]> cvs.zerfleddert.de Git - proxmark3-svn/blob - client/hardnested/hardnested_tables.c
fix MacOS compile errors by replacing memalign() with posix_memalign()
[proxmark3-svn] / client / hardnested / hardnested_tables.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015, 2016 by piwi
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Implements a card only attack based on crypto text (encrypted nonces
9 // received during a nested authentication) only. Unlike other card only
10 // attacks this doesn't rely on implementation errors but only on the
11 // inherent weaknesses of the crypto1 cypher. Described in
12 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14 // Computer and Communications Security, 2015
15 //-----------------------------------------------------------------------------
16 //
17 // This program calculates tables with possible states for a given
18 // bitflip property.
19 //
20 //-----------------------------------------------------------------------------
21
22 #include <inttypes.h>
23 #include <stdbool.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <stdio.h>
27 #include <time.h>
28 #include "crapto1/crapto1.h"
29 #include "parity.h"
30
31
32 #define NUM_PART_SUMS 9
33 #define BITFLIP_2ND_BYTE 0x0200
34
35 typedef enum {
36 EVEN_STATE = 0,
37 ODD_STATE = 1
38 } odd_even_t;
39
40
41 static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
42 {
43 uint16_t sum = 0;
44 for (uint16_t j = 0; j < 16; j++) {
45 uint32_t st = state;
46 uint16_t part_sum = 0;
47 if (odd_even == ODD_STATE) {
48 for (uint16_t i = 0; i < 5; i++) {
49 part_sum ^= filter(st);
50 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
51 }
52 part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits
53 } else {
54 for (uint16_t i = 0; i < 4; i++) {
55 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
56 part_sum ^= filter(st);
57 }
58 }
59 sum += part_sum;
60 }
61 return sum;
62 }
63
64
65 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
66 // bitarray functions
67
68 #define malloc_bitarray(x) __builtin_assume_aligned(_aligned_malloc(x, __BIGGEST_ALIGNMENT__), __BIGGEST_ALIGNMENT__)
69 #define free_bitarray(x) _aligned_free(x)
70
71 static inline void clear_bitarray24(uint32_t *bitarray)
72 {
73 memset(bitarray, 0x00, sizeof(uint32_t) * (1<<19));
74 }
75
76
77 static inline uint32_t test_bit24(uint32_t *bitarray, uint32_t index)
78 {
79 return bitarray[index>>5] & (0x80000000>>(index&0x0000001f));
80 }
81
82
83 static inline void set_bit24(uint32_t *bitarray, uint32_t index)
84 {
85 bitarray[index>>5] |= 0x80000000>>(index&0x0000001f);
86 }
87
88
89 static inline uint32_t next_state(uint32_t *bitset, uint32_t state)
90 {
91 if (++state == 1<<24) return 1<<24;
92 uint32_t index = state >> 5;
93 uint_fast8_t bit = state & 0x1f;
94 uint32_t line = bitset[index] << bit;
95 while (bit <= 0x1f) {
96 if (line & 0x80000000) return state;
97 state++;
98 bit++;
99 line <<= 1;
100 }
101 index++;
102 while (bitset[index] == 0x00000000 && state < 1<<24) {
103 index++;
104 state += 0x20;
105 }
106 if (state >= 1<<24) return 1<<24;
107 #if defined __GNUC__
108 return state + __builtin_clz(bitset[index]);
109 #else
110 bit = 0x00;
111 line = bitset[index];
112 while (bit <= 0x1f) {
113 if (line & 0x80000000) return state;
114 state++;
115 bit++;
116 line <<= 1;
117 }
118 return 1<<24;
119 #endif
120 }
121
122
123 static inline uint32_t next_not_state(uint32_t *bitset, uint32_t state)
124 {
125 if (++state == 1<<24) return 1<<24;
126 uint32_t index = state >> 5;
127 uint_fast8_t bit = state & 0x1f;
128 uint32_t line = bitset[index] << bit;
129 while (bit <= 0x1f) {
130 if ((line & 0x80000000) == 0) return state;
131 state++;
132 bit++;
133 line <<= 1;
134 }
135 index++;
136 while (bitset[index] == 0xffffffff && state < 1<<24) {
137 index++;
138 state += 0x20;
139 }
140 if (state >= 1<<24) return 1<<24;
141 #if defined __GNUC__
142 return state + __builtin_clz(~bitset[index]);
143 #else
144 bit = 0x00;
145 line = bitset[index];
146 while (bit <= 0x1f) {
147 if ((line & 0x80000000) == 0) return state;
148 state++;
149 bit++;
150 line <<= 1;
151 }
152 return 1<<24;
153 #endif
154 }
155
156
157 static inline uint32_t bitcount(uint32_t a)
158 {
159 #if defined __GNUC__
160 return __builtin_popcountl(a);
161 #else
162 a = a - ((a >> 1) & 0x55555555);
163 a = (a & 0x33333333) + ((a >> 2) & 0x33333333);
164 return (((a + (a >> 4)) & 0x0f0f0f0f) * 0x01010101) >> 24;
165 #endif
166 }
167
168
169 static inline uint32_t count_states(uint32_t *bitset)
170 {
171 uint32_t count = 0;
172 for (uint32_t i = 0; i < (1<<19); i++) {
173 count += bitcount(bitset[i]);
174 }
175 return count;
176 }
177
178
179 static void write_bitflips_file(odd_even_t odd_even, uint16_t bitflip, int sum_a0, uint32_t *bitset)
180 {
181 char filename[80];
182 sprintf(filename, "bitflip_%d_%03" PRIx16 "_sum%d_states.bin", odd_even, bitflip, sum_a0);
183 FILE *outfile = fopen(filename, "wb");
184 fwrite(bitset, 1, sizeof(uint32_t)*(1<<19), outfile);
185 fclose(outfile);
186 }
187
188
189 uint32_t *restrict part_sum_a0_bitarrays[2][NUM_PART_SUMS];
190
191 static void init_part_sum_bitarrays(void)
192 {
193 printf("init_part_sum_bitarrays()...");
194 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
195 for (uint16_t part_sum_a0 = 0; part_sum_a0 < NUM_PART_SUMS; part_sum_a0++) {
196 part_sum_a0_bitarrays[odd_even][part_sum_a0] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
197 if (part_sum_a0_bitarrays[odd_even][part_sum_a0] == NULL) {
198 printf("Out of memory error in init_part_suma0_statelists(). Aborting...\n");
199 exit(4);
200 }
201 clear_bitarray24(part_sum_a0_bitarrays[odd_even][part_sum_a0]);
202 }
203 }
204 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
205 //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a0);
206 for (uint32_t state = 0; state < (1<<20); state++) {
207 uint16_t part_sum_a0 = PartialSumProperty(state, odd_even) / 2;
208 for (uint16_t low_bits = 0; low_bits < 1<<4; low_bits++) {
209 set_bit24(part_sum_a0_bitarrays[odd_even][part_sum_a0], state<<4 | low_bits);
210 }
211 }
212 }
213 printf("done.\n");
214 }
215
216
217 static void free_part_sum_bitarrays(void)
218 {
219 printf("free_part_sum_bitarrays()...");
220 for (int16_t part_sum_a0 = (NUM_PART_SUMS-1); part_sum_a0 >= 0; part_sum_a0--) {
221 free_bitarray(part_sum_a0_bitarrays[ODD_STATE][part_sum_a0]);
222 }
223 for (int16_t part_sum_a0 = (NUM_PART_SUMS-1); part_sum_a0 >= 0; part_sum_a0--) {
224 free_bitarray(part_sum_a0_bitarrays[EVEN_STATE][part_sum_a0]);
225 }
226 printf("done.\n");
227 }
228
229 uint32_t *restrict sum_a0_bitarray[2];
230
231 void init_sum_bitarray(uint16_t sum_a0)
232 {
233 printf("init_sum_bitarray()...\n");
234 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
235 sum_a0_bitarray[odd_even] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
236 if (sum_a0_bitarray[odd_even] == NULL) {
237 printf("Out of memory error in init_sum_bitarrays(). Aborting...\n");
238 exit(4);
239 }
240 clear_bitarray24(sum_a0_bitarray[odd_even]);
241 }
242 for (uint8_t p = 0; p < NUM_PART_SUMS; p++) {
243 for (uint8_t q = 0; q < NUM_PART_SUMS; q++) {
244 if (sum_a0 == 2*p*(16-2*q) + (16-2*p)*2*q) {
245 for (uint32_t i = 0; i < (1<<19); i++) {
246 sum_a0_bitarray[EVEN_STATE][i] |= part_sum_a0_bitarrays[EVEN_STATE][q][i];
247 sum_a0_bitarray[ODD_STATE][i] |= part_sum_a0_bitarrays[ODD_STATE][p][i];
248 }
249 }
250 }
251 }
252 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
253 uint32_t count = count_states(sum_a0_bitarray[odd_even]);
254 printf("sum_a0_bitarray[%s] has %d states (%5.2f%%)\n", odd_even==EVEN_STATE?"even":"odd ", count, (float)count/(1<<24)*100.0);
255 }
256 printf("done.\n");
257 }
258
259
260 static void free_sum_bitarray(void)
261 {
262 printf("free_sum_bitarray()...");
263 free_bitarray(sum_a0_bitarray[ODD_STATE]);
264 free_bitarray(sum_a0_bitarray[EVEN_STATE]);
265 printf("done.\n");
266 }
267
268
269 static void precalculate_bit0_bitflip_bitarrays(uint8_t const bitflip, uint16_t const sum_a0)
270 {
271 // #define TEST_RUN
272 #ifdef TEST_RUN
273 #define NUM_TEST_STATES (1<<10)
274 #else
275 #define NUM_TEST_STATES (1<<23)
276 #endif
277
278 time_t start_time = time(NULL);
279 time_t last_check_time = start_time;
280
281 uint32_t *restrict test_bitarray[2];
282 uint32_t *restrict test_not_bitarray[2];
283
284 test_bitarray[EVEN_STATE] = malloc_bitarray(sizeof(uint32_t) * (1<<19));
285 clear_bitarray24(test_bitarray[EVEN_STATE]);
286 test_bitarray[ODD_STATE] = malloc_bitarray(sizeof(uint32_t) * (1<<19));
287 clear_bitarray24(test_bitarray[ODD_STATE]);
288
289 test_not_bitarray[EVEN_STATE] = malloc_bitarray(sizeof(uint32_t) * (1<<19));
290 clear_bitarray24(test_not_bitarray[EVEN_STATE]);
291 test_not_bitarray[ODD_STATE] = malloc_bitarray(sizeof(uint32_t) * (1<<19));
292 clear_bitarray24(test_not_bitarray[ODD_STATE]);
293
294 uint32_t count[2];
295 bool all_odd_states_are_possible_for_notbitflip = false;
296
297 printf("\n\nStarting search for crypto1 states resulting in bitflip property 0x%03x...\n", bitflip);
298 for (uint32_t even_state = next_state(sum_a0_bitarray[EVEN_STATE], -1); even_state < NUM_TEST_STATES; even_state = next_state(sum_a0_bitarray[EVEN_STATE], even_state)) {
299 bool even_state_is_possible = false;
300 time_t time_now = time(NULL);
301 if (difftime(time_now, last_check_time) > 5*60) { // print status every 5 minutes
302 float runtime = difftime(time_now, start_time);
303 float remaining_time = runtime * ((1<<23) - even_state) / even_state;
304 printf("\n%1.1f hours elapsed, expected completion in %1.1f hours (%1.1f days)", runtime/3600, remaining_time/3600, remaining_time/3600/24);
305 last_check_time = time_now;
306 }
307 for (uint32_t odd_state = next_state(sum_a0_bitarray[ODD_STATE], -1); odd_state < (1<<24); odd_state = next_state(test_bitarray[ODD_STATE], odd_state)) {
308 if (even_state_is_possible && test_bit24(test_bitarray[ODD_STATE], odd_state)) continue;
309 // load crypto1 state
310 struct Crypto1State cs;
311 cs.odd = odd_state >> 4;
312 cs.even = even_state >> 4;
313
314 // track flipping bits in state
315 struct Crypto1DeltaState {
316 uint_fast8_t odd;
317 uint_fast8_t even;
318 } cs_delta;
319 cs_delta.odd = 0;
320 cs_delta.even = 0;
321
322 uint_fast16_t keystream = 0;
323
324 // decrypt 9 bits
325 for (int i = 0; i < 9; i++) {
326 uint_fast8_t keystream_bit = filter(cs.odd & 0x000fffff) ^ filter((cs.odd & 0x000fffff) ^ cs_delta.odd);
327 keystream = keystream << 1 | keystream_bit;
328 uint_fast8_t nt_bit = BIT(bitflip, i) ^ keystream_bit;
329 uint_fast8_t LSFR_feedback = BIT(cs_delta.odd, 2) ^ BIT(cs_delta.even, 2) ^ BIT(cs_delta.odd, 3);
330
331 cs_delta.even = cs_delta.even << 1 | (LSFR_feedback ^ nt_bit);
332 uint_fast8_t tmp = cs_delta.odd;
333 cs_delta.odd = cs_delta.even;
334 cs_delta.even = tmp;
335
336 cs.even = cs.odd;
337 if (i & 1) {
338 cs.odd = odd_state >> (7 - i) / 2;
339 } else {
340 cs.odd = even_state >> (7 - i) / 2;
341 }
342 }
343
344 if (evenparity32(keystream) == evenparity32(bitflip)) {
345 // found valid bitflip state
346 even_state_is_possible = true;
347 set_bit24(test_bitarray[EVEN_STATE], even_state);
348 set_bit24(test_bitarray[EVEN_STATE], 1 << 23 | even_state);
349 set_bit24(test_bitarray[ODD_STATE], odd_state);
350 } else {
351 // found valid !bitflip state
352 set_bit24(test_not_bitarray[EVEN_STATE], even_state);
353 set_bit24(test_not_bitarray[EVEN_STATE], 1 << 23 | even_state);
354 set_bit24(test_not_bitarray[ODD_STATE], odd_state);
355 }
356 }
357 if (!even_state_is_possible) {
358 all_odd_states_are_possible_for_notbitflip = true;
359 }
360 }
361
362 printf("\nAnalysis completed. Checking for effective bitflip properties...\n");
363 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
364 count[odd_even] = count_states(test_bitarray[odd_even]);
365 if (count[odd_even] != 1<<24) {
366 printf("Writing %d possible %s states for bitflip property %03x (%d (%1.2f%%) states eliminated)\n",
367 count[odd_even],
368 odd_even==EVEN_STATE?"even":"odd",
369 bitflip, (1<<24) - count[odd_even],
370 (float)((1<<24) - count[odd_even]) / (1<<24) * 100.0);
371 #ifndef TEST_RUN
372 write_bitflips_file(odd_even, bitflip, sum_a0, test_bitarray[odd_even]);
373 #endif
374 } else {
375 printf("All %s states for bitflip property %03x are possible. No file written.\n", odd_even==EVEN_STATE?"even":"odd", bitflip);
376 }
377 }
378 uint32_t *restrict test_bitarray_2nd = malloc_bitarray(sizeof(uint32_t) * (1<<19));
379 clear_bitarray24(test_bitarray_2nd);
380 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
381 if (count[odd_even] != 1<<24) {
382 for (uint32_t state = 0; state < (1<<24); state += 1<<4) {
383 uint32_t line = test_bitarray[odd_even][state>>5];
384 uint16_t half_line = state&0x000000010 ? line&0x0000ffff : line>>16;
385 if (half_line != 0) {
386 for (uint32_t low_bits = 0; low_bits < (1<<4); low_bits++) {
387 set_bit24(test_bitarray_2nd, low_bits << 20 | state >> 4);
388 }
389 }
390 }
391 count[odd_even] = count_states(test_bitarray_2nd);
392 if (count[odd_even] != 1<<24) {
393 printf("Writing %d possible %s states for bitflip property %03x (%d (%1.2f%%) states eliminated)\n",
394 count[odd_even],
395 odd_even==EVEN_STATE?"even":"odd",
396 bitflip | BITFLIP_2ND_BYTE, (1<<24) - count[odd_even],
397 (float)((1<<24) - count[odd_even]) / (1<<24) * 100.0);
398 #ifndef TEST_RUN
399 write_bitflips_file(odd_even, bitflip | BITFLIP_2ND_BYTE, sum_a0, test_bitarray_2nd);
400 #endif
401 } else {
402 printf("All %s states for bitflip property %03x are possible. No file written.\n", odd_even==EVEN_STATE?"even":"odd", bitflip | BITFLIP_2ND_BYTE);
403 }
404 } else {
405 printf("All %s states for bitflip property %03x are possible. No file written.\n", odd_even==EVEN_STATE?"even":"odd", bitflip | BITFLIP_2ND_BYTE);
406 }
407 }
408
409 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
410 // second run for the remaining "not bitflip" states
411 printf("\n\nStarting search for crypto1 states resulting in bitflip property 0x%03x...", bitflip | 0x100);
412 start_time = time(NULL);
413 last_check_time = start_time;
414 for (uint32_t even_state = next_state(sum_a0_bitarray[EVEN_STATE], -1); even_state < NUM_TEST_STATES; even_state = next_state(sum_a0_bitarray[EVEN_STATE], even_state)) {
415 bool even_state_is_possible = test_bit24(test_not_bitarray[EVEN_STATE], even_state);
416 time_t time_now = time(NULL);
417 if (difftime(time_now, last_check_time) > 5*60) { // print status every 5 minutes
418 float runtime = difftime(time_now, start_time);
419 float remaining_time = runtime * ((1<<23) - even_state) / even_state;
420 printf("\n%1.1f hours elapsed, expected completion in %1.1f hours (%1.1f days)", runtime/3600, remaining_time/3600, remaining_time/3600/24);
421 last_check_time = time_now;
422 }
423 for (uint32_t odd_state = next_state(sum_a0_bitarray[ODD_STATE], -1); odd_state < (1<<24); odd_state = next_state(sum_a0_bitarray[ODD_STATE], odd_state)) {
424 if (even_state_is_possible) {
425 if (all_odd_states_are_possible_for_notbitflip) break;
426 if (test_bit24(test_not_bitarray[ODD_STATE], odd_state)) continue;
427 }
428 // load crypto1 state
429 struct Crypto1State cs;
430 cs.odd = odd_state >> 4;
431 cs.even = even_state >> 4;
432
433 // track flipping bits in state
434 struct Crypto1DeltaState {
435 uint_fast8_t odd;
436 uint_fast8_t even;
437 } cs_delta;
438 cs_delta.odd = 0;
439 cs_delta.even = 0;
440
441 uint_fast16_t keystream = 0;
442 // uint_fast16_t nt = 0;
443
444 // decrypt 9 bits
445 for (int i = 0; i < 9; i++) {
446 uint_fast8_t keystream_bit = filter(cs.odd & 0x000fffff) ^ filter((cs.odd & 0x000fffff) ^ cs_delta.odd);
447 keystream = keystream << 1 | keystream_bit;
448 uint_fast8_t nt_bit = BIT(bitflip|0x100, i) ^ keystream_bit;
449 uint_fast8_t LSFR_feedback = BIT(cs_delta.odd, 2) ^ BIT(cs_delta.even, 2) ^ BIT(cs_delta.odd, 3);
450
451 cs_delta.even = cs_delta.even << 1 | (LSFR_feedback ^ nt_bit);
452 uint_fast8_t tmp = cs_delta.odd;
453 cs_delta.odd = cs_delta.even;
454 cs_delta.even = tmp;
455
456 cs.even = cs.odd;
457 if (i & 1) {
458 cs.odd = odd_state >> (7 - i) / 2;
459 } else {
460 cs.odd = even_state >> (7 - i) / 2;
461 }
462 }
463
464 if (evenparity32(keystream) != evenparity32(bitflip)) {
465 // found valid !bitflip state
466 even_state_is_possible = true;
467 set_bit24(test_not_bitarray[EVEN_STATE], even_state);
468 set_bit24(test_not_bitarray[EVEN_STATE], 1 << 23 | even_state);
469 set_bit24(test_not_bitarray[ODD_STATE], odd_state);
470 }
471 }
472 }
473
474 printf("\nAnalysis completed. Checking for effective !bitflip properties...\n");
475 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
476 count[odd_even] = count_states(test_not_bitarray[odd_even]);
477 if (count[odd_even] != 1<<24) {
478 printf("Writing %d possible %s states for bitflip property %03x (%d (%1.2f%%) states eliminated)\n",
479 count[odd_even],
480 odd_even==EVEN_STATE?"even":"odd",
481 bitflip|0x100, (1<<24) - count[odd_even],
482 (float)((1<<24) - count[odd_even]) / (1<<24) * 100.0);
483 #ifndef TEST_RUN
484 write_bitflips_file(odd_even, bitflip|0x100, sum_a0, test_not_bitarray[odd_even]);
485 #endif
486 } else {
487 printf("All %s states for bitflip property %03x are possible. No file written.\n", odd_even==EVEN_STATE?"even":"odd", bitflip|0x100);
488 }
489 }
490
491 clear_bitarray24(test_bitarray_2nd);
492 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
493 if (count[odd_even] != 1<<24) {
494 for (uint32_t state = 0; state < (1<<24); state += 1<<4) {
495 uint32_t line = test_not_bitarray[odd_even][state>>5];
496 uint16_t half_line = state&0x000000010 ? line&0x0000ffff : line>>16;
497 if (half_line != 0) {
498 for (uint32_t low_bits = 0; low_bits < (1<<4); low_bits++) {
499 set_bit24(test_bitarray_2nd, low_bits << 20 | state >> 4);
500 }
501 }
502 }
503 count[odd_even] = count_states(test_bitarray_2nd);
504 if (count[odd_even] != 1<<24) {
505 printf("Writing %d possible %s states for bitflip property %03x (%d (%1.2f%%) states eliminated)\n",
506 count[odd_even],
507 odd_even==EVEN_STATE?"even":"odd",
508 bitflip | 0x100| BITFLIP_2ND_BYTE, (1<<24) - count[odd_even],
509 (float)((1<<24) - count[odd_even]) / (1<<24) * 100.0);
510 #ifndef TEST_RUN
511 write_bitflips_file(odd_even, bitflip | 0x100 | BITFLIP_2ND_BYTE, sum_a0, test_bitarray_2nd);
512 #endif
513 } else {
514 printf("All %s states for bitflip property %03x are possible. No file written.\n", odd_even==EVEN_STATE?"even":"odd", bitflip | 0x100 | BITFLIP_2ND_BYTE);
515 }
516 } else {
517 printf("All %s states for bitflip property %03x are possible. No file written.\n", odd_even==EVEN_STATE?"even":"odd", bitflip | 0x100 | BITFLIP_2ND_BYTE);
518 }
519 }
520
521 free_bitarray(test_bitarray_2nd);
522 free_bitarray(test_not_bitarray[ODD_STATE]);
523 free_bitarray(test_not_bitarray[EVEN_STATE]);
524 free_bitarray(test_bitarray[ODD_STATE]);
525 free_bitarray(test_bitarray[EVEN_STATE]);
526
527 exit(0);
528 }
529
530
531 int main (int argc, char *argv[]) {
532
533 unsigned int bitflip_in;
534 int sum_a0;
535
536 printf("Create tables required by hardnested attack.\n");
537 printf("Expect a runtime in the range of days or weeks.\n");
538 printf("Single thread only. If you want to use several threads, start it multiple times :-)\n\n");
539
540 if (argc != 2 && argc != 3) {
541 printf(" syntax: %s <bitflip property> [<Sum_a0>]\n\n", argv[0]);
542 printf(" example: %s 1f\n", argv[0]);
543 return 1;
544 }
545
546 sscanf(argv[1],"%x", &bitflip_in);
547
548 if (bitflip_in > 255) {
549 printf("Bitflip property must be less than or equal to 0xff\n\n");
550 return 1;
551 }
552
553 if(argc == 3) {
554 sscanf(argv[2], "%d", &sum_a0);
555 }
556
557 switch (sum_a0) {
558 case 0:
559 case 32:
560 case 56:
561 case 64:
562 case 80:
563 case 96:
564 case 104:
565 case 112:
566 case 120:
567 case 128:
568 case 136:
569 case 144:
570 case 152:
571 case 160:
572 case 176:
573 case 192:
574 case 200:
575 case 224:
576 case 256: break;
577 default: sum_a0 = -1;
578 }
579
580 printf("Calculating for bitflip = %02x, sum_a0 = %d\n", bitflip_in, sum_a0);
581
582 init_part_sum_bitarrays();
583 init_sum_bitarray(sum_a0);
584
585 precalculate_bit0_bitflip_bitarrays(bitflip_in, sum_a0);
586
587 free_sum_bitarray();
588 free_part_sum_bitarrays();
589
590 return 0;
591 }
Impressum, Datenschutz