j--; // overwrite parity with next data
// if parity fails then return 0
switch (pType) {
- case 3: if (BitStream[j]==1) return 0; break; //should be 0 spacer bit
- case 2: if (BitStream[j]==0) return 0; break; //should be 1 spacer bit
- default: //test parity
- if (parityTest(parityWd, pLen, pType) == 0) return 0; break;
+ case 3: if (BitStream[j]==1) {return 0;} break; //should be 0 spacer bit
+ case 2: if (BitStream[j]==0) {return 0;} break; //should be 1 spacer bit
+ default: if (parityTest(parityWd, pLen, pType) == 0) {return 0;} break; //test parity
}
bitCnt+=(pLen-1);
parityWd = 0;
//by marshmellow
void askAmp(uint8_t *BitStream, size_t size)
{
+ uint8_t Last = 128;
for(size_t i = 1; i<size; i++){
if (BitStream[i]-BitStream[i-1]>=30) //large jump up
- BitStream[i]=127;
- else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down
- BitStream[i]=-127;
+ Last = 255;
+ else if(BitStream[i-1]-BitStream[i]>=20) //large jump down
+ Last = 0;
+
+ BitStream[i-1] = Last;
}
return;
}
-
+
//by marshmellow
//attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType)
if (*clk==0 || start < 0) return -3;
if (*invert != 1) *invert = 0;
if (amp==1) askAmp(BinStream, *size);
- if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d", *clk, start);
+ if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp);
uint8_t initLoopMax = 255;
if (initLoopMax > *size) initLoopMax = *size;
//return start position
return (int) startIdx;
}
- return -5;
+ return -5; //spacer bits not found - not a valid gproxII
}
-//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
+//translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
{
size_t last_transition = 0;
// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
// or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
+ // (could also be fc/5 && fc/7 for fsk1 = 4-9)
for(idx = 161; idx < size-20; idx++) {
// threshold current value
else dest[idx] = 1;
// Check for 0->1 transition
- if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
+ if (dest[idx-1] < dest[idx]) {
preLastSample = LastSample;
LastSample = currSample;
currSample = idx-last_transition;
- if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3)
+ if (currSample < (fclow-2)) { //0-5 = garbage noise (or 0-3)
//do nothing with extra garbage
- } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves or 3-6 = 5
+ } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5)
+ //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1) || preLastSample == 0 )){
- dest[numBits-1]=1; //correct previous 9 wave surrounded by 8 waves
+ dest[numBits-1]=1;
}
dest[numBits++]=1;
- } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = garbage
+ } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = unusable garbage
//do nothing with beginning garbage
- } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's
+ } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
dest[numBits++]=1;
- } else { //9+ = 10 sample waves
+ } else { //9+ = 10 sample waves (or 6+ = 7)
dest[numBits++]=0;
}
last_transition = idx;
}
//translate 11111100000 to 10
+//rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen,
uint8_t invert, uint8_t fchigh, uint8_t fclow)
{
uint32_t n=1;
for( idx=1; idx < size; idx++) {
n++;
- if (dest[idx]==lastval) continue;
+ if (dest[idx]==lastval) continue; //skip until we hit a transition
+ //find out how many bits (n) we collected
//if lastval was 1, we have a 1->0 crossing
if (dest[idx-1]==1) {
n = (n * fclow + rfLen/2) / rfLen;
}
if (n == 0) n = 1;
+ //add to our destination the bits we collected
memset(dest+numBits, dest[idx-1]^invert , n);
numBits += n;
n=0;
return (int) startIdx;
}
+// find presco preamble 0x10D in already demoded data
+int PrescoDemod(uint8_t *dest, size_t *size) {
+ //make sure buffer has data
+ if (*size < 64*2) return -2;
+
+ size_t startIdx = 0;
+ uint8_t preamble[] = {1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0};
+ uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+ if (errChk == 0) return -4; //preamble not found
+ //return start position
+ return (int) startIdx;
+}
+
// Ask/Biphase Demod then try to locate an ISO 11784/85 ID
// BitStream must contain previously askrawdemod and biphasedemoded data
int FDXBdemodBI(uint8_t *dest, size_t *size)
numBits += (firstFullWave / *clock);
//set start of wave as clock align
lastClkBit = firstFullWave;
- //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
- //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
+ if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave,fullWaveLen);
+ if (g_debugMode==2) prnt("DEBUG: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc);
waveStart = 0;
dest[numBits++] = curPhase; //set first read bit
for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
int tol = 0;
int i, j, skip, start, end, low, high, minClk, waveStart;
bool complete = false;
- int tmpbuff[bufsize / 64];
- int waveLen[bufsize / 64];
+ int tmpbuff[bufsize / 32]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
+ int waveLen[bufsize / 32]; // if clock is larger then we waste memory in array size that is not needed...
size_t testsize = (bufsize < 512) ? bufsize : 512;
int phaseoff = 0;
high = low = 128;
waveStart = i;
while ((buffer[i] > low) && (i < bufsize))
++i;
- if (j >= (bufsize/64)) {
+ if (j >= (bufsize/32)) {
break;
}
waveLen[j] = i - waveStart; //first high to first low
if (start < 0) {
if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting");
return false;
+ } else {
+ if (g_debugMode==2) prnt("DEBUG STT: first STT found at: %d, j=%d",start, j);
}
if (waveLen[i+2] > clk*1+tol)
phaseoff = 0;
end = skip;
for (i += 3; i < j - 4; ++i) {
end += tmpbuff[i];
- if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol) { //1 to 2 clocks depending on 2 bits prior
+ if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
start = skip;
size_t datalen = end - start;
// check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
- if (datalen % clk > clk/8) {
+ if ( clk - (datalen % clk) <= clk/8) {
+ // padd the amount off - could be problematic... but shouldn't happen often
+ datalen += clk - (datalen % clk);
+ } else if ( (datalen % clk) <= clk/8 ) {
+ // padd the amount off - could be problematic... but shouldn't happen often
+ datalen -= datalen % clk;
+ } else {
if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk);
return false;
- } else {
- // padd the amount off - could be problematic... but shouldn't happen often
- datalen += datalen % clk;
}
// if datalen is less than one t55xx block - ERROR
if (datalen/clk < 8*4) {
return false;
}
size_t dataloc = start;
+ if (buffer[dataloc-(clk*4)-(clk/8)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) {
+ //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
+ for ( i=0; i <= (clk/8); ++i ) {
+ if ( buffer[dataloc - (clk*4) - i] <= low ) {
+ dataloc -= i;
+ break;
+ }
+ }
+ }
+
size_t newloc = 0;
i=0;
+ if (g_debugMode==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc, datalen);
+
// warning - overwriting buffer given with raw wave data with ST removed...
while ( dataloc < bufsize-(clk/2) ) {
- //compensate for long high at end of ST not being high... (we cut out the high part)
+ //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) {
for(i=0; i < clk/2-tol; ++i) {
buffer[dataloc+i] = high+5;
if (i+newloc < dataloc)
buffer[i+newloc] = buffer[dataloc];
- dataloc++;
+ dataloc++;
}
}
newloc += i;
- //skip next ST
+ //skip next ST - we just assume it will be there from now on...
+ if (g_debugMode==2) prnt("DEBUG STT: skipping STT at %d to %d", dataloc, dataloc+(clk*4));
dataloc += clk*4;
}
*size = newloc;