]>
cvs.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
16 //get high and low with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
17 int getHiLo ( uint8_t * BitStream
, size_t size
, int * high
, int * low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
21 // get high and low thresholds
22 for ( int i
= 0 ; i
< size
; i
++){
23 if ( BitStream
[ i
] > * high
) * high
= BitStream
[ i
];
24 if ( BitStream
[ i
] < * low
) * low
= BitStream
[ i
];
26 if (* high
< 123 ) return - 1 ; // just noise
27 * high
= ( int )(((* high
- 128 )*((( float ) fuzzHi
)/ 100 ))+ 128 );
28 * low
= ( int )(((* low
- 128 )*((( float ) fuzzLo
)/ 100 ))+ 128 );
33 //takes 1s and 0s and searches for EM410x format - output EM ID
34 uint64_t Em410xDecode ( uint8_t * BitStream
, size_t * size
, size_t * startIdx
)
36 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
37 // otherwise could be a void with no arguments
41 if ( BitStream
[ 10 ]> 1 ){ //allow only 1s and 0s
42 // PrintAndLog("no data found");
46 // 111111111 bit pattern represent start of frame
47 uint8_t frame_marker_mask
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 };
51 while ( ( idx
+ 64 ) < * size
) {
53 // search for a start of frame marker
54 if ( memcmp ( BitStream
+ idx
, frame_marker_mask
, sizeof ( frame_marker_mask
)) == 0 )
55 { // frame marker found
59 for ( ii
= 0 ; ii
< 5 ; ++ ii
){
60 parityTest
^= BitStream
[( i
* 5 )+ ii
+ idx
];
62 if (! parityTest
){ //even parity
64 for ( ii
= 0 ; ii
< 4 ;++ ii
){
65 lo
=( lo
<< 1LL )|( BitStream
[( i
* 5 )+ ii
+ idx
]);
67 //PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo);
68 } else { //parity failed
69 //PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]);
72 if ( resetCnt
> 5 ) return 0 ; //try 5 times
74 goto restart
; //continue;
77 //skip last 5 bit parity test for simplicity.
88 //takes 2 arguments - clock and invert both as integers
89 //attempts to demodulate ask while decoding manchester
90 //prints binary found and saves in graphbuffer for further commands
91 int askmandemod ( uint8_t * BinStream
, size_t * size
, int * clk
, int * invert
)
95 * clk
= DetectASKClock ( BinStream
, * size
, * clk
); //clock default
97 // if autodetected too low then adjust //MAY NEED ADJUSTMENT
98 if ( clk2
== 0 && * clk
< 8 ) * clk
= 64 ;
99 if ( clk2
== 0 && * clk
< 32 ) * clk
= 32 ;
100 if (* invert
!= 0 && * invert
!= 1 ) * invert
= 0 ;
101 uint32_t initLoopMax
= 200 ;
102 if ( initLoopMax
> * size
) initLoopMax
=* size
;
103 // Detect high and lows
104 // 25% fuzz in case highs and lows aren't clipped [marshmellow]
106 ans
= getHiLo ( BinStream
, initLoopMax
, & high
, & low
, 75 , 75 );
107 if ( ans
< 1 ) return - 2 ; //just noise
109 // PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
110 int lastBit
= 0 ; //set first clock check
111 uint32_t bitnum
= 0 ; //output counter
112 int tol
= 0 ; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
113 if (* clk
<= 32 ) tol
= 1 ; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
115 uint32_t gLen
= * size
;
116 if ( gLen
> 3000 ) gLen
= 3000 ;
118 uint32_t bestStart
= * size
;
119 uint32_t bestErrCnt
= (* size
/ 1000 );
120 uint32_t maxErr
= (* size
/ 1000 );
121 // PrintAndLog("DEBUG - lastbit - %d",lastBit);
122 // loop to find first wave that works
123 for ( iii
= 0 ; iii
< gLen
; ++ iii
){
124 if (( BinStream
[ iii
] >= high
) || ( BinStream
[ iii
] <= low
)){
127 // loop through to see if this start location works
128 for ( i
= iii
; i
< * size
; ++ i
) {
129 if (( BinStream
[ i
] >= high
) && (( i
- lastBit
) > (* clk
- tol
))){
131 } else if (( BinStream
[ i
] <= low
) && (( i
- lastBit
) > (* clk
- tol
))){
132 //low found and we are expecting a bar
135 //mid value found or no bar supposed to be here
136 if (( i
- lastBit
)>(* clk
+ tol
)){
137 //should have hit a high or low based on clock!!
140 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
143 lastBit
+=* clk
; //skip over until hit too many errors
144 if ( errCnt
>( maxErr
)) break ; //allow 1 error for every 1000 samples else start over
147 if (( i
- iii
) >( 400 * * clk
)) break ; //got plenty of bits
149 //we got more than 64 good bits and not all errors
150 if (((( i
- iii
)/ * clk
) > ( 64 + errCnt
)) && ( errCnt
< maxErr
)) {
155 break ; //great read - finish
157 if ( errCnt
< bestErrCnt
){ //set this as new best run
164 if ( bestErrCnt
< maxErr
){
165 //best run is good enough set to best run and set overwrite BinStream
167 lastBit
= bestStart
- * clk
;
169 for ( i
= iii
; i
< * size
; ++ i
) {
170 if (( BinStream
[ i
] >= high
) && (( i
- lastBit
) > (* clk
- tol
))){
172 BinStream
[ bitnum
] = * invert
;
174 } else if (( BinStream
[ i
] <= low
) && (( i
- lastBit
) > (* clk
- tol
))){
175 //low found and we are expecting a bar
177 BinStream
[ bitnum
] = 1 -* invert
;
180 //mid value found or no bar supposed to be here
181 if (( i
- lastBit
)>(* clk
+ tol
)){
182 //should have hit a high or low based on clock!!
185 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
187 BinStream
[ bitnum
]= 77 ;
191 lastBit
+=* clk
; //skip over error
194 if ( bitnum
>= 400 ) break ;
206 //encode binary data into binary manchester
207 int ManchesterEncode ( uint8_t * BitStream
, size_t size
)
209 size_t modIdx
= 20000 , i
= 0 ;
210 if ( size
> modIdx
) return - 1 ;
211 for ( size_t idx
= 0 ; idx
< size
; idx
++){
212 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
];
213 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
]^ 1 ;
215 for (; i
<( size
* 2 ); i
++){
216 BitStream
[ i
] = BitStream
[ i
+ 20000 ];
222 //take 10 and 01 and manchester decode
223 //run through 2 times and take least errCnt
224 int manrawdecode ( uint8_t * BitStream
, size_t * size
)
232 for ( ii
= 1 ; ii
< 3 ;++ ii
){
234 for ( i
= i
+ ii
; i
<* size
- 2 ; i
+= 2 ){
235 if ( BitStream
[ i
]== 1 && ( BitStream
[ i
+ 1 ]== 0 )){
236 } else if (( BitStream
[ i
]== 0 )&& BitStream
[ i
+ 1 ]== 1 ){
240 if ( bitnum
> 300 ) break ;
252 for ( i
= i
+ ii
; i
< * size
- 2 ; i
+= 2 ){
253 if ( BitStream
[ i
] == 1 && ( BitStream
[ i
+ 1 ] == 0 )){
254 BitStream
[ bitnum
++]= 0 ;
255 } else if (( BitStream
[ i
] == 0 ) && BitStream
[ i
+ 1 ] == 1 ){
256 BitStream
[ bitnum
++]= 1 ;
258 BitStream
[ bitnum
++]= 77 ;
261 if ( bitnum
> 300 ) break ;
269 //take 01 or 10 = 0 and 11 or 00 = 1
270 int BiphaseRawDecode ( uint8_t * BitStream
, size_t * size
, int offset
, int invert
)
276 for (; i
<* size
- 2 ; i
+= 2 ){
277 if (( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 1 )){
278 BitStream
[ bitnum
++]= 1 ^ invert
;
279 } else if (( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 1 )){
280 BitStream
[ bitnum
++]= invert
;
282 BitStream
[ bitnum
++]= 77 ;
285 if ( bitnum
> 250 ) break ;
292 //takes 2 arguments - clock and invert both as integers
293 //attempts to demodulate ask only
294 //prints binary found and saves in graphbuffer for further commands
295 int askrawdemod ( uint8_t * BinStream
, size_t * size
, int * clk
, int * invert
)
298 // int invert=0; //invert default
300 * clk
= DetectASKClock ( BinStream
, * size
, * clk
); //clock default
301 //uint8_t BitStream[502] = {0};
303 //HACK: if clock not detected correctly - default
304 if ( clk2
== 0 && * clk
< 8 ) * clk
= 64 ;
305 if ( clk2
== 0 && * clk
< 32 && clk2
== 0 ) * clk
= 32 ;
306 if (* invert
!= 0 && * invert
!= 1 ) * invert
= 0 ;
307 uint32_t initLoopMax
= 200 ;
308 if ( initLoopMax
> * size
) initLoopMax
=* size
;
309 // Detect high and lows
310 //25% fuzz in case highs and lows aren't clipped [marshmellow]
312 ans
= getHiLo ( BinStream
, initLoopMax
, & high
, & low
, 75 , 75 );
313 if ( ans
< 1 ) return - 2 ; //just noise
315 //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
316 int lastBit
= 0 ; //set first clock check
317 uint32_t bitnum
= 0 ; //output counter
318 uint8_t tol
= 0 ; //clock tolerance adjust - waves will be accepted as within the clock
319 // if they fall + or - this value + clock from last valid wave
320 if (* clk
== 32 ) tol
= 1 ; //clock tolerance may not be needed anymore currently set to
321 // + or - 1 but could be increased for poor waves or removed entirely
323 uint32_t gLen
= * size
;
324 if ( gLen
> 500 ) gLen
= 500 ;
326 uint32_t bestStart
= * size
;
327 uint32_t bestErrCnt
= (* size
/ 1000 );
328 uint32_t maxErr
= bestErrCnt
;
330 //PrintAndLog("DEBUG - lastbit - %d",lastBit);
331 //loop to find first wave that works
332 for ( iii
= 0 ; iii
< gLen
; ++ iii
){
333 if (( BinStream
[ iii
]>= high
) || ( BinStream
[ iii
]<= low
)){
335 //loop through to see if this start location works
336 for ( i
= iii
; i
< * size
; ++ i
) {
337 if (( BinStream
[ i
] >= high
) && (( i
- lastBit
)>(* clk
- tol
))){
340 } else if (( BinStream
[ i
] <= low
) && (( i
- lastBit
)>(* clk
- tol
))){
341 //low found and we are expecting a bar
344 } else if (( BinStream
[ i
]<= low
) && ( midBit
== 0 ) && (( i
- lastBit
)>((* clk
/ 2 )- tol
))){
347 } else if (( BinStream
[ i
]>= high
) && ( midBit
== 0 ) && (( i
- lastBit
)>((* clk
/ 2 )- tol
))){
350 } else if (( i
- lastBit
)>((* clk
/ 2 )+ tol
) && ( midBit
== 0 )){
354 //mid value found or no bar supposed to be here
356 if (( i
- lastBit
)>(* clk
+ tol
)){
357 //should have hit a high or low based on clock!!
359 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
362 lastBit
+=* clk
; //skip over until hit too many errors
363 if ( errCnt
> ((* size
/ 1000 ))){ //allow 1 error for every 1000 samples else start over
369 if (( i
- iii
)>( 500 * * clk
)) break ; //got enough bits
371 //we got more than 64 good bits and not all errors
372 if (((( i
- iii
)/ * clk
) > ( 64 + errCnt
)) && ( errCnt
<(* size
/ 1000 ))) {
377 break ; //great read - finish
379 if ( errCnt
< bestErrCnt
){ //set this as new best run
386 if ( bestErrCnt
< maxErr
){
387 //best run is good enough - set to best run and overwrite BinStream
389 lastBit
= bestStart
- * clk
;
391 for ( i
= iii
; i
< * size
; ++ i
) {
392 if (( BinStream
[ i
] >= high
) && (( i
- lastBit
) > (* clk
- tol
))){
394 BinStream
[ bitnum
] = * invert
;
397 } else if (( BinStream
[ i
] <= low
) && (( i
- lastBit
) > (* clk
- tol
))){
398 //low found and we are expecting a bar
400 BinStream
[ bitnum
] = 1 -* invert
;
403 } else if (( BinStream
[ i
]<= low
) && ( midBit
== 0 ) && (( i
- lastBit
)>((* clk
/ 2 )- tol
))){
406 BinStream
[ bitnum
] = 1 - * invert
;
408 } else if (( BinStream
[ i
]>= high
) && ( midBit
== 0 ) && (( i
- lastBit
)>((* clk
/ 2 )- tol
))){
411 BinStream
[ bitnum
] = * invert
;
413 } else if (( i
- lastBit
)>((* clk
/ 2 )+ tol
) && ( midBit
== 0 )){
416 if ( bitnum
!= 0 ) BinStream
[ bitnum
] = BinStream
[ bitnum
- 1 ];
420 //mid value found or no bar supposed to be here
421 if (( i
- lastBit
)>(* clk
+ tol
)){
422 //should have hit a high or low based on clock!!
425 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
427 BinStream
[ bitnum
]= 77 ;
431 lastBit
+=* clk
; //skip over error
434 if ( bitnum
>= 400 ) break ;
444 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
445 size_t fsk_wave_demod ( uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
447 uint32_t last_transition
= 0 ;
450 if ( fchigh
== 0 ) fchigh
= 10 ;
451 if ( fclow
== 0 ) fclow
= 8 ;
452 //set the threshold close to 0 (graph) or 128 std to avoid static
453 uint8_t threshold_value
= 123 ;
455 // sync to first lo-hi transition, and threshold
457 // Need to threshold first sample
459 if ( dest
[ 0 ] < threshold_value
) dest
[ 0 ] = 0 ;
463 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
464 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
465 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
466 for ( idx
= 1 ; idx
< size
; idx
++) {
467 // threshold current value
469 if ( dest
[ idx
] < threshold_value
) dest
[ idx
] = 0 ;
472 // Check for 0->1 transition
473 if ( dest
[ idx
- 1 ] < dest
[ idx
]) { // 0 -> 1 transition
474 if (( idx
- last_transition
)<( fclow
- 2 )){ //0-5 = garbage noise
475 //do nothing with extra garbage
476 } else if (( idx
- last_transition
) < ( fchigh
- 1 )) { //6-8 = 8 waves
478 } else { //9+ = 10 waves
481 last_transition
= idx
;
485 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
488 uint32_t myround2 ( float f
)
490 if ( f
>= 2000 ) return 2000 ; //something bad happened
491 return ( uint32_t ) ( f
+ ( float ) 0.5 );
494 //translate 11111100000 to 10
495 size_t aggregate_bits ( uint8_t * dest
, size_t size
, uint8_t rfLen
, uint8_t maxConsequtiveBits
,
496 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
498 uint8_t lastval
= dest
[ 0 ];
503 for ( idx
= 1 ; idx
< size
; idx
++) {
505 if ( dest
[ idx
]== lastval
) {
509 //if lastval was 1, we have a 1->0 crossing
510 if ( dest
[ idx
- 1 ]== 1 ) {
511 n
= myround2 (( float )( n
+ 1 )/(( float )( rfLen
)/( float ) fclow
));
512 } else { // 0->1 crossing
513 n
= myround2 (( float )( n
+ 1 )/(( float )( rfLen
- 1 )/( float ) fchigh
)); //-1 for fudge factor
517 if ( n
< maxConsequtiveBits
) //Consecutive
519 if ( invert
== 0 ){ //invert bits
520 memset ( dest
+ numBits
, dest
[ idx
- 1 ] , n
);
522 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ 1 , n
);
531 //by marshmellow (from holiman's base)
532 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
533 int fskdemod ( uint8_t * dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
536 size
= fsk_wave_demod ( dest
, size
, fchigh
, fclow
);
537 size
= aggregate_bits ( dest
, size
, rfLen
, 192 , invert
, fchigh
, fclow
);
540 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
541 int HIDdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
)
544 size_t idx
= 0 , size2
=* size
, startIdx
= 0 ;
547 * size
= fskdemod ( dest
, size2
, 50 , 0 , 10 , 8 );
549 // final loop, go over previously decoded manchester data and decode into usable tag ID
550 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
551 uint8_t frame_marker_mask
[] = { 1 , 1 , 1 , 0 , 0 , 0 };
555 while ( idx
+ sizeof ( frame_marker_mask
) < * size
) {
556 // search for a start of frame marker
557 if ( memcmp ( dest
+ idx
, frame_marker_mask
, sizeof ( frame_marker_mask
)) == 0 )
558 { // frame marker found
560 idx
+= sizeof ( frame_marker_mask
);
561 while ( dest
[ idx
] != dest
[ idx
+ 1 ] && idx
< * size
- 2 )
563 // Keep going until next frame marker (or error)
564 // Shift in a bit. Start by shifting high registers
565 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
566 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
567 //Then, shift in a 0 or one into low
568 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
575 // Hopefully, we read a tag and hit upon the next frame marker
576 if ( idx
+ sizeof ( frame_marker_mask
) < * size
)
578 if ( memcmp ( dest
+ idx
, frame_marker_mask
, sizeof ( frame_marker_mask
)) == 0 )
586 * hi2
= * hi
= * lo
= 0 ;
595 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
596 size_t ParadoxdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
)
599 size_t idx
= 0 , size2
=* size
;
602 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 );
604 // final loop, go over previously decoded manchester data and decode into usable tag ID
605 // 00001111 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
606 uint8_t frame_marker_mask
[] = { 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 };
607 uint16_t numshifts
= 0 ;
610 while ( idx
+ sizeof ( frame_marker_mask
) < * size
) {
611 // search for a start of frame marker
612 if ( memcmp ( dest
+ idx
, frame_marker_mask
, sizeof ( frame_marker_mask
)) == 0 )
613 { // frame marker found
615 idx
+= sizeof ( frame_marker_mask
);
616 while ( dest
[ idx
] != dest
[ idx
+ 1 ] && idx
< * size
- 2 )
618 // Keep going until next frame marker (or error)
619 // Shift in a bit. Start by shifting high registers
620 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
621 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
622 //Then, shift in a 0 or one into low
623 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
630 // Hopefully, we read a tag and hit upon the next frame marker and got enough bits
631 if ( idx
+ sizeof ( frame_marker_mask
) < * size
&& numshifts
> 40 )
633 if ( memcmp ( dest
+ idx
, frame_marker_mask
, sizeof ( frame_marker_mask
)) == 0 )
635 //good return - return start grid position and bits found
636 * size
= (( numshifts
* 2 )+ 8 );
641 * hi2
= * hi
= * lo
= 0 ;
650 uint32_t bytebits_to_byte ( uint8_t * src
, size_t numbits
)
653 for ( int i
= 0 ; i
< numbits
; i
++)
655 num
= ( num
<< 1 ) | (* src
);
661 int IOdemodFSK ( uint8_t * dest
, size_t size
)
663 static const uint8_t THRESHOLD
= 129 ;
665 //make sure buffer has data
666 if ( size
< 66 ) return - 1 ;
667 //test samples are not just noise
668 uint8_t justNoise
= 1 ;
669 for ( idx
= 0 ; idx
< size
&& justNoise
; idx
++){
670 justNoise
= dest
[ idx
] < THRESHOLD
;
672 if ( justNoise
) return 0 ;
675 size
= fskdemod ( dest
, size
, 64 , 1 , 10 , 8 ); // RF/64 and invert
676 if ( size
< 65 ) return - 1 ; //did we get a good demod?
678 //0 10 20 30 40 50 60
680 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
681 //-----------------------------------------------------------------------------
682 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
684 //XSF(version)facility:codeone+codetwo
686 uint8_t mask
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
687 for ( idx
= 0 ; idx
< ( size
- 65 ); idx
++) {
688 if ( memcmp ( dest
+ idx
, mask
, sizeof ( mask
))== 0 ) {
690 if (! dest
[ idx
+ 8 ] && dest
[ idx
+ 17 ]== 1 && dest
[ idx
+ 26 ]== 1 && dest
[ idx
+ 35 ]== 1 && dest
[ idx
+ 44 ]== 1 && dest
[ idx
+ 53 ]== 1 ){
691 //confirmed proper separator bits found
692 //return start position
701 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
702 // returns 1 if passed
703 uint8_t parityTest ( uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
706 for ( uint8_t i
= 0 ; i
< bitLen
; i
++){
707 ans
^= (( bits
>> i
) & 1 );
709 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
710 return ( ans
== pType
);
714 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
715 // Parity Type (1 for odd 0 for even), and binary Length (length to run)
716 size_t removeParity ( uint8_t * BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
718 uint32_t parityWd
= 0 ;
719 size_t j
= 0 , bitCnt
= 0 ;
720 for ( int word
= 0 ; word
< ( bLen
); word
+= pLen
){
721 for ( int bit
= 0 ; bit
< pLen
; bit
++){
722 parityWd
= ( parityWd
<< 1 ) | BitStream
[ startIdx
+ word
+ bit
];
723 BitStream
[ j
++] = ( BitStream
[ startIdx
+ word
+ bit
]);
726 // if parity fails then return 0
727 if ( parityTest ( parityWd
, pLen
, pType
) == 0 ) return - 1 ;
731 // if we got here then all the parities passed
732 //return ID start index and size
737 // FSK Demod then try to locate an AWID ID
738 int AWIDdemodFSK ( uint8_t * dest
, size_t size
)
740 static const uint8_t THRESHOLD
= 123 ;
741 uint32_t idx
= 0 , idx2
= 0 ;
742 //make sure buffer has data
743 if ( size
< 96 * 50 ) return - 1 ;
744 //test samples are not just noise
745 uint8_t justNoise
= 1 ;
746 for ( idx
= 0 ; idx
< size
&& justNoise
; idx
++){
747 justNoise
= dest
[ idx
] < THRESHOLD
;
749 if ( justNoise
) return - 2 ;
752 size
= fskdemod ( dest
, size
, 50 , 1 , 10 , 8 ); // RF/64 and invert
753 if ( size
< 96 ) return - 3 ; //did we get a good demod?
755 uint8_t mask
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
756 for ( idx
= 0 ; idx
< ( size
- 96 ); idx
++) {
757 if ( memcmp ( dest
+ idx
, mask
, sizeof ( mask
))== 0 ) {
758 // frame marker found
759 //return ID start index
760 if ( idx2
== 0 ) idx2
= idx
;
761 else if ( idx
- idx2
== 96 ) return idx2
;
764 // should always get 96 bits if it is awid
772 // FSK Demod then try to locate an Farpointe Data (pyramid) ID
773 int PyramiddemodFSK ( uint8_t * dest
, size_t size
)
775 static const uint8_t THRESHOLD
= 123 ;
776 uint32_t idx
= 0 , idx2
= 0 ;
777 // size_t size2 = size;
778 //make sure buffer has data
779 if ( size
< 128 * 50 ) return - 5 ;
780 //test samples are not just noise
781 uint8_t justNoise
= 1 ;
782 for ( idx
= 0 ; idx
< size
&& justNoise
; idx
++){
783 justNoise
= dest
[ idx
] < THRESHOLD
;
785 if ( justNoise
) return - 1 ;
788 size
= fskdemod ( dest
, size
, 50 , 1 , 10 , 8 ); // RF/64 and invert
789 if ( size
< 128 ) return - 2 ; //did we get a good demod?
791 uint8_t mask
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
792 for ( idx
= 0 ; idx
< ( size
- 128 ); idx
++) {
793 if ( memcmp ( dest
+ idx
, mask
, sizeof ( mask
))== 0 ) {
794 // frame marker found
795 if ( idx2
== 0 ) idx2
= idx
;
796 else if ( idx
- idx2
== 128 ) return idx2
;
805 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
806 // maybe somehow adjust peak trimming value based on samples to fix?
807 int DetectASKClock ( uint8_t dest
[], size_t size
, int clock
)
810 int clk
[]={ 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 256 };
811 int loopCnt
= 256 ; //don't need to loop through entire array...
812 if ( size
< loopCnt
) loopCnt
= size
;
814 //if we already have a valid clock quit
817 if ( clk
[ i
] == clock
) return clock
;
819 //get high and low peak
821 getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 );
826 int bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
828 //test each valid clock from smallest to greatest to see which lines up
829 for ( clkCnt
= 0 ; clkCnt
< 8 ; ++ clkCnt
){
830 if ( clk
[ clkCnt
] == 32 ){
835 bestErr
[ clkCnt
]= 1000 ;
836 //try lining up the peaks by moving starting point (try first 256)
837 for ( ii
= 0 ; ii
< loopCnt
; ++ ii
){
838 if (( dest
[ ii
] >= peak
) || ( dest
[ ii
] <= low
)){
840 // now that we have the first one lined up test rest of wave array
841 for ( i
= 0 ; i
<(( int )(( size
- ii
- tol
)/ clk
[ clkCnt
])- 1 ); ++ i
){
842 if ( dest
[ ii
+( i
* clk
[ clkCnt
])]>= peak
|| dest
[ ii
+( i
* clk
[ clkCnt
])]<= low
){
843 } else if ( dest
[ ii
+( i
* clk
[ clkCnt
])- tol
]>= peak
|| dest
[ ii
+( i
* clk
[ clkCnt
])- tol
]<= low
){
844 } else if ( dest
[ ii
+( i
* clk
[ clkCnt
])+ tol
]>= peak
|| dest
[ ii
+( i
* clk
[ clkCnt
])+ tol
]<= low
){
845 } else { //error no peak detected
849 //if we found no errors then we can stop here
850 // this is correct one - return this clock
851 //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
852 if ( errCnt
== 0 && clkCnt
< 6 ) return clk
[ clkCnt
];
853 //if we found errors see if it is lowest so far and save it as best run
854 if ( errCnt
< bestErr
[ clkCnt
]) bestErr
[ clkCnt
]= errCnt
;
860 for ( iii
= 0 ; iii
< 8 ; ++ iii
){
861 if ( bestErr
[ iii
]< bestErr
[ best
]){
862 if ( bestErr
[ iii
]== 0 ) bestErr
[ iii
]= 1 ;
863 // current best bit to error ratio vs new bit to error ratio
864 if ((( size
/ clk
[ best
])/ bestErr
[ best
] < ( size
/ clk
[ iii
])/ bestErr
[ iii
]) ){
873 //detect psk clock by reading #peaks vs no peaks(or errors)
874 int DetectpskNRZClock ( uint8_t dest
[], size_t size
, int clock
)
877 int clk
[]={ 16 , 32 , 40 , 50 , 64 , 100 , 128 , 256 };
878 int loopCnt
= 2048 ; //don't need to loop through entire array...
879 if ( size
< loopCnt
) loopCnt
= size
;
881 //if we already have a valid clock quit
883 if ( clk
[ i
] == clock
) return clock
;
885 //get high and low peak
887 getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 );
889 //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
895 int bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
896 int peaksdet
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
897 //test each valid clock from smallest to greatest to see which lines up
898 for ( clkCnt
= 0 ; clkCnt
< 7 ; ++ clkCnt
){
899 if ( clk
[ clkCnt
] <= 32 ){
904 //try lining up the peaks by moving starting point (try first 256)
905 for ( ii
= 0 ; ii
< loopCnt
; ++ ii
){
906 if (( dest
[ ii
] >= peak
) || ( dest
[ ii
] <= low
)){
909 // now that we have the first one lined up test rest of wave array
910 for ( i
= 0 ; i
< (( int )(( size
- ii
- tol
)/ clk
[ clkCnt
])- 1 ); ++ i
){
911 if ( dest
[ ii
+( i
* clk
[ clkCnt
])]>= peak
|| dest
[ ii
+( i
* clk
[ clkCnt
])]<= low
){
913 } else if ( dest
[ ii
+( i
* clk
[ clkCnt
])- tol
]>= peak
|| dest
[ ii
+( i
* clk
[ clkCnt
])- tol
]<= low
){
915 } else if ( dest
[ ii
+( i
* clk
[ clkCnt
])+ tol
]>= peak
|| dest
[ ii
+( i
* clk
[ clkCnt
])+ tol
]<= low
){
917 } else { //error no peak detected
921 if ( peakcnt
> peaksdet
[ clkCnt
]) {
922 peaksdet
[ clkCnt
]= peakcnt
;
923 bestErr
[ clkCnt
]= errCnt
;
930 //int ratio2; //debug
933 for ( iii
= 0 ; iii
< 7 ; ++ iii
){
935 //ratio2=1000; //debug
936 //bits=size/clk[iii]; //debug
937 if ( peaksdet
[ iii
] > 0 ){
938 ratio
= bestErr
[ iii
]/ peaksdet
[ iii
];
939 if ((( bestErr
[ best
]/ peaksdet
[ best
]) > ( ratio
)+ 1 )){
942 //ratio2=bits/peaksdet[iii]; //debug
944 //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d, ratio: %d, bits: %d, peakbitr: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best],ratio, bits,ratio2);
949 // by marshmellow (attempt to get rid of high immediately after a low)
950 void pskCleanWave ( uint8_t * BitStream
, size_t size
)
957 getHiLo ( BitStream
, size
, & high
, & low
, 80 , 90 );
959 for ( i
= 0 ; i
< size
; ++ i
){
961 if ( BitStream
[ i
]> low
){
969 } else if ( newHigh
== 1 ){
970 if ( BitStream
[ i
]< high
){
979 if ( BitStream
[ i
] <= low
) newLow
= 1 ;
980 if ( BitStream
[ i
] >= high
) newHigh
= 1 ;
986 // convert psk1 demod to psk2 demod
987 // only transition waves are 1s
988 void psk1TOpsk2 ( uint8_t * BitStream
, size_t size
)
991 uint8_t lastBit
= BitStream
[ 0 ];
993 if ( lastBit
!= BitStream
[ i
]){
994 lastBit
= BitStream
[ i
];
1003 // redesigned by marshmellow adjusted from existing decode functions
1004 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1005 int indala26decode ( uint8_t * bitStream
, size_t * size
, uint8_t * invert
)
1007 //26 bit 40134 format (don't know other formats)
1009 int long_wait
= 29 ; //29 leading zeros in format
1015 // Finding the start of a UID
1016 for ( start
= 0 ; start
<= * size
- 250 ; start
++) {
1017 first
= bitStream
[ start
];
1018 for ( i
= start
; i
< start
+ long_wait
; i
++) {
1019 if ( bitStream
[ i
] != first
) {
1023 if ( i
== ( start
+ long_wait
)) {
1027 if ( start
== * size
- 250 + 1 ) {
1028 // did not find start sequence
1031 // Inverting signal if needed
1033 for ( i
= start
; i
< * size
; i
++) {
1034 bitStream
[ i
] = ! bitStream
[ i
];
1040 //found start once now test length by finding next one
1041 for ( ii
= start
+ 29 ; ii
<= * size
- 250 ; ii
++) {
1042 first2
= bitStream
[ ii
];
1043 for ( iii
= ii
; iii
< ii
+ long_wait
; iii
++) {
1044 if ( bitStream
[ iii
] != first2
) {
1048 if ( iii
== ( ii
+ long_wait
)) {
1052 if ( ii
== * size
- 250 + 1 ){
1053 // did not find second start sequence
1060 for ( ii
= 0 ; ii
< bitCnt
; ii
++) {
1061 bitStream
[ ii
] = bitStream
[ i
++];
1067 // by marshmellow - demodulate PSK1 wave or NRZ wave (both similar enough)
1068 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1069 int pskNRZrawDemod ( uint8_t * dest
, size_t * size
, int * clk
, int * invert
)
1071 pskCleanWave ( dest
,* size
);
1072 int clk2
= DetectpskNRZClock ( dest
, * size
, * clk
);
1076 ans
= getHiLo ( dest
, 1260 , & high
, & low
, 75 , 80 ); //25% fuzz on high 20% fuzz on low
1077 if ( ans
< 1 ) return - 2 ; //just noise
1078 uint32_t gLen
= * size
;
1079 //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
1080 int lastBit
= 0 ; //set first clock check
1081 uint32_t bitnum
= 0 ; //output counter
1082 uint8_t tol
= 1 ; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
1083 if (* clk
== 32 ) tol
= 2 ; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
1086 uint32_t bestStart
= * size
;
1087 uint32_t maxErr
= (* size
/ 1000 );
1088 uint32_t bestErrCnt
= maxErr
;
1091 uint8_t ignorewin
=* clk
/ 8 ;
1092 //PrintAndLog("DEBUG - lastbit - %d",lastBit);
1093 //loop to find first wave that works - align to clock
1094 for ( iii
= 0 ; iii
< gLen
; ++ iii
){
1095 if (( dest
[ iii
]>= high
) || ( dest
[ iii
]<= low
)){
1097 //loop through to see if this start location works
1098 for ( i
= iii
; i
< * size
; ++ i
) {
1099 //if we found a high bar and we are at a clock bit
1100 if (( dest
[ i
]>= high
) && ( i
>= lastBit
+* clk
- tol
&& i
<= lastBit
+* clk
+ tol
)){
1105 //else if low bar found and we are at a clock point
1106 } else if (( dest
[ i
]<= low
) && ( i
>= lastBit
+* clk
- tol
&& i
<= lastBit
+* clk
+ tol
)){
1111 //else if no bars found
1112 } else if ( dest
[ i
] < high
&& dest
[ i
] > low
) {
1116 //if we are past a clock point
1117 if ( i
>= lastBit
+* clk
+ tol
){ //clock val
1121 //else if bar found but we are not at a clock bit and we did not just have a clock bit
1122 } else if (( dest
[ i
]>= high
|| dest
[ i
]<= low
) && ( i
< lastBit
+* clk
- tol
|| i
> lastBit
+* clk
+ tol
) && ( bitHigh
== 0 )){
1123 //error bar found no clock...
1126 if ( bitnum
>= 1000 ) break ;
1128 //we got more than 64 good bits and not all errors
1129 if (( bitnum
> ( 64 + errCnt
)) && ( errCnt
< ( maxErr
))) {
1130 //possible good read
1133 bestErrCnt
= errCnt
;
1134 break ; //great read - finish
1136 if ( errCnt
< bestErrCnt
){ //set this as new best run
1137 bestErrCnt
= errCnt
;
1143 if ( bestErrCnt
< maxErr
){
1144 //best run is good enough set to best run and set overwrite BinStream
1146 lastBit
= bestStart
-* clk
;
1148 for ( i
= iii
; i
< * size
; ++ i
) {
1149 //if we found a high bar and we are at a clock bit
1150 if (( dest
[ i
] >= high
) && ( i
>= lastBit
+* clk
- tol
&& i
<= lastBit
+* clk
+ tol
)){
1154 dest
[ bitnum
]= curBit
;
1157 //else if low bar found and we are at a clock point
1158 } else if (( dest
[ i
]<= low
) && ( i
>= lastBit
+* clk
- tol
&& i
<= lastBit
+* clk
+ tol
)){
1162 dest
[ bitnum
]= curBit
;
1165 //else if no bars found
1166 } else if ( dest
[ i
]< high
&& dest
[ i
]> low
) {
1170 //if we are past a clock point
1171 if ( i
>= lastBit
+* clk
+ tol
){ //clock val
1173 dest
[ bitnum
]= curBit
;
1176 //else if bar found but we are not at a clock bit and we did not just have a clock bit
1177 } else if (( dest
[ i
]>= high
|| dest
[ i
]<= low
) && (( i
< lastBit
+* clk
- tol
) || ( i
> lastBit
+* clk
+ tol
)) && ( bitHigh
== 0 )){
1178 //error bar found no clock...
1184 if ( bitnum
>= 1000 ) break ;
1200 //detects the bit clock for FSK given the high and low Field Clocks
1201 uint8_t detectFSKClk ( uint8_t * BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
)
1203 uint8_t clk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 0 };
1204 uint16_t rfLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1205 uint8_t rfCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1206 uint8_t rfLensFnd
= 0 ;
1207 uint8_t lastFCcnt
= 0 ;
1208 uint32_t fcCounter
= 0 ;
1209 uint16_t rfCounter
= 0 ;
1210 uint8_t firstBitFnd
= 0 ;
1213 uint8_t fcTol
= ( uint8_t )( 0.5 +( float )( fcHigh
- fcLow
)/ 2 );
1218 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1219 // prime i to first up transition
1220 for ( i
= 1 ; i
< size
- 1 ; i
++)
1221 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
]>= BitStream
[ i
+ 1 ])
1224 for (; i
< size
- 1 ; i
++){
1225 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
]>= BitStream
[ i
+ 1 ]){
1229 // if we got less than the small fc + tolerance then set it to the small fc
1230 if ( fcCounter
< fcLow
+ fcTol
)
1232 else //set it to the large fc
1235 //look for bit clock (rf/xx)
1236 if (( fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)){
1237 //not the same size as the last wave - start of new bit sequence
1239 if ( firstBitFnd
> 1 ){ //skip first wave change - probably not a complete bit
1240 for ( int ii
= 0 ; ii
< 15 ; ii
++){
1241 if ( rfLens
[ ii
]== rfCounter
){
1247 if ( rfCounter
> 0 && rfLensFnd
< 15 ){
1248 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1249 rfCnts
[ rfLensFnd
]++;
1250 rfLens
[ rfLensFnd
++]= rfCounter
;
1256 lastFCcnt
= fcCounter
;
1265 uint8_t rfHighest
= 15 , rfHighest2
= 15 , rfHighest3
= 15 ;
1267 for ( i
= 0 ; i
< 15 ; i
++){
1268 //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1269 //get highest 2 RF values (might need to get more values to compare or compare all?)
1270 if ( rfCnts
[ i
]> rfCnts
[ rfHighest
]){
1271 rfHighest3
= rfHighest2
;
1272 rfHighest2
= rfHighest
;
1274 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest2
]){
1275 rfHighest3
= rfHighest2
;
1277 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest3
]){
1281 // set allowed clock remainder tolerance to be 1 large field clock length+1
1282 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1283 uint8_t tol1
= fcHigh
+ 1 ;
1285 //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1287 // loop to find the highest clock that has a remainder less than the tolerance
1288 // compare samples counted divided by
1290 for (; ii
>= 0 ; ii
--){
1291 if ( rfLens
[ rfHighest
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1292 if ( rfLens
[ rfHighest2
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest2
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1293 if ( rfLens
[ rfHighest3
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest3
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1300 if ( ii
< 0 ) return 0 ; // oops we went too far
1306 //countFC is to detect the field clock lengths.
1307 //counts and returns the 2 most common wave lengths
1308 uint16_t countFC ( uint8_t * BitStream
, size_t size
)
1310 uint8_t fcLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1311 uint16_t fcCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1312 uint8_t fcLensFnd
= 0 ;
1313 uint8_t lastFCcnt
= 0 ;
1314 uint32_t fcCounter
= 0 ;
1317 // prime i to first up transition
1318 for ( i
= 1 ; i
< size
- 1 ; i
++)
1319 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ])
1322 for (; i
< size
- 1 ; i
++){
1323 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ]){
1324 // new up transition
1327 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1328 if ( lastFCcnt
== 5 && fcCounter
== 9 ) fcCounter
--;
1329 //if odd and not rc/5 add one (for when we get a fc 9 instead of 10)
1330 if (( fcCounter
== 9 && fcCounter
& 1 ) || fcCounter
== 4 ) fcCounter
++;
1332 // save last field clock count (fc/xx)
1333 // find which fcLens to save it to:
1334 for ( int ii
= 0 ; ii
< 10 ; ii
++){
1335 if ( fcLens
[ ii
]== fcCounter
){
1341 if ( fcCounter
> 0 && fcLensFnd
< 10 ){
1343 fcCnts
[ fcLensFnd
]++;
1344 fcLens
[ fcLensFnd
++]= fcCounter
;
1353 uint8_t best1
= 9 , best2
= 9 , best3
= 9 ;
1355 // go through fclens and find which ones are bigest 2
1356 for ( i
= 0 ; i
< 10 ; i
++){
1357 // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt);
1358 // get the 3 best FC values
1359 if ( fcCnts
[ i
]> maxCnt1
) {
1364 } else if ( fcCnts
[ i
]> fcCnts
[ best2
]){
1367 } else if ( fcCnts
[ i
]> fcCnts
[ best3
]){
1371 uint8_t fcH
= 0 , fcL
= 0 ;
1372 if ( fcLens
[ best1
]> fcLens
[ best2
]){
1380 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1382 uint16_t fcs
= ((( uint16_t ) fcH
)<< 8 ) | fcL
;
1383 // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);