waveStart
== 0 ) {
779 waveLenCnt
= waveEnd
- waveStart
;
780 if ( waveLenCnt
> fc
){
781 //if this wave is a phase shift
782 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d" , waveStart
, waveLenCnt
, lastClkBit
+ clk
[ clkCnt
]- tol
, i
+ 1 , fc
);
783 if ( i
+ 1 >= lastClkBit
+ clk
[ clkCnt
] - tol
){ //should be a clock bit
785 lastClkBit
+= clk
[ clkCnt
];
786 } else if ( i
< lastClkBit
+ 8 ){
787 //noise after a phase shift - ignore
788 } else { //phase shift before supposed to based on clock
791 } else if ( i
+ 1 > lastClkBit
+ clk
[ clkCnt
] + tol
+ fc
){
792 lastClkBit
+= clk
[ clkCnt
]; //no phase shift but clock bit
801 if ( errCnt
<= bestErr
[ clkCnt
]) bestErr
[ clkCnt
]= errCnt
;
802 if ( peakcnt
> peaksdet
[ clkCnt
]) peaksdet
[ clkCnt
]= peakcnt
;
804 //all tested with errors
805 //return the highest clk with the most peaks found
807 for ( i
= 7 ; i
>= 1 ; i
--){
808 if ( peaksdet
[ i
] > peaksdet
[ best
]) {
811 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d" , clk
[ i
], peaksdet
[ i
], bestErr
[ i
], clk
[ best
]);
816 int DetectPSKClock ( uint8_t dest
[], size_t size
, int clock
) {
817 int firstPhaseShift
= 0 ;
818 return DetectPSKClock_ext ( dest
, size
, clock
, & firstPhaseShift
);
822 //detects the bit clock for FSK given the high and low Field Clocks
823 uint8_t detectFSKClk_ext ( uint8_t * BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
, int * firstClockEdge
) {
824 uint8_t clk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 0 };
825 uint16_t rfLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
826 uint8_t rfCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
827 uint8_t rfLensFnd
= 0 ;
828 uint8_t lastFCcnt
= 0 ;
829 uint16_t fcCounter
= 0 ;
830 uint16_t rfCounter
= 0 ;
831 uint8_t firstBitFnd
= 0 ;
833 if ( size
== 0 ) return 0 ;
835 uint8_t fcTol
= (( fcHigh
* 100 - fcLow
* 100 )/ 2 + 50 )/ 100 ; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
840 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
841 // prime i to first peak / up transition
842 for ( i
= 160 ; i
< size
- 20 ; i
++)
843 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
]>= BitStream
[ i
+ 1 ])
846 for (; i
< size
- 20 ; i
++){
850 if ( BitStream
[ i
] <= BitStream
[ i
- 1 ] || BitStream
[ i
] < BitStream
[ i
+ 1 ])
853 // if we got less than the small fc + tolerance then set it to the small fc
854 // if it is inbetween set it to the last counter
855 if ( fcCounter
< fcHigh
&& fcCounter
> fcLow
)
856 fcCounter
= lastFCcnt
;
857 else if ( fcCounter
< fcLow
+ fcTol
)
859 else //set it to the large fc
862 //look for bit clock (rf/xx)
863 if (( fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)){
864 //not the same size as the last wave - start of new bit sequence
865 if ( firstBitFnd
> 1 ){ //skip first wave change - probably not a complete bit
866 for ( int ii
= 0 ; ii
< 15 ; ii
++){
867 if ( rfLens
[ ii
] >= ( rfCounter
- 4 ) && rfLens
[ ii
] <= ( rfCounter
+ 4 )){
873 if ( rfCounter
> 0 && rfLensFnd
< 15 ){
874 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
876 rfLens
[ rfLensFnd
++] = rfCounter
;
887 uint8_t rfHighest
= 15 , rfHighest2
= 15 , rfHighest3
= 15 ;
889 for ( i
= 0 ; i
< 15 ; i
++){
890 //get highest 2 RF values (might need to get more values to compare or compare all?)
891 if ( rfCnts
[ i
]> rfCnts
[ rfHighest
]){
892 rfHighest3
= rfHighest2
;
893 rfHighest2
= rfHighest
;
895 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest2
]){
896 rfHighest3
= rfHighest2
;
898 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest3
]){
901 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: RF %d, cnts %d" , rfLens
[ i
], rfCnts
[ i
]);
903 // set allowed clock remainder tolerance to be 1 large field clock length+1
904 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
905 uint8_t tol1
= fcHigh
+ 1 ;
907 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d" , rfLens
[ rfHighest
], rfLens
[ rfHighest2
], rfLens
[ rfHighest3
]);
909 // loop to find the highest clock that has a remainder less than the tolerance
910 // compare samples counted divided by
911 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
914 if ( rfLens
[ rfHighest
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest
] % clk
[ ii
] > clk
[ ii
]- tol1
){
915 if ( rfLens
[ rfHighest2
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest2
] % clk
[ ii
] > clk
[ ii
]- tol1
){
916 if ( rfLens
[ rfHighest3
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest3
] % clk
[ ii
] > clk
[ ii
]- tol1
){
917 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: clk %d divides into the 3 most rf values within tolerance" , clk
[ ii
]);
924 if ( ii
< 2 ) return 0 ; // oops we went too far
929 uint8_t detectFSKClk ( uint8_t * BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
) {
930 int firstClockEdge
= 0 ;
931 return detectFSKClk_ext ( BitStream
, size
, fcHigh
, fcLow
, & firstClockEdge
);
934 //**********************************************************************************************
935 //--------------------Modulation Demods &/or Decoding Section-----------------------------------
936 //**********************************************************************************************
938 // look for Sequence Terminator - should be pulses of clk*(1 or 2), clk*2, clk*(1.5 or 2), by idx we mean graph position index...
939 bool findST ( int * stStopLoc
, int * stStartIdx
, int lowToLowWaveLen
[], int highToLowWaveLen
[], int clk
, int tol
, int buffSize
, size_t * i
) {
940 for (; * i
< buffSize
- 4 ; * i
+= 1 ) {
941 * stStartIdx
+= lowToLowWaveLen
[* i
]; //caution part of this wave may be data and part may be ST.... to be accounted for in main function for now...
942 if ( lowToLowWaveLen
[* i
] >= clk
* 1 - tol
&& lowToLowWaveLen
[* i
] <= ( clk
* 2 )+ tol
&& highToLowWaveLen
[* i
] < clk
+ tol
) { //1 to 2 clocks depending on 2 bits prior
943 if ( lowToLowWaveLen
[* i
+ 1 ] >= clk
* 2 - tol
&& lowToLowWaveLen
[* i
+ 1 ] <= clk
* 2 + tol
&& highToLowWaveLen
[* i
+ 1 ] > clk
* 3 / 2 - tol
) { //2 clocks and wave size is 1 1/2
944 if ( lowToLowWaveLen
[* i
+ 2 ] >= ( clk
* 3 )/ 2 - tol
&& lowToLowWaveLen
[* i
+ 2 ] <= clk
* 2 + tol
&& highToLowWaveLen
[* i
+ 2 ] > clk
- tol
) { //1 1/2 to 2 clocks and at least one full clock wave
945 if ( lowToLowWaveLen
[* i
+ 3 ] >= clk
* 1 - tol
&& lowToLowWaveLen
[* i
+ 3 ] <= clk
* 2 + tol
) { //1 to 2 clocks for end of ST + first bit
956 //attempt to identify a Sequence Terminator in ASK modulated raw wave
957 bool DetectST_ext ( uint8_t buffer
[], size_t * size
, int * foundclock
, size_t * ststart
, size_t * stend
) {
958 size_t bufsize
= * size
;
959 //need to loop through all samples and identify our clock, look for the ST pattern
962 int j
, high
, low
, skip
, start
, end
, minClk
= 255 ;
964 //probably should malloc... || test if memory is available ... handle device side? memory danger!!! [marshmellow]
965 int tmpbuff
[ bufsize
/ LOWEST_DEFAULT_CLOCK
]; // low to low wave count //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
966 int waveLen
[ bufsize
/ LOWEST_DEFAULT_CLOCK
]; // high to low wave count //if clock is larger then we waste memory in array size that is not needed...
967 //size_t testsize = (bufsize < 512) ? bufsize : 512;
970 memset ( tmpbuff
, 0 , sizeof ( tmpbuff
));
971 memset ( waveLen
, 0 , sizeof ( waveLen
));
973 if (! loadWaveCounters ( buffer
, bufsize
, tmpbuff
, waveLen
, & j
, & skip
, & minClk
, & high
, & low
)) return false ;
974 // set clock - might be able to get this externally and remove this work...
975 clk
= getClosestClock ( minClk
);
976 // clock not found - ERROR
978 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: clock not found - quitting" );
984 if (! findST (& start
, & skip
, tmpbuff
, waveLen
, clk
, tol
, j
, & i
)) {
985 // first ST not found - ERROR
986 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: first STT not found - quitting" );
989 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: first STT found at wave: %i, skip: %i, j=%i" , start
, skip
, j
);
991 if ( waveLen
[ i
+ 2 ] > clk
* 1 + tol
)
996 // skip over the remainder of ST
997 skip
+= clk
* 7 / 2 ; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
999 // now do it again to find the end
1003 if (! findST (& dummy1
, & end
, tmpbuff
, waveLen
, clk
, tol
, j
, & i
)) {
1004 //didn't find second ST - ERROR
1005 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: second STT not found - quitting" );
1009 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d" , skip
, end
, end
- skip
, clk
, ( end
- skip
)/ clk
, phaseoff
);
1010 //now begin to trim out ST so we can use normal demod cmds
1012 size_t datalen
= end
- start
;
1013 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1014 if ( clk
- ( datalen
% clk
) <= clk
/ 8 ) {
1015 // padd the amount off - could be problematic... but shouldn't happen often
1016 datalen
+= clk
- ( datalen
% clk
);
1017 } else if ( ( datalen
% clk
) <= clk
/ 8 ) {
1018 // padd the amount off - could be problematic... but shouldn't happen often
1019 datalen
-= datalen
% clk
;
1021 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting" , datalen
, clk
, datalen
% clk
);
1024 // if datalen is less than one t55xx block - ERROR
1025 if ( datalen
/ clk
< 8 * 4 ) {
1026 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: datalen is less than 1 full t55xx block - quitting" );
1029 size_t dataloc
= start
;
1030 if ( buffer
[ dataloc
-( clk
* 4 )-( clk
/ 8 )] <= low
&& buffer
[ dataloc
] <= low
&& buffer
[ dataloc
-( clk
* 4 )] >= high
) {
1031 //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
1032 for ( i
= 0 ; i
<= ( clk
/ 8 ); ++ i
) {
1033 if ( buffer
[ dataloc
- ( clk
* 4 ) - i
] <= low
) {
1042 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: Starting STT trim - start: %d, datalen: %d " , dataloc
, datalen
);
1043 bool firstrun
= true ;
1044 // warning - overwriting buffer given with raw wave data with ST removed...
1045 while ( dataloc
< bufsize
-( clk
/ 2 ) ) {
1046 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1047 if ( buffer
[ dataloc
]< high
&& buffer
[ dataloc
]> low
&& buffer
[ dataloc
+ 3 ]< high
&& buffer
[ dataloc
+ 3 ]> low
) {
1048 for ( i
= 0 ; i
< clk
/ 2 - tol
; ++ i
) {
1049 buffer
[ dataloc
+ i
] = high
+ 5 ;
1051 } //test for single sample outlier (high between two lows) in the case of very strong waves
1052 if ( buffer
[ dataloc
] >= high
&& buffer
[ dataloc
+ 2 ] <= low
) {
1053 buffer
[ dataloc
] = buffer
[ dataloc
+ 2 ];
1054 buffer
[ dataloc
+ 1 ] = buffer
[ dataloc
+ 2 ];
1058 * ststart
= dataloc
-( clk
* 4 );
1061 for ( i
= 0 ; i
< datalen
; ++ i
) {
1062 if ( i
+ newloc
< bufsize
) {
1063 if ( i
+ newloc
< dataloc
)
1064 buffer
[ i
+ newloc
] = buffer
[ dataloc
];
1070 //skip next ST - we just assume it will be there from now on...
1071 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: skipping STT at %d to %d" , dataloc
, dataloc
+( clk
* 4 ));
1077 bool DetectST ( uint8_t buffer
[], size_t * size
, int * foundclock
) {
1078 size_t ststart
= 0 , stend
= 0 ;
1079 return DetectST_ext ( buffer
, size
, foundclock
, & ststart
, & stend
);
1083 //take 11 10 01 11 00 and make 01100 ... miller decoding
1084 //check for phase errors - should never have half a 1 or 0 by itself and should never exceed 1111 or 0000 in a row
1085 //decodes miller encoded binary
1086 //NOTE askrawdemod will NOT demod miller encoded ask unless the clock is manually set to 1/2 what it is detected as!
1087 int millerRawDecode ( uint8_t * BitStream
, size_t * size
, int invert
) {
1088 if (* size
< 16 ) return - 1 ;
1089 uint16_t MaxBits
= 512 , errCnt
= 0 ;
1091 uint8_t alignCnt
= 0 , curBit
= BitStream
[ 0 ], alignedIdx
= 0 ;
1092 uint8_t halfClkErr
= 0 ;
1093 //find alignment, needs 4 1s or 0s to properly align
1094 for ( i
= 1 ; i
< * size
- 1 ; i
++) {
1095 alignCnt
= ( BitStream
[ i
] == curBit
) ? alignCnt
+ 1 : 0 ;
1096 curBit
= BitStream
[ i
];
1097 if ( alignCnt
== 4 ) break ;
1099 // for now error if alignment not found. later add option to run it with multiple offsets...
1100 if ( alignCnt
!= 4 ) {
1101 if ( g_debugMode
) prnt ( "ERROR MillerDecode: alignment not found so either your bitstream is not miller or your data does not have a 101 in it" );
1104 alignedIdx
= ( i
- 1 ) % 2 ;
1105 for ( i
= alignedIdx
; i
< * size
- 3 ; i
+= 2 ) {
1106 halfClkErr
= ( uint8_t )(( halfClkErr
<< 1 | BitStream
[ i
]) & 0xFF );
1107 if ( ( halfClkErr
& 0x7 ) == 5 || ( halfClkErr
& 0x7 ) == 2 || ( i
> 2 && ( halfClkErr
& 0x7 ) == 0 ) || ( halfClkErr
& 0x1F ) == 0x1F ) {
1109 BitStream
[ bitCnt
++] = 7 ;
1112 BitStream
[ bitCnt
++] = BitStream
[ i
] ^ BitStream
[ i
+ 1 ] ^ invert
;
1114 if ( bitCnt
> MaxBits
) break ;
1121 //take 01 or 10 = 1 and 11 or 00 = 0
1122 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
1123 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
1124 int BiphaseRawDecode ( uint8_t * BitStream
, size_t * size
, int offset
, int invert
) {
1125 uint16_t bitnum
= 0 ;
1126 uint16_t errCnt
= 0 ;
1128 uint16_t MaxBits
= 512 ;
1129 //if not enough samples - error
1130 if (* size
< 51 ) return - 1 ;
1131 //check for phase change faults - skip one sample if faulty
1132 uint8_t offsetA
= 1 , offsetB
= 1 ;
1134 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) offsetA
= 0 ;
1135 if ( BitStream
[ i
+ 2 ]== BitStream
[ i
+ 3 ]) offsetB
= 0 ;
1137 if (! offsetA
&& offsetB
) offset
++;
1138 for ( i
= offset
; i
<* size
- 3 ; i
+= 2 ){
1139 //check for phase error
1140 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) {
1141 BitStream
[ bitnum
++]= 7 ;
1144 if (( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 1 )){
1145 BitStream
[ bitnum
++]= 1 ^ invert
;
1146 } else if (( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 1 )){
1147 BitStream
[ bitnum
++]= invert
;
1149 BitStream
[ bitnum
++]= 7 ;
1152 if ( bitnum
> MaxBits
) break ;
1159 //take 10 and 01 and manchester decode
1160 //run through 2 times and take least errCnt
1161 int manrawdecode ( uint8_t * BitStream
, size_t * size
, uint8_t invert
, uint8_t * alignPos
) {
1162 uint16_t bitnum
= 0 , MaxBits
= 512 , errCnt
= 0 ;
1164 uint16_t bestErr
= 1000 , bestRun
= 0 ;
1165 if (* size
< 16 ) return - 1 ;
1166 //find correct start position [alignment]
1167 for ( ii
= 0 ; ii
< 2 ;++ ii
){
1168 for ( i
= ii
; i
<* size
- 3 ; i
+= 2 )
1169 if ( BitStream
[ i
]== BitStream
[ i
+ 1 ])
1172 if ( bestErr
> errCnt
){
1180 for ( i
= bestRun
; i
< * size
- 3 ; i
+= 2 ){
1181 if ( BitStream
[ i
] == 1 && ( BitStream
[ i
+ 1 ] == 0 )){
1182 BitStream
[ bitnum
++]= invert
;
1183 } else if (( BitStream
[ i
] == 0 ) && BitStream
[ i
+ 1 ] == 1 ){
1184 BitStream
[ bitnum
++]= invert
^ 1 ;
1186 BitStream
[ bitnum
++]= 7 ;
1188 if ( bitnum
> MaxBits
) break ;
1195 //demodulates strong heavily clipped samples
1196 int cleanAskRawDemod ( uint8_t * BinStream
, size_t * size
, int clk
, int invert
, int high
, int low
, int * startIdx
)
1199 size_t bitCnt
= 0 , smplCnt
= 1 , errCnt
= 0 ;
1200 bool waveHigh
= ( BinStream
[ 0 ] >= high
);
1201 for ( size_t i
= 1 ; i
< * size
; i
++){
1202 if ( BinStream
[ i
] >= high
&& waveHigh
){
1204 } else if ( BinStream
[ i
] <= low
&& ! waveHigh
){
1206 } else { //transition
1207 if (( BinStream
[ i
] >= high
&& ! waveHigh
) || ( BinStream
[ i
] <= low
&& waveHigh
)){
1208 if ( smplCnt
> clk
-( clk
/ 4 )- 1 ) { //full clock
1209 if ( smplCnt
> clk
+ ( clk
/ 4 )+ 1 ) { //too many samples
1211 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Modulation Error at: %u" , i
);
1212 BinStream
[ bitCnt
++] = 7 ;
1213 } else if ( waveHigh
) {
1214 BinStream
[ bitCnt
++] = invert
;
1215 BinStream
[ bitCnt
++] = invert
;
1216 } else if (! waveHigh
) {
1217 BinStream
[ bitCnt
++] = invert
^ 1 ;
1218 BinStream
[ bitCnt
++] = invert
^ 1 ;
1220 if (* startIdx
== 0 ) * startIdx
= i
- clk
;
1221 waveHigh
= ! waveHigh
;
1223 } else if ( smplCnt
> ( clk
/ 2 ) - ( clk
/ 4 )- 1 ) { //half clock
1225 BinStream
[ bitCnt
++] = invert
;
1226 } else if (! waveHigh
) {
1227 BinStream
[ bitCnt
++] = invert
^ 1 ;
1229 if (* startIdx
== 0 ) * startIdx
= i
-( clk
/ 2 );
1230 waveHigh
= ! waveHigh
;
1234 //transition bit oops
1236 } else { //haven't hit new high or new low yet
1246 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
1247 int askdemod_ext ( uint8_t * BinStream
, size_t * size
, int * clk
, int * invert
, int maxErr
, uint8_t amp
, uint8_t askType
, int * startIdx
) {
1248 if (* size
== 0 ) return - 1 ;
1249 int start
= DetectASKClock ( BinStream
, * size
, clk
, maxErr
); //clock default
1250 if (* clk
== 0 || start
< 0 ) return - 3 ;
1251 if (* invert
!= 1 ) * invert
= 0 ;
1252 if ( amp
== 1 ) askAmp ( BinStream
, * size
);
1253 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, beststart %d, amp %d" , * clk
, start
, amp
);
1255 //start pos from detect ask clock is 1/2 clock offset
1256 // NOTE: can be negative (demod assumes rest of wave was there)
1257 * startIdx
= start
- (* clk
/ 2 );
1258 uint8_t initLoopMax
= 255 ;
1259 if ( initLoopMax
> * size
) initLoopMax
= * size
;
1260 // Detect high and lows
1261 //25% clip in case highs and lows aren't clipped [marshmellow]
1263 if ( getHiLo ( BinStream
, initLoopMax
, & high
, & low
, 75 , 75 ) < 1 )
1264 return - 2 ; //just noise
1267 // if clean clipped waves detected run alternate demod
1268 if ( DetectCleanAskWave ( BinStream
, * size
, high
, low
)) {
1269 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Clean Wave Detected - using clean wave demod" );
1270 errCnt
= cleanAskRawDemod ( BinStream
, size
, * clk
, * invert
, high
, low
, startIdx
);
1271 if ( askType
) { //askman
1272 uint8_t alignPos
= 0 ;
1273 errCnt
= manrawdecode ( BinStream
, size
, 0 , & alignPos
);
1274 * startIdx
+= * clk
/ 2 * alignPos
;
1275 if ( g_debugMode
) prnt ( "DEBUG ASK CLEAN: startIdx %i, alignPos %u" , * startIdx
, alignPos
);
1281 if ( g_debugMode
) prnt ( "DEBUG ASK WEAK: startIdx %i" , * startIdx
);
1282 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Weak Wave Detected - using weak wave demod" );
1284 int lastBit
; //set first clock check - can go negative
1285 size_t i
, bitnum
= 0 ; //output counter
1287 uint8_t tol
= 0 ; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
1288 if (* clk
<= 32 ) tol
= 1 ; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
1289 size_t MaxBits
= 3072 ; //max bits to collect
1290 lastBit
= start
- * clk
;
1292 for ( i
= start
; i
< * size
; ++ i
) {
1293 if ( i
- lastBit
>= * clk
- tol
){
1294 if ( BinStream
[ i
] >= high
) {
1295 BinStream
[ bitnum
++] = * invert
;
1296 } else if ( BinStream
[ i
] <= low
) {
1297 BinStream
[ bitnum
++] = * invert
^ 1 ;
1298 } else if ( i
- lastBit
>= * clk
+ tol
) {
1300 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Modulation Error at: %u" , i
);
1301 BinStream
[ bitnum
++]= 7 ;
1304 } else { //in tolerance - looking for peak
1309 } else if ( i
- lastBit
>= (* clk
/ 2 - tol
) && ! midBit
&& ! askType
){
1310 if ( BinStream
[ i
] >= high
) {
1311 BinStream
[ bitnum
++] = * invert
;
1312 } else if ( BinStream
[ i
] <= low
) {
1313 BinStream
[ bitnum
++] = * invert
^ 1 ;
1314 } else if ( i
- lastBit
>= * clk
/ 2 + tol
) {
1315 BinStream
[ bitnum
] = BinStream
[ bitnum
- 1 ];
1317 } else { //in tolerance - looking for peak
1322 if ( bitnum
>= MaxBits
) break ;
1328 int askdemod ( uint8_t * BinStream
, size_t * size
, int * clk
, int * invert
, int maxErr
, uint8_t amp
, uint8_t askType
) {
1330 return askdemod_ext ( BinStream
, size
, clk
, invert
, maxErr
, amp
, askType
, & start
);
1333 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1334 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1335 int nrzRawDemod ( uint8_t * dest
, size_t * size
, int * clk
, int * invert
, int * startIdx
) {
1336 if ( justNoise ( dest
, * size
)) return - 1 ;
1337 size_t clkStartIdx
= 0 ;
1338 * clk
= DetectNRZClock ( dest
, * size
, * clk
, & clkStartIdx
);
1339 if (* clk
== 0 ) return - 2 ;
1340 size_t i
, gLen
= 4096 ;
1341 if ( gLen
>* size
) gLen
= * size
- 20 ;
1343 if ( getHiLo ( dest
, gLen
, & high
, & low
, 75 , 75 ) < 1 ) return - 3 ; //25% fuzz on high 25% fuzz on low
1346 //convert wave samples to 1's and 0's
1347 for ( i
= 20 ; i
< * size
- 20 ; i
++){
1348 if ( dest
[ i
] >= high
) bit
= 1 ;
1349 if ( dest
[ i
] <= low
) bit
= 0 ;
1352 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1355 for ( i
= 21 ; i
< * size
- 20 ; i
++) {
1356 //if transition detected or large number of same bits - store the passed bits
1357 if ( dest
[ i
] != dest
[ i
- 1 ] || ( i
- lastBit
) == ( 10 * * clk
)) {
1358 memset ( dest
+ numBits
, dest
[ i
- 1 ] ^ * invert
, ( i
- lastBit
+ (* clk
/ 4 )) / * clk
);
1359 numBits
+= ( i
- lastBit
+ (* clk
/ 4 )) / * clk
;
1361 * startIdx
= i
- ( numBits
* * clk
);
1362 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: startIdx %i" , * startIdx
);
1371 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
1372 size_t fsk_wave_demod ( uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
, int * startIdx
) {
1373 size_t last_transition
= 0 ;
1375 if ( fchigh
== 0 ) fchigh
= 10 ;
1376 if ( fclow
== 0 ) fclow
= 8 ;
1377 //set the threshold close to 0 (graph) or 128 std to avoid static
1378 size_t preLastSample
= 0 ;
1379 size_t LastSample
= 0 ;
1380 size_t currSample
= 0 ;
1381 if ( size
< 1024 ) return 0 ; // not enough samples
1383 //find start of modulating data in trace
1384 idx
= findModStart ( dest
, size
, fchigh
);
1385 // Need to threshold first sample
1386 if ( dest
[ idx
] < FSK_PSK_THRESHOLD
) dest
[ 0 ] = 0 ;
1389 last_transition
= idx
;
1392 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
1393 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
1394 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
1395 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
1396 for (; idx
< size
; idx
++) {
1397 // threshold current value
1398 if ( dest
[ idx
] < FSK_PSK_THRESHOLD
) dest
[ idx
] = 0 ;
1401 // Check for 0->1 transition
1402 if ( dest
[ idx
- 1 ] < dest
[ idx
]) {
1403 preLastSample
= LastSample
;
1404 LastSample
= currSample
;
1405 currSample
= idx
- last_transition
;
1406 if ( currSample
< ( fclow
- 2 )) { //0-5 = garbage noise (or 0-3)
1407 //do nothing with extra garbage
1408 } else if ( currSample
< ( fchigh
- 1 )) { //6-8 = 8 sample waves (or 3-6 = 5)
1409 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
1410 if ( numBits
> 1 && LastSample
> ( fchigh
- 2 ) && ( preLastSample
< ( fchigh
- 1 ))){
1414 if ( numBits
> 0 && * startIdx
== 0 ) * startIdx
= idx
- fclow
;
1415 } else if ( currSample
> ( fchigh
+ 1 ) && numBits
< 3 ) { //12 + and first two bit = unusable garbage
1416 //do nothing with beginning garbage and reset.. should be rare..
1418 } else if ( currSample
== ( fclow
+ 1 ) && LastSample
== ( fclow
- 1 )) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
1420 if ( numBits
> 0 && * startIdx
== 0 ) * startIdx
= idx
- fclow
;
1421 } else { //9+ = 10 sample waves (or 6+ = 7)
1423 if ( numBits
> 0 && * startIdx
== 0 ) * startIdx
= idx
- fchigh
;
1425 last_transition
= idx
;
1428 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
1431 //translate 11111100000 to 10
1432 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
1433 size_t aggregate_bits ( uint8_t * dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
, int * startIdx
) {
1434 uint8_t lastval
= dest
[ 0 ];
1438 for ( idx
= 1 ; idx
< size
; idx
++) {
1440 if ( dest
[ idx
]== lastval
) continue ; //skip until we hit a transition
1442 //find out how many bits (n) we collected (use 1/2 clk tolerance)
1443 //if lastval was 1, we have a 1->0 crossing
1444 if ( dest
[ idx
- 1 ]== 1 ) {
1445 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
1446 } else { // 0->1 crossing
1447 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
1451 //first transition - save startidx
1453 if ( lastval
== 1 ) { //high to low
1454 * startIdx
+= ( fclow
* idx
) - ( n
* rfLen
);
1455 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: startIdx %i, fclow*idx %i, n*rflen %u" , * startIdx
, fclow
*( idx
), n
* rfLen
);
1457 * startIdx
+= ( fchigh
* idx
) - ( n
* rfLen
);
1458 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: startIdx %i, fchigh*idx %i, n*rflen %u" , * startIdx
, fchigh
*( idx
), n
* rfLen
);
1462 //add to our destination the bits we collected
1463 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
1468 // if valid extra bits at the end were all the same frequency - add them in
1469 if ( n
> rfLen
/ fchigh
) {
1470 if ( dest
[ idx
- 2 ]== 1 ) {
1471 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
1473 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
1475 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
1481 //by marshmellow (from holiman's base)
1482 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
1483 int fskdemod_ext ( uint8_t * dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
, int * startIdx
) {
1485 size
= fsk_wave_demod ( dest
, size
, fchigh
, fclow
, startIdx
);
1486 size
= aggregate_bits ( dest
, size
, rfLen
, invert
, fchigh
, fclow
, startIdx
);
1490 int fskdemod ( uint8_t * dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
) {
1492 return fskdemod_ext ( dest
, size
, rfLen
, invert
, fchigh
, fclow
, & startIdx
);
1496 // convert psk1 demod to psk2 demod
1497 // only transition waves are 1s
1498 void psk1TOpsk2 ( uint8_t * BitStream
, size_t size
) {
1500 uint8_t lastBit
= BitStream
[ 0 ];
1501 for (; i
< size
; i
++){
1502 if ( BitStream
[ i
]== 7 ){
1504 } else if ( lastBit
!= BitStream
[ i
]){
1505 lastBit
= BitStream
[ i
];
1515 // convert psk2 demod to psk1 demod
1516 // from only transition waves are 1s to phase shifts change bit
1517 void psk2TOpsk1 ( uint8_t * BitStream
, size_t size
) {
1519 for ( size_t i
= 0 ; i
< size
; i
++){
1520 if ( BitStream
[ i
]== 1 ){
1528 size_t pskFindFirstPhaseShift ( uint8_t samples
[], size_t size
, uint8_t * curPhase
, size_t waveStart
, uint16_t fc
, uint16_t * fullWaveLen
) {
1529 uint16_t loopCnt
= ( size
+ 3 < 4096 ) ? size
: 4096 ; //don't need to loop through entire array...
1531 uint16_t avgWaveVal
= 0 , lastAvgWaveVal
= 0 ;
1532 size_t i
= waveStart
, waveEnd
, waveLenCnt
, firstFullWave
;
1533 for (; i
< loopCnt
; i
++) {
1535 if ( samples
[ i
]+ fc
< samples
[ i
+ 1 ] && samples
[ i
+ 1 ] >= samples
[ i
+ 2 ]){
1537 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: waveEnd: %u, waveStart: %u" , waveEnd
, waveStart
);
1538 waveLenCnt
= waveEnd
- waveStart
;
1539 if ( waveLenCnt
> fc
&& waveStart
> fc
&& !( waveLenCnt
> fc
+ 8 )){ //not first peak and is a large wave but not out of whack
1540 lastAvgWaveVal
= avgWaveVal
/( waveLenCnt
);
1541 firstFullWave
= waveStart
;
1542 * fullWaveLen
= waveLenCnt
;
1543 //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting)
1544 if ( lastAvgWaveVal
> FSK_PSK_THRESHOLD
) * curPhase
^= 1 ;
1545 return firstFullWave
;
1550 avgWaveVal
+= samples
[ i
+ 2 ];
1555 //by marshmellow - demodulate PSK1 wave
1556 //uses wave lengths (# Samples)
1557 int pskRawDemod_ext ( uint8_t dest
[], size_t * size
, int * clock
, int * invert
, int * startIdx
) {
1558 if (* size
< 170 ) return - 1 ;
1560 uint8_t curPhase
= * invert
;
1561 size_t i
= 0 , numBits
= 0 , waveStart
= 1 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
1562 uint16_t fc
= 0 , fullWaveLen
= 0 , waveLenCnt
= 0 , avgWaveVal
, tol
= 1 ;
1563 uint16_t errCnt
= 0 , errCnt2
= 0 ;
1565 fc
= countFC ( dest
, * size
, 1 );
1566 if (( fc
>> 8 ) == 10 ) return - 1 ; //fsk found - quit
1568 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
1569 * clock
= DetectPSKClock ( dest
, * size
, * clock
);
1570 if (* clock
== 0 ) return - 1 ;
1572 //find start of modulating data in trace
1573 i
= findModStart ( dest
, * size
, fc
);
1575 //find first phase shift
1576 firstFullWave
= pskFindFirstPhaseShift ( dest
, * size
, & curPhase
, i
, fc
, & fullWaveLen
);
1577 if ( firstFullWave
== 0 ) {
1578 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1579 // so skip a little to ensure we are past any Start Signal
1580 firstFullWave
= 160 ;
1581 memset ( dest
, curPhase
, firstFullWave
/ * clock
);
1583 memset ( dest
, curPhase
^ 1 , firstFullWave
/ * clock
);
1586 numBits
+= ( firstFullWave
/ * clock
);
1587 * startIdx
= firstFullWave
- (* clock
* numBits
)+ 2 ;
1588 //set start of wave as clock align
1589 lastClkBit
= firstFullWave
;
1590 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %u, waveLen: %u, startIdx %i" , firstFullWave
, fullWaveLen
, * startIdx
);
1591 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u" , * clock
, lastClkBit
,( unsigned int ) fc
);
1593 dest
[ numBits
++] = curPhase
; //set first read bit
1594 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< * size
- 3 ; i
++){
1595 //top edge of wave = start of new wave
1596 if ( dest
[ i
]+ fc
< dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1597 if ( waveStart
== 0 ) {
1600 avgWaveVal
= dest
[ i
+ 1 ];
1603 waveLenCnt
= waveEnd
- waveStart
;
1604 if ( waveLenCnt
> fc
){
1605 //this wave is a phase shift
1606 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1607 if ( i
+ 1 >= lastClkBit
+ * clock
- tol
){ //should be a clock bit
1609 dest
[ numBits
++] = curPhase
;
1610 lastClkBit
+= * clock
;
1611 } else if ( i
< lastClkBit
+ 10 + fc
){
1612 //noise after a phase shift - ignore
1613 } else { //phase shift before supposed to based on clock
1615 dest
[ numBits
++] = 7 ;
1617 } else if ( i
+ 1 > lastClkBit
+ * clock
+ tol
+ fc
){
1618 lastClkBit
+= * clock
; //no phase shift but clock bit
1619 dest
[ numBits
++] = curPhase
;
1620 } else if ( waveLenCnt
< fc
- 1 ) { //wave is smaller than field clock (shouldn't happen often)
1622 if ( errCnt2
> 101 ) return errCnt2
;
1628 avgWaveVal
+= dest
[ i
+ 1 ];
1634 int pskRawDemod ( uint8_t dest
[], size_t * size
, int * clock
, int * invert
) {
1636 return pskRawDemod_ext ( dest
, size
, clock
, invert
, & startIdx
);
1639 //**********************************************************************************************
1640 //-----------------Tag format detection section-------------------------------------------------
1641 //**********************************************************************************************
1644 // FSK Demod then try to locate an AWID ID
1645 int AWIDdemodFSK ( uint8_t * dest
, size_t * size
) {
1646 //make sure buffer has enough data
1647 if (* size
< 96 * 50 ) return - 1 ;
1649 if ( justNoise ( dest
, * size
)) return - 2 ;
1652 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
1653 if (* size
< 96 ) return - 3 ; //did we get a good demod?
1655 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
1656 size_t startIdx
= 0 ;
1657 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
1658 if ( errChk
== 0 ) return - 4 ; //preamble not found
1659 if (* size
!= 96 ) return - 5 ;
1660 return ( int ) startIdx
;
1664 //takes 1s and 0s and searches for EM410x format - output EM ID
1665 uint8_t Em410xDecode ( uint8_t * BitStream
, size_t * size
, size_t * startIdx
, uint32_t * hi
, uint64_t * lo
)
1668 if (* size
< 64 ) return 0 ;
1669 if ( BitStream
[ 1 ]> 1 ) return 0 ; //allow only 1s and 0s
1671 // 111111111 bit pattern represent start of frame
1672 // include 0 in front to help get start pos
1673 uint8_t preamble
[] = { 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 };
1675 uint8_t FmtLen
= 10 ; // sets of 4 bits = end data
1677 errChk
= preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, startIdx
);
1678 if ( errChk
== 0 || (* size
!= 64 && * size
!= 128 ) ) return 0 ;
1679 if (* size
== 128 ) FmtLen
= 22 ; // 22 sets of 4 bits
1681 //skip last 4bit parity row for simplicity
1682 * size
= removeParity ( BitStream
, * startIdx
+ sizeof ( preamble
), 5 , 0 , FmtLen
* 5 );
1683 if (* size
== 40 ) { // std em410x format
1685 * lo
= (( uint64_t )( bytebits_to_byte ( BitStream
, 8 )) << 32 ) | ( bytebits_to_byte ( BitStream
+ 8 , 32 ));
1686 } else if (* size
== 88 ) { // long em format
1687 * hi
= ( bytebits_to_byte ( BitStream
, 24 ));
1688 * lo
= (( uint64_t )( bytebits_to_byte ( BitStream
+ 24 , 32 )) << 32 ) | ( bytebits_to_byte ( BitStream
+ 24 + 32 , 32 ));
1695 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
1696 // BitStream must contain previously askrawdemod and biphasedemoded data
1697 int FDXBdemodBI ( uint8_t * dest
, size_t * size
) {
1698 //make sure buffer has enough data
1699 if (* size
< 128 ) return - 1 ;
1701 size_t startIdx
= 0 ;
1702 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
1704 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
1705 if ( errChk
== 0 ) return - 2 ; //preamble not found
1706 if (* size
!= 128 ) return - 3 ; //wrong size for fdxb
1707 //return start position
1708 return ( int ) startIdx
;
1712 // demod gProxIIDemod
1713 // error returns as -x
1714 // success returns start position in BitStream
1715 // BitStream must contain previously askrawdemod and biphasedemoded data
1716 int gProxII_Demod ( uint8_t BitStream
[], size_t * size
) {
1718 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 0 };
1720 uint8_t errChk
= preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, & startIdx
);
1721 if ( errChk
== 0 ) return - 3 ; //preamble not found
1722 if (* size
!= 96 ) return - 2 ; //should have found 96 bits
1723 //check first 6 spacer bits to verify format
1724 if (! BitStream
[ startIdx
+ 5 ] && ! BitStream
[ startIdx
+ 10 ] && ! BitStream
[ startIdx
+ 15 ] && ! BitStream
[ startIdx
+ 20 ] && ! BitStream
[ startIdx
+ 25 ] && ! BitStream
[ startIdx
+ 30 ]){
1725 //confirmed proper separator bits found
1726 //return start position
1727 return ( int ) startIdx
;
1729 return - 5 ; //spacer bits not found - not a valid gproxII
1732 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
1733 int HIDdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
) {
1734 if ( justNoise ( dest
, * size
)) return - 1 ;
1736 size_t numStart
= 0 , size2
=* size
, startIdx
= 0 ;
1738 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
1739 if (* size
< 96 * 2 ) return - 2 ;
1740 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
1741 uint8_t preamble
[] = { 0 , 0 , 0 , 1 , 1 , 1 , 0 , 1 };
1742 // find bitstring in array
1743 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
1744 if ( errChk
== 0 ) return - 3 ; //preamble not found
1746 numStart
= startIdx
+ sizeof ( preamble
);
1747 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
1748 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
1749 if ( dest
[ idx
] == dest
[ idx
+ 1 ]){
1750 return - 4 ; //not manchester data
1752 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
1753 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
1754 //Then, shift in a 0 or one into low
1755 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
1760 return ( int ) startIdx
;
1763 int IOdemodFSK ( uint8_t * dest
, size_t size
) {
1764 if ( justNoise ( dest
, size
)) return - 1 ;
1765 //make sure buffer has data
1766 if ( size
< 66 * 64 ) return - 2 ;
1768 size
= fskdemod ( dest
, size
, 64 , 1 , 10 , 8 ); // FSK2a RF/64
1769 if ( size
< 65 ) return - 3 ; //did we get a good demod?
1771 //0 10 20 30 40 50 60
1773 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1774 //-----------------------------------------------------------------------------
1775 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1777 //XSF(version)facility:codeone+codetwo
1779 size_t startIdx
= 0 ;
1780 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
1781 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), & size
, & startIdx
);
1782 if ( errChk
== 0 ) return - 4 ; //preamble not found
1784 if (! dest
[ startIdx
+ 8 ] && dest
[ startIdx
+ 17 ]== 1 && dest
[ startIdx
+ 26 ]== 1 && dest
[ startIdx
+ 35 ]== 1 && dest
[ startIdx
+ 44 ]== 1 && dest
[ startIdx
+ 53 ]== 1 ){
1785 //confirmed proper separator bits found
1786 //return start position
1787 return ( int ) startIdx
;
1792 // redesigned by marshmellow adjusted from existing decode functions
1793 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1794 int indala26decode ( uint8_t * bitStream
, size_t * size
, uint8_t * invert
) {
1795 //26 bit 40134 format (don't know other formats)
1796 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
1797 uint8_t preamble_i
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
1798 size_t startidx
= 0 ;
1799 if (! preambleSearch ( bitStream
, preamble
, sizeof ( preamble
), size
, & startidx
)){
1800 // if didn't find preamble try again inverting
1801 if (! preambleSearch ( bitStream
, preamble_i
, sizeof ( preamble_i
), size
, & startidx
)) return - 1 ;
1804 if (* size
!= 64 && * size
!= 224 ) return - 2 ;
1806 for ( size_t i
= startidx
; i
< * size
; i
++)
1809 return ( int ) startidx
;
1812 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
1813 int ParadoxdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
) {
1814 if ( justNoise ( dest
, * size
)) return - 1 ;
1816 size_t numStart
= 0 , size2
=* size
, startIdx
= 0 ;
1818 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
1819 if (* size
< 96 ) return - 2 ;
1821 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
1822 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 };
1824 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
1825 if ( errChk
== 0 ) return - 3 ; //preamble not found
1827 numStart
= startIdx
+ sizeof ( preamble
);
1828 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
1829 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
1830 if ( dest
[ idx
] == dest
[ idx
+ 1 ])
1831 return - 4 ; //not manchester data
1832 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
1833 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
1834 //Then, shift in a 0 or one into low
1835 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
1840 return ( int ) startIdx
;
1843 // find presco preamble 0x10D in already demoded data
1844 int PrescoDemod ( uint8_t * dest
, size_t * size
) {
1845 //make sure buffer has data
1846 if (* size
< 64 * 2 ) return - 2 ;
1848 size_t startIdx
= 0 ;
1849 uint8_t preamble
[] = { 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1850 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
1851 if ( errChk
== 0 ) return - 4 ; //preamble not found
1852 //return start position
1853 return ( int ) startIdx
;
1857 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
1858 int PyramiddemodFSK ( uint8_t * dest
, size_t * size
) {
1859 //make sure buffer has data
1860 if (* size
< 128 * 50 ) return - 5 ;
1862 //test samples are not just noise
1863 if ( justNoise ( dest
, * size
)) return - 1 ;
1866 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
1867 if (* size
< 128 ) return - 2 ; //did we get a good demod?
1869 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
1870 size_t startIdx
= 0 ;
1871 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
1872 if ( errChk
== 0 ) return - 4 ; //preamble not found
1873 if (* size
!= 128 ) return - 3 ;
1874 return ( int ) startIdx
;
1878 // find viking preamble 0xF200 in already demoded data
1879 int VikingDemod_AM ( uint8_t * dest
, size_t * size
) {
1880 //make sure buffer has data
1881 if (* size
< 64 * 2 ) return - 2 ;
1883 size_t startIdx
= 0 ;
1884 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1885 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
1886 if ( errChk
== 0 ) return - 4 ; //preamble not found
1887 uint32_t checkCalc
= bytebits_to_byte ( dest
+ startIdx
, 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 8 , 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 16 , 8 )
1888 ^ bytebits_to_byte ( dest
+ startIdx
+ 24 , 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 32 , 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 40 , 8 )
1889 ^ bytebits_to_byte ( dest
+ startIdx
+ 48 , 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 56 , 8 );
1890 if ( checkCalc
!= 0xA8 ) return - 5 ;
1891 if (* size
!= 64 ) return - 6 ;
1892 //return start position
1893 return ( int ) startIdx
;
1897 // find Visa2000 preamble in already demoded data
1898 int Visa2kDemod_AM ( uint8_t * dest
, size_t * size
) {
1899 if (* size
< 96 ) return - 1 ; //make sure buffer has data
1900 size_t startIdx
= 0 ;
1901 uint8_t preamble
[] = { 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 0 };
1902 if ( preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
) == 0 )
1903 return - 2 ; //preamble not found
1904 if (* size
!= 96 ) return - 3 ; //wrong demoded size
1905 //return start position
1906 return ( int ) startIdx
;