1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
23 * Function to do a modulation and then get samples.
29 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
32 int divisor_used
= 95; // 125 KHz
33 // see if 'h' was specified
35 if (command
[strlen((char *) command
) - 1] == 'h')
36 divisor_used
= 88; // 134.8 KHz
38 sample_config sc
= { 0,0,1, divisor_used
, 0};
39 setSamplingConfig(&sc
);
41 /* Make sure the tag is reset */
42 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
43 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
46 LFSetupFPGAForADC(sc
.divisor
, 1);
48 // And a little more time for the tag to fully power up
51 // now modulate the reader field
52 while(*command
!= '\0' && *command
!= ' ') {
53 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
55 SpinDelayUs(delay_off
);
56 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
58 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
60 if(*(command
++) == '0')
61 SpinDelayUs(period_0
);
63 SpinDelayUs(period_1
);
65 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
67 SpinDelayUs(delay_off
);
68 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
70 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
73 DoAcquisition_config(false);
78 /* blank r/w tag data stream
79 ...0000000000000000 01111111
80 1010101010101010101010101010101010101010101010101010101010101010
83 101010101010101[0]000...
85 [5555fe852c5555555555555555fe0000]
89 // some hardcoded initial params
90 // when we read a TI tag we sample the zerocross line at 2Mhz
91 // TI tags modulate a 1 as 16 cycles of 123.2Khz
92 // TI tags modulate a 0 as 16 cycles of 134.2Khz
93 #define FSAMPLE 2000000
97 signed char *dest
= (signed char *)BigBuf_get_addr();
98 uint16_t n
= BigBuf_max_traceLen();
99 // 128 bit shift register [shift3:shift2:shift1:shift0]
100 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
102 int i
, cycles
=0, samples
=0;
103 // how many sample points fit in 16 cycles of each frequency
104 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
105 // when to tell if we're close enough to one freq or another
106 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
108 // TI tags charge at 134.2Khz
109 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
110 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
112 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
113 // connects to SSP_DIN and the SSP_DOUT logic level controls
114 // whether we're modulating the antenna (high)
115 // or listening to the antenna (low)
116 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
118 // get TI tag data into the buffer
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
123 for (i
=0; i
<n
-1; i
++) {
124 // count cycles by looking for lo to hi zero crossings
125 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
127 // after 16 cycles, measure the frequency
130 samples
=i
-samples
; // number of samples in these 16 cycles
132 // TI bits are coming to us lsb first so shift them
133 // right through our 128 bit right shift register
134 shift0
= (shift0
>>1) | (shift1
<< 31);
135 shift1
= (shift1
>>1) | (shift2
<< 31);
136 shift2
= (shift2
>>1) | (shift3
<< 31);
139 // check if the cycles fall close to the number
140 // expected for either the low or high frequency
141 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
142 // low frequency represents a 1
144 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
145 // high frequency represents a 0
147 // probably detected a gay waveform or noise
148 // use this as gaydar or discard shift register and start again
149 shift3
= shift2
= shift1
= shift0
= 0;
153 // for each bit we receive, test if we've detected a valid tag
155 // if we see 17 zeroes followed by 6 ones, we might have a tag
156 // remember the bits are backwards
157 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
158 // if start and end bytes match, we have a tag so break out of the loop
159 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
160 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
168 // if flag is set we have a tag
170 DbpString("Info: No valid tag detected.");
172 // put 64 bit data into shift1 and shift0
173 shift0
= (shift0
>>24) | (shift1
<< 8);
174 shift1
= (shift1
>>24) | (shift2
<< 8);
176 // align 16 bit crc into lower half of shift2
177 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
179 // if r/w tag, check ident match
180 if (shift3
& (1<<15) ) {
181 DbpString("Info: TI tag is rewriteable");
182 // only 15 bits compare, last bit of ident is not valid
183 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
184 DbpString("Error: Ident mismatch!");
186 DbpString("Info: TI tag ident is valid");
189 DbpString("Info: TI tag is readonly");
192 // WARNING the order of the bytes in which we calc crc below needs checking
193 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
194 // bytes in reverse or something
198 crc
= update_crc16(crc
, (shift0
)&0xff);
199 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
200 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
201 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
202 crc
= update_crc16(crc
, (shift1
)&0xff);
203 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
204 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
205 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
207 Dbprintf("Info: Tag data: %x%08x, crc=%x",
208 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
209 if (crc
!= (shift2
&0xffff)) {
210 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
212 DbpString("Info: CRC is good");
217 void WriteTIbyte(uint8_t b
)
221 // modulate 8 bits out to the antenna
225 // stop modulating antenna
232 // stop modulating antenna
242 void AcquireTiType(void)
245 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
246 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
247 #define TIBUFLEN 1250
250 uint32_t *BigBuf
= (uint32_t *)BigBuf_get_addr();
251 memset(BigBuf
,0,BigBuf_max_traceLen()/sizeof(uint32_t));
253 // Set up the synchronous serial port
254 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
255 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
257 // steal this pin from the SSP and use it to control the modulation
258 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
259 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
261 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
262 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
264 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
265 // 48/2 = 24 MHz clock must be divided by 12
266 AT91C_BASE_SSC
->SSC_CMR
= 12;
268 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
269 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
270 AT91C_BASE_SSC
->SSC_TCMR
= 0;
271 AT91C_BASE_SSC
->SSC_TFMR
= 0;
278 // Charge TI tag for 50ms.
281 // stop modulating antenna and listen
288 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
289 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
290 i
++; if(i
>= TIBUFLEN
) break;
295 // return stolen pin to SSP
296 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
297 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
299 char *dest
= (char *)BigBuf_get_addr();
302 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
303 for (j
=0; j
<32; j
++) {
304 if(BigBuf
[i
] & (1 << j
)) {
313 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
314 // if crc provided, it will be written with the data verbatim (even if bogus)
315 // if not provided a valid crc will be computed from the data and written.
316 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
318 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
320 crc
= update_crc16(crc
, (idlo
)&0xff);
321 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
322 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
323 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
324 crc
= update_crc16(crc
, (idhi
)&0xff);
325 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
326 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
327 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
329 Dbprintf("Writing to tag: %x%08x, crc=%x",
330 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
332 // TI tags charge at 134.2Khz
333 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
334 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
335 // connects to SSP_DIN and the SSP_DOUT logic level controls
336 // whether we're modulating the antenna (high)
337 // or listening to the antenna (low)
338 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
341 // steal this pin from the SSP and use it to control the modulation
342 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
343 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
345 // writing algorithm:
346 // a high bit consists of a field off for 1ms and field on for 1ms
347 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
348 // initiate a charge time of 50ms (field on) then immediately start writing bits
349 // start by writing 0xBB (keyword) and 0xEB (password)
350 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
351 // finally end with 0x0300 (write frame)
352 // all data is sent lsb firts
353 // finish with 15ms programming time
357 SpinDelay(50); // charge time
359 WriteTIbyte(0xbb); // keyword
360 WriteTIbyte(0xeb); // password
361 WriteTIbyte( (idlo
)&0xff );
362 WriteTIbyte( (idlo
>>8 )&0xff );
363 WriteTIbyte( (idlo
>>16)&0xff );
364 WriteTIbyte( (idlo
>>24)&0xff );
365 WriteTIbyte( (idhi
)&0xff );
366 WriteTIbyte( (idhi
>>8 )&0xff );
367 WriteTIbyte( (idhi
>>16)&0xff );
368 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
369 WriteTIbyte( (crc
)&0xff ); // crc lo
370 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
371 WriteTIbyte(0x00); // write frame lo
372 WriteTIbyte(0x03); // write frame hi
374 SpinDelay(50); // programming time
378 // get TI tag data into the buffer
381 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
382 DbpString("Now use tiread to check");
385 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
388 uint8_t *tab
= BigBuf_get_addr();
390 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
391 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
393 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
395 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
396 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
398 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
399 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
403 //wait until SSC_CLK goes HIGH
404 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
405 if(BUTTON_PRESS() || usb_poll()) {
406 DbpString("Stopped");
421 //wait until SSC_CLK goes LOW
422 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
424 DbpString("Stopped");
442 #define DEBUG_FRAME_CONTENTS 1
443 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
447 // compose fc/8 fc/10 waveform (FSK2)
448 static void fc(int c
, int *n
)
450 uint8_t *dest
= BigBuf_get_addr();
453 // for when we want an fc8 pattern every 4 logical bits
465 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
467 for (idx
=0; idx
<6; idx
++) {
479 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
481 for (idx
=0; idx
<5; idx
++) {
495 // compose fc/X fc/Y waveform (FSKx)
496 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
498 uint8_t *dest
= BigBuf_get_addr();
499 uint8_t halfFC
= fc
/2;
500 uint8_t wavesPerClock
= clock
/fc
;
501 uint8_t mod
= clock
% fc
; //modifier
502 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
503 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=TRUE;
504 // loop through clock - step field clock
505 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
506 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
507 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
508 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
511 if (mod
>0) (*modCnt
)++;
512 if ((mod
>0) && modAdjOk
){ //fsk2
513 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
514 memset(dest
+(*n
), 0, fc
-halfFC
);
515 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
519 if (mod
>0 && !modAdjOk
){ //fsk1
520 memset(dest
+(*n
), 0, mod
-(mod
/2));
521 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
526 // prepare a waveform pattern in the buffer based on the ID given then
527 // simulate a HID tag until the button is pressed
528 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
532 HID tag bitstream format
533 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
534 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
535 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
536 A fc8 is inserted before every 4 bits
537 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
538 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
542 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
546 // special start of frame marker containing invalid bit sequences
547 fc(8, &n
); fc(8, &n
); // invalid
548 fc(8, &n
); fc(10, &n
); // logical 0
549 fc(10, &n
); fc(10, &n
); // invalid
550 fc(8, &n
); fc(10, &n
); // logical 0
553 // manchester encode bits 43 to 32
554 for (i
=11; i
>=0; i
--) {
555 if ((i
%4)==3) fc(0,&n
);
557 fc(10, &n
); fc(8, &n
); // low-high transition
559 fc(8, &n
); fc(10, &n
); // high-low transition
564 // manchester encode bits 31 to 0
565 for (i
=31; i
>=0; i
--) {
566 if ((i
%4)==3) fc(0,&n
);
568 fc(10, &n
); fc(8, &n
); // low-high transition
570 fc(8, &n
); fc(10, &n
); // high-low transition
576 SimulateTagLowFrequency(n
, 0, ledcontrol
);
582 // prepare a waveform pattern in the buffer based on the ID given then
583 // simulate a FSK tag until the button is pressed
584 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
585 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
589 uint8_t fcHigh
= arg1
>> 8;
590 uint8_t fcLow
= arg1
& 0xFF;
592 uint8_t clk
= arg2
& 0xFF;
593 uint8_t invert
= (arg2
>> 8) & 1;
595 for (i
=0; i
<size
; i
++){
596 if (BitStream
[i
] == invert
){
597 fcAll(fcLow
, &n
, clk
, &modCnt
);
599 fcAll(fcHigh
, &n
, clk
, &modCnt
);
602 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
);
603 /*Dbprintf("DEBUG: First 32:");
604 uint8_t *dest = BigBuf_get_addr();
606 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
608 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
613 SimulateTagLowFrequency(n
, 0, ledcontrol
);
619 // compose ask waveform for one bit(ASK)
620 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
622 uint8_t *dest
= BigBuf_get_addr();
623 uint8_t halfClk
= clock
/2;
624 // c = current bit 1 or 0
626 memset(dest
+(*n
), c
, halfClk
);
627 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
629 memset(dest
+(*n
), c
, clock
);
634 // args clock, ask/man or askraw, invert, transmission separator
635 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
639 uint8_t clk
= (arg1
>> 8) & 0xFF;
640 uint8_t manchester
= arg1
& 1;
641 uint8_t separator
= arg2
& 1;
642 uint8_t invert
= (arg2
>> 8) & 1;
643 for (i
=0; i
<size
; i
++){
644 askSimBit(BitStream
[i
]^invert
, &n
, clk
, manchester
);
646 if (manchester
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase)
647 for (i
=0; i
<size
; i
++){
648 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, manchester
);
651 if (separator
==1) Dbprintf("sorry but separator option not yet available");
653 Dbprintf("Simulating with clk: %d, invert: %d, manchester: %d, separator: %d, n: %d",clk
, invert
, manchester
, separator
, n
);
655 //Dbprintf("First 32:");
656 //uint8_t *dest = BigBuf_get_addr();
658 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
660 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
665 SimulateTagLowFrequency(n
, 0, ledcontrol
);
671 //carrier can be 2,4 or 8
672 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
674 uint8_t *dest
= BigBuf_get_addr();
675 uint8_t halfWave
= waveLen
/2;
679 // write phase change
680 memset(dest
+(*n
), *curPhase
^1, halfWave
);
681 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
686 //write each normal clock wave for the clock duration
687 for (; i
< clk
; i
+=waveLen
){
688 memset(dest
+(*n
), *curPhase
, halfWave
);
689 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
694 // args clock, carrier, invert,
695 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
699 uint8_t clk
= arg1
>> 8;
700 uint8_t carrier
= arg1
& 0xFF;
701 uint8_t invert
= arg2
& 0xFF;
702 uint8_t curPhase
= 0;
703 for (i
=0; i
<size
; i
++){
704 if (BitStream
[i
] == curPhase
){
705 pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
);
707 pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
);
710 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
711 //Dbprintf("DEBUG: First 32:");
712 //uint8_t *dest = BigBuf_get_addr();
714 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
716 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
720 SimulateTagLowFrequency(n
, 0, ledcontrol
);
726 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
727 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
729 uint8_t *dest
= BigBuf_get_addr();
730 const size_t sizeOfBigBuff
= BigBuf_max_traceLen();
732 uint32_t hi2
=0, hi
=0, lo
=0;
734 // Configure to go in 125Khz listen mode
735 LFSetupFPGAForADC(95, true);
737 while(!BUTTON_PRESS()) {
740 if (ledcontrol
) LED_A_ON();
742 DoAcquisition_default(-1,true);
744 size
= sizeOfBigBuff
; //variable size will change after demod so re initialize it before use
745 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
748 // final loop, go over previously decoded manchester data and decode into usable tag ID
749 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
750 if (hi2
!= 0){ //extra large HID tags
751 Dbprintf("TAG ID: %x%08x%08x (%d)",
752 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
753 }else { //standard HID tags <38 bits
754 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
757 uint32_t cardnum
= 0;
758 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
760 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
762 while(lo2
> 1){ //find last bit set to 1 (format len bit)
770 cardnum
= (lo
>>1)&0xFFFF;
774 cardnum
= (lo
>>1)&0x7FFFF;
775 fc
= ((hi
&0xF)<<12)|(lo
>>20);
778 cardnum
= (lo
>>1)&0xFFFF;
779 fc
= ((hi
&1)<<15)|(lo
>>17);
782 cardnum
= (lo
>>1)&0xFFFFF;
783 fc
= ((hi
&1)<<11)|(lo
>>21);
786 else { //if bit 38 is not set then 37 bit format is used
791 cardnum
= (lo
>>1)&0x7FFFF;
792 fc
= ((hi
&0xF)<<12)|(lo
>>20);
795 //Dbprintf("TAG ID: %x%08x (%d)",
796 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
797 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
798 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
799 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
802 if (ledcontrol
) LED_A_OFF();
812 DbpString("Stopped");
813 if (ledcontrol
) LED_A_OFF();
816 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
818 uint8_t *dest
= BigBuf_get_addr();
820 size_t size
=0, idx
=0;
821 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
823 // Configure to go in 125Khz listen mode
824 LFSetupFPGAForADC(95, true);
826 while(!BUTTON_PRESS()) {
829 if (ledcontrol
) LED_A_ON();
831 DoAcquisition_default(-1,true);
832 size
= BigBuf_max_traceLen();
833 //Dbprintf("DEBUG: Buffer got");
834 //askdemod and manchester decode
835 errCnt
= askmandemod(dest
, &size
, &clk
, &invert
, maxErr
);
836 //Dbprintf("DEBUG: ASK Got");
840 lo
= Em410xDecode(dest
, &size
, &idx
);
841 //Dbprintf("DEBUG: EM GOT");
843 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
846 (uint32_t)(lo
&0xFFFF),
847 (uint32_t)((lo
>>16LL) & 0xFF),
848 (uint32_t)(lo
& 0xFFFFFF));
851 if (ledcontrol
) LED_A_OFF();
853 *low
=lo
& 0xFFFFFFFF;
857 //Dbprintf("DEBUG: No Tag");
866 DbpString("Stopped");
867 if (ledcontrol
) LED_A_OFF();
870 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
872 uint8_t *dest
= BigBuf_get_addr();
874 uint32_t code
=0, code2
=0;
876 uint8_t facilitycode
=0;
878 // Configure to go in 125Khz listen mode
879 LFSetupFPGAForADC(95, true);
881 while(!BUTTON_PRESS()) {
883 if (ledcontrol
) LED_A_ON();
884 DoAcquisition_default(-1,true);
885 //fskdemod and get start index
887 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
892 //0 10 20 30 40 50 60
894 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
895 //-----------------------------------------------------------------------------
896 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
898 //XSF(version)facility:codeone+codetwo
900 if(findone
){ //only print binary if we are doing one
901 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
902 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
903 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
904 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
905 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
906 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
907 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
909 code
= bytebits_to_byte(dest
+idx
,32);
910 code2
= bytebits_to_byte(dest
+idx
+32,32);
911 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
912 facilitycode
= bytebits_to_byte(dest
+idx
+18,8) ;
913 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
915 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
916 // if we're only looking for one tag
918 if (ledcontrol
) LED_A_OFF();
925 version
=facilitycode
=0;
931 DbpString("Stopped");
932 if (ledcontrol
) LED_A_OFF();
935 /*------------------------------
936 * T5555/T5557/T5567 routines
937 *------------------------------
940 /* T55x7 configuration register definitions */
941 #define T55x7_POR_DELAY 0x00000001
942 #define T55x7_ST_TERMINATOR 0x00000008
943 #define T55x7_PWD 0x00000010
944 #define T55x7_MAXBLOCK_SHIFT 5
945 #define T55x7_AOR 0x00000200
946 #define T55x7_PSKCF_RF_2 0
947 #define T55x7_PSKCF_RF_4 0x00000400
948 #define T55x7_PSKCF_RF_8 0x00000800
949 #define T55x7_MODULATION_DIRECT 0
950 #define T55x7_MODULATION_PSK1 0x00001000
951 #define T55x7_MODULATION_PSK2 0x00002000
952 #define T55x7_MODULATION_PSK3 0x00003000
953 #define T55x7_MODULATION_FSK1 0x00004000
954 #define T55x7_MODULATION_FSK2 0x00005000
955 #define T55x7_MODULATION_FSK1a 0x00006000
956 #define T55x7_MODULATION_FSK2a 0x00007000
957 #define T55x7_MODULATION_MANCHESTER 0x00008000
958 #define T55x7_MODULATION_BIPHASE 0x00010000
959 #define T55x7_BITRATE_RF_8 0
960 #define T55x7_BITRATE_RF_16 0x00040000
961 #define T55x7_BITRATE_RF_32 0x00080000
962 #define T55x7_BITRATE_RF_40 0x000C0000
963 #define T55x7_BITRATE_RF_50 0x00100000
964 #define T55x7_BITRATE_RF_64 0x00140000
965 #define T55x7_BITRATE_RF_100 0x00180000
966 #define T55x7_BITRATE_RF_128 0x001C0000
968 /* T5555 (Q5) configuration register definitions */
969 #define T5555_ST_TERMINATOR 0x00000001
970 #define T5555_MAXBLOCK_SHIFT 0x00000001
971 #define T5555_MODULATION_MANCHESTER 0
972 #define T5555_MODULATION_PSK1 0x00000010
973 #define T5555_MODULATION_PSK2 0x00000020
974 #define T5555_MODULATION_PSK3 0x00000030
975 #define T5555_MODULATION_FSK1 0x00000040
976 #define T5555_MODULATION_FSK2 0x00000050
977 #define T5555_MODULATION_BIPHASE 0x00000060
978 #define T5555_MODULATION_DIRECT 0x00000070
979 #define T5555_INVERT_OUTPUT 0x00000080
980 #define T5555_PSK_RF_2 0
981 #define T5555_PSK_RF_4 0x00000100
982 #define T5555_PSK_RF_8 0x00000200
983 #define T5555_USE_PWD 0x00000400
984 #define T5555_USE_AOR 0x00000800
985 #define T5555_BITRATE_SHIFT 12
986 #define T5555_FAST_WRITE 0x00004000
987 #define T5555_PAGE_SELECT 0x00008000
990 * Relevant times in microsecond
991 * To compensate antenna falling times shorten the write times
992 * and enlarge the gap ones.
994 #define START_GAP 250
995 #define WRITE_GAP 160
996 #define WRITE_0 144 // 192
997 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
999 // Write one bit to card
1000 void T55xxWriteBit(int bit
)
1002 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1003 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1004 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1006 SpinDelayUs(WRITE_0
);
1008 SpinDelayUs(WRITE_1
);
1009 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1010 SpinDelayUs(WRITE_GAP
);
1013 // Write one card block in page 0, no lock
1014 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1016 //unsigned int i; //enio adjustment 12/10/14
1019 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1020 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1021 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1023 // Give it a bit of time for the resonant antenna to settle.
1024 // And for the tag to fully power up
1027 // Now start writting
1028 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1029 SpinDelayUs(START_GAP
);
1033 T55xxWriteBit(0); //Page 0
1036 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1037 T55xxWriteBit(Pwd
& i
);
1043 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1044 T55xxWriteBit(Data
& i
);
1047 for (i
= 0x04; i
!= 0; i
>>= 1)
1048 T55xxWriteBit(Block
& i
);
1050 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1051 // so wait a little more)
1052 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1053 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1055 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1058 // Read one card block in page 0
1059 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1061 uint8_t *dest
= BigBuf_get_addr();
1062 //int m=0, i=0; //enio adjustment 12/10/14
1064 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1065 m
= BigBuf_max_traceLen();
1066 // Clear destination buffer before sending the command
1067 memset(dest
, 128, m
);
1068 // Connect the A/D to the peak-detected low-frequency path.
1069 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1070 // Now set up the SSC to get the ADC samples that are now streaming at us.
1074 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1075 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1077 // Give it a bit of time for the resonant antenna to settle.
1078 // And for the tag to fully power up
1081 // Now start writting
1082 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1083 SpinDelayUs(START_GAP
);
1087 T55xxWriteBit(0); //Page 0
1090 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1091 T55xxWriteBit(Pwd
& i
);
1096 for (i
= 0x04; i
!= 0; i
>>= 1)
1097 T55xxWriteBit(Block
& i
);
1099 // Turn field on to read the response
1100 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1101 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1103 // Now do the acquisition
1106 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1107 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1109 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1110 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1111 // we don't care about actual value, only if it's more or less than a
1112 // threshold essentially we capture zero crossings for later analysis
1113 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1119 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1124 // Read card traceability data (page 1)
1125 void T55xxReadTrace(void){
1126 uint8_t *dest
= BigBuf_get_addr();
1129 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1130 m
= BigBuf_max_traceLen();
1131 // Clear destination buffer before sending the command
1132 memset(dest
, 128, m
);
1133 // Connect the A/D to the peak-detected low-frequency path.
1134 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1135 // Now set up the SSC to get the ADC samples that are now streaming at us.
1139 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1140 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1142 // Give it a bit of time for the resonant antenna to settle.
1143 // And for the tag to fully power up
1146 // Now start writting
1147 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1148 SpinDelayUs(START_GAP
);
1152 T55xxWriteBit(1); //Page 1
1154 // Turn field on to read the response
1155 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1156 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1158 // Now do the acquisition
1161 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1162 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1164 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1165 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1171 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1176 /*-------------- Cloning routines -----------*/
1177 // Copy HID id to card and setup block 0 config
1178 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1180 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1184 // Ensure no more than 84 bits supplied
1186 DbpString("Tags can only have 84 bits.");
1189 // Build the 6 data blocks for supplied 84bit ID
1191 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1192 for (int i
=0;i
<4;i
++) {
1193 if (hi2
& (1<<(19-i
)))
1194 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1196 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1200 for (int i
=0;i
<16;i
++) {
1201 if (hi2
& (1<<(15-i
)))
1202 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1204 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1208 for (int i
=0;i
<16;i
++) {
1209 if (hi
& (1<<(31-i
)))
1210 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1212 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1216 for (int i
=0;i
<16;i
++) {
1217 if (hi
& (1<<(15-i
)))
1218 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1220 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1224 for (int i
=0;i
<16;i
++) {
1225 if (lo
& (1<<(31-i
)))
1226 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1228 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1232 for (int i
=0;i
<16;i
++) {
1233 if (lo
& (1<<(15-i
)))
1234 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1236 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1240 // Ensure no more than 44 bits supplied
1242 DbpString("Tags can only have 44 bits.");
1246 // Build the 3 data blocks for supplied 44bit ID
1249 data1
= 0x1D000000; // load preamble
1251 for (int i
=0;i
<12;i
++) {
1252 if (hi
& (1<<(11-i
)))
1253 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1255 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1259 for (int i
=0;i
<16;i
++) {
1260 if (lo
& (1<<(31-i
)))
1261 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1263 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1267 for (int i
=0;i
<16;i
++) {
1268 if (lo
& (1<<(15-i
)))
1269 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1271 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1276 // Program the data blocks for supplied ID
1277 // and the block 0 for HID format
1278 T55xxWriteBlock(data1
,1,0,0);
1279 T55xxWriteBlock(data2
,2,0,0);
1280 T55xxWriteBlock(data3
,3,0,0);
1282 if (longFMT
) { // if long format there are 6 blocks
1283 T55xxWriteBlock(data4
,4,0,0);
1284 T55xxWriteBlock(data5
,5,0,0);
1285 T55xxWriteBlock(data6
,6,0,0);
1288 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1289 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1290 T55x7_MODULATION_FSK2a
|
1291 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1299 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1301 int data1
=0, data2
=0; //up to six blocks for long format
1303 data1
= hi
; // load preamble
1307 // Program the data blocks for supplied ID
1308 // and the block 0 for HID format
1309 T55xxWriteBlock(data1
,1,0,0);
1310 T55xxWriteBlock(data2
,2,0,0);
1313 T55xxWriteBlock(0x00147040,0,0,0);
1319 // Define 9bit header for EM410x tags
1320 #define EM410X_HEADER 0x1FF
1321 #define EM410X_ID_LENGTH 40
1323 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1326 uint64_t id
= EM410X_HEADER
;
1327 uint64_t rev_id
= 0; // reversed ID
1328 int c_parity
[4]; // column parity
1329 int r_parity
= 0; // row parity
1332 // Reverse ID bits given as parameter (for simpler operations)
1333 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1335 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1338 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1343 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1344 id_bit
= rev_id
& 1;
1347 // Don't write row parity bit at start of parsing
1349 id
= (id
<< 1) | r_parity
;
1350 // Start counting parity for new row
1357 // First elements in column?
1359 // Fill out first elements
1360 c_parity
[i
] = id_bit
;
1362 // Count column parity
1363 c_parity
[i
% 4] ^= id_bit
;
1366 id
= (id
<< 1) | id_bit
;
1370 // Insert parity bit of last row
1371 id
= (id
<< 1) | r_parity
;
1373 // Fill out column parity at the end of tag
1374 for (i
= 0; i
< 4; ++i
)
1375 id
= (id
<< 1) | c_parity
[i
];
1380 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1384 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1385 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1387 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1389 // Clock rate is stored in bits 8-15 of the card value
1390 clock
= (card
& 0xFF00) >> 8;
1391 Dbprintf("Clock rate: %d", clock
);
1395 clock
= T55x7_BITRATE_RF_32
;
1398 clock
= T55x7_BITRATE_RF_16
;
1401 // A value of 0 is assumed to be 64 for backwards-compatibility
1404 clock
= T55x7_BITRATE_RF_64
;
1407 Dbprintf("Invalid clock rate: %d", clock
);
1411 // Writing configuration for T55x7 tag
1412 T55xxWriteBlock(clock
|
1413 T55x7_MODULATION_MANCHESTER
|
1414 2 << T55x7_MAXBLOCK_SHIFT
,
1418 // Writing configuration for T5555(Q5) tag
1419 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1420 T5555_MODULATION_MANCHESTER
|
1421 2 << T5555_MAXBLOCK_SHIFT
,
1425 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1426 (uint32_t)(id
>> 32), (uint32_t)id
);
1429 // Clone Indala 64-bit tag by UID to T55x7
1430 void CopyIndala64toT55x7(int hi
, int lo
)
1433 //Program the 2 data blocks for supplied 64bit UID
1434 // and the block 0 for Indala64 format
1435 T55xxWriteBlock(hi
,1,0,0);
1436 T55xxWriteBlock(lo
,2,0,0);
1437 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1438 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1439 T55x7_MODULATION_PSK1
|
1440 2 << T55x7_MAXBLOCK_SHIFT
,
1442 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1443 // T5567WriteBlock(0x603E1042,0);
1449 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1452 //Program the 7 data blocks for supplied 224bit UID
1453 // and the block 0 for Indala224 format
1454 T55xxWriteBlock(uid1
,1,0,0);
1455 T55xxWriteBlock(uid2
,2,0,0);
1456 T55xxWriteBlock(uid3
,3,0,0);
1457 T55xxWriteBlock(uid4
,4,0,0);
1458 T55xxWriteBlock(uid5
,5,0,0);
1459 T55xxWriteBlock(uid6
,6,0,0);
1460 T55xxWriteBlock(uid7
,7,0,0);
1461 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1462 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1463 T55x7_MODULATION_PSK1
|
1464 7 << T55x7_MAXBLOCK_SHIFT
,
1466 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1467 // T5567WriteBlock(0x603E10E2,0);
1474 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1475 #define max(x,y) ( x<y ? y:x)
1477 int DemodPCF7931(uint8_t **outBlocks
) {
1478 uint8_t BitStream
[256];
1479 uint8_t Blocks
[8][16];
1480 uint8_t *GraphBuffer
= BigBuf_get_addr();
1481 int GraphTraceLen
= BigBuf_max_traceLen();
1482 int i
, j
, lastval
, bitidx
, half_switch
;
1484 int tolerance
= clock
/ 8;
1485 int pmc
, block_done
;
1486 int lc
, warnings
= 0;
1488 int lmin
=128, lmax
=128;
1491 LFSetupFPGAForADC(95, true);
1492 DoAcquisition_default(0, 0);
1500 /* Find first local max/min */
1501 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1502 while(i
< GraphTraceLen
) {
1503 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1510 while(i
< GraphTraceLen
) {
1511 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1523 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1525 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1530 // Switch depending on lc length:
1531 // Tolerance is 1/8 of clock rate (arbitrary)
1532 if (abs(lc
-clock
/4) < tolerance
) {
1534 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1536 i
+= (128+127+16+32+33+16)-1;
1544 } else if (abs(lc
-clock
/2) < tolerance
) {
1546 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1548 i
+= (128+127+16+32+33)-1;
1553 else if(half_switch
== 1) {
1554 BitStream
[bitidx
++] = 0;
1559 } else if (abs(lc
-clock
) < tolerance
) {
1561 BitStream
[bitidx
++] = 1;
1567 Dbprintf("Error: too many detection errors, aborting.");
1572 if(block_done
== 1) {
1574 for(j
=0; j
<16; j
++) {
1575 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1576 64*BitStream
[j
*8+6]+
1577 32*BitStream
[j
*8+5]+
1578 16*BitStream
[j
*8+4]+
1590 if(i
< GraphTraceLen
)
1592 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1599 if(num_blocks
== 4) break;
1601 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1605 int IsBlock0PCF7931(uint8_t *Block
) {
1606 // Assume RFU means 0 :)
1607 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1609 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1614 int IsBlock1PCF7931(uint8_t *Block
) {
1615 // Assume RFU means 0 :)
1616 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1617 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1625 void ReadPCF7931() {
1626 uint8_t Blocks
[8][17];
1627 uint8_t tmpBlocks
[4][16];
1628 int i
, j
, ind
, ind2
, n
;
1635 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1638 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1639 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1642 if(error
==10 && num_blocks
== 0) {
1643 Dbprintf("Error, no tag or bad tag");
1646 else if (tries
==20 || error
==10) {
1647 Dbprintf("Error reading the tag");
1648 Dbprintf("Here is the partial content");
1653 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1654 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1655 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1657 for(i
=0; i
<n
; i
++) {
1658 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1660 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1664 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1665 Blocks
[0][ALLOC
] = 1;
1666 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1667 Blocks
[1][ALLOC
] = 1;
1668 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1670 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1672 // Handle following blocks
1673 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1676 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1677 Blocks
[ind2
][ALLOC
] = 1;
1685 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1686 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1687 for(j
=0; j
<max_blocks
; j
++) {
1688 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1689 // Found an identical block
1690 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1693 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1694 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1695 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1696 Blocks
[ind2
][ALLOC
] = 1;
1698 if(num_blocks
== max_blocks
) goto end
;
1701 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1702 if(ind2
> max_blocks
)
1704 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1705 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1706 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1707 Blocks
[ind2
][ALLOC
] = 1;
1709 if(num_blocks
== max_blocks
) goto end
;
1718 if (BUTTON_PRESS()) return;
1719 } while (num_blocks
!= max_blocks
);
1721 Dbprintf("-----------------------------------------");
1722 Dbprintf("Memory content:");
1723 Dbprintf("-----------------------------------------");
1724 for(i
=0; i
<max_blocks
; i
++) {
1725 if(Blocks
[i
][ALLOC
]==1)
1726 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1727 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1728 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1730 Dbprintf("<missing block %d>", i
);
1732 Dbprintf("-----------------------------------------");
1738 //-----------------------------------
1739 // EM4469 / EM4305 routines
1740 //-----------------------------------
1741 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1742 #define FWD_CMD_WRITE 0xA
1743 #define FWD_CMD_READ 0x9
1744 #define FWD_CMD_DISABLE 0x5
1747 uint8_t forwardLink_data
[64]; //array of forwarded bits
1748 uint8_t * forward_ptr
; //ptr for forward message preparation
1749 uint8_t fwd_bit_sz
; //forwardlink bit counter
1750 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1752 //====================================================================
1753 // prepares command bits
1755 //====================================================================
1756 //--------------------------------------------------------------------
1757 uint8_t Prepare_Cmd( uint8_t cmd
) {
1758 //--------------------------------------------------------------------
1760 *forward_ptr
++ = 0; //start bit
1761 *forward_ptr
++ = 0; //second pause for 4050 code
1763 *forward_ptr
++ = cmd
;
1765 *forward_ptr
++ = cmd
;
1767 *forward_ptr
++ = cmd
;
1769 *forward_ptr
++ = cmd
;
1771 return 6; //return number of emited bits
1774 //====================================================================
1775 // prepares address bits
1777 //====================================================================
1779 //--------------------------------------------------------------------
1780 uint8_t Prepare_Addr( uint8_t addr
) {
1781 //--------------------------------------------------------------------
1783 register uint8_t line_parity
;
1788 *forward_ptr
++ = addr
;
1789 line_parity
^= addr
;
1793 *forward_ptr
++ = (line_parity
& 1);
1795 return 7; //return number of emited bits
1798 //====================================================================
1799 // prepares data bits intreleaved with parity bits
1801 //====================================================================
1803 //--------------------------------------------------------------------
1804 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1805 //--------------------------------------------------------------------
1807 register uint8_t line_parity
;
1808 register uint8_t column_parity
;
1809 register uint8_t i
, j
;
1810 register uint16_t data
;
1815 for(i
=0; i
<4; i
++) {
1817 for(j
=0; j
<8; j
++) {
1818 line_parity
^= data
;
1819 column_parity
^= (data
& 1) << j
;
1820 *forward_ptr
++ = data
;
1823 *forward_ptr
++ = line_parity
;
1828 for(j
=0; j
<8; j
++) {
1829 *forward_ptr
++ = column_parity
;
1830 column_parity
>>= 1;
1834 return 45; //return number of emited bits
1837 //====================================================================
1838 // Forward Link send function
1839 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1840 // fwd_bit_count set with number of bits to be sent
1841 //====================================================================
1842 void SendForward(uint8_t fwd_bit_count
) {
1844 fwd_write_ptr
= forwardLink_data
;
1845 fwd_bit_sz
= fwd_bit_count
;
1850 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1851 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1852 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1854 // Give it a bit of time for the resonant antenna to settle.
1855 // And for the tag to fully power up
1858 // force 1st mod pulse (start gap must be longer for 4305)
1859 fwd_bit_sz
--; //prepare next bit modulation
1861 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1862 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1863 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1864 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1865 SpinDelayUs(16*8); //16 cycles on (8us each)
1867 // now start writting
1868 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1869 if(((*fwd_write_ptr
++) & 1) == 1)
1870 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1872 //These timings work for 4469/4269/4305 (with the 55*8 above)
1873 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1874 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1875 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1876 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1877 SpinDelayUs(9*8); //16 cycles on (8us each)
1882 void EM4xLogin(uint32_t Password
) {
1884 uint8_t fwd_bit_count
;
1886 forward_ptr
= forwardLink_data
;
1887 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1888 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1890 SendForward(fwd_bit_count
);
1892 //Wait for command to complete
1897 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1899 uint8_t fwd_bit_count
;
1900 uint8_t *dest
= BigBuf_get_addr();
1903 //If password mode do login
1904 if (PwdMode
== 1) EM4xLogin(Pwd
);
1906 forward_ptr
= forwardLink_data
;
1907 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1908 fwd_bit_count
+= Prepare_Addr( Address
);
1910 m
= BigBuf_max_traceLen();
1911 // Clear destination buffer before sending the command
1912 memset(dest
, 128, m
);
1913 // Connect the A/D to the peak-detected low-frequency path.
1914 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1915 // Now set up the SSC to get the ADC samples that are now streaming at us.
1918 SendForward(fwd_bit_count
);
1920 // Now do the acquisition
1923 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1924 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1926 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1927 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1932 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1936 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1938 uint8_t fwd_bit_count
;
1940 //If password mode do login
1941 if (PwdMode
== 1) EM4xLogin(Pwd
);
1943 forward_ptr
= forwardLink_data
;
1944 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1945 fwd_bit_count
+= Prepare_Addr( Address
);
1946 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1948 SendForward(fwd_bit_count
);
1950 //Wait for write to complete
1952 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off