-iclass research
-===============
+NOTICE:
+(2014-03-26)
+This is now the official Proxmark repository!
-Implemented "hf iclass replay <MAC>" where MAC is 8-char Hexidecimal MAC.
+INTRODUCTION:
-Useful to replay a snooped authentication sequence if cc (e-purse) is not correctly updated as per the specification.
-Currently hardset to only read Page 1.
+The proxmark3 is a powerful general purpose RFID tool, the size of a deck
+of cards, designed to snoop, listen and emulate everything from
+Low Frequency (125kHz) to High Frequency (13.56MHz) tags.
+
+This repository contains enough software, logic (for the FPGA), and design
+documentation for the hardware that you could, at least in theory,
+do something useful with a proxmark3.
+
+RESOURCES:
+
+ * This repository!
+ https://github.com/Proxmark/proxmark3
+
+ * The Wiki
+ https://github.com/Proxmark/proxmark3/wiki
+
+ * The GitHub page
+ http://proxmark.github.io/proxmark3/
+
+ * The Forum
+ http://www.proxmark.org/forum
+
+ * The IRC chanel
+ irc.freenode.org #proxmark3
+ -or-
+ http://webchat.freenode.net/?channels=#proxmark3
+
+DEVELOPMENT:
+
+The tools required to build or run the project will vary depending on
+your operating system. Please refer to the Wiki for details.
+
+ * https://github.com/Proxmark/proxmark3/wiki
+
+OBTAINING HARDWARE:
+
+The Proxmark 3 is available for purcahse (assembled and tested) from the
+following locations:
+
+ * http://proxmark3.com/
+ * http://www.xfpga.com/
+
+Most of the ultra-low-volume contract assemblers could put
+something like this together with a reasonable yield. A run of around
+a dozen units is probably cost-effective. The BOM includes (possibly-
+outdated) component pricing, and everything is available from Digikey
+and the usual distributors.
+
+If you've never assembled a modern circuit board by hand, then this is
+not a good place to start. Some of the components (e.g. the crystals)
+must not be assembled with a soldering iron, and require hot air.
+
+The schematics are included; the component values given are not
+necessarily correct for all situations, but it should be possible to do
+nearly anything you would want with appropriate population options.
+
+The printed circuit board artwork is also available, as Gerbers and an
+Excellon drill file.
+
+
+LICENSING:
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+
+
+Jonathan Westhues
+user jwesthues, at host cq.cx
+
+May 2007, Cambridge MA
-
* ( hopefully around 95 if it is tuned to 125kHz!)
*/
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
for (i=255; i>19; i--) {
WDT_HIT();
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
LED_A_ON();
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(20);
// Vref = 3300mV, and an 10:1 voltage divider on the input
for (;;) {
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(20);
// Vref = 3300mV, and an 10:1 voltage divider on the input
// We're using this mode just so that I can test it out; the simulated
// tag mode would work just as well and be simpler.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
// We need to listen to the high-frequency, peak-detected path.
extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
void SendVersion(void)
{
- char temp[48]; /* Limited data payload in USB packets */
+ char temp[256]; /* Limited data payload in USB packets */
DbpString("Prox/RFID mark3 RFID instrument");
/* Try to find the bootrom version information. Expect to find a pointer at
void SamyRun()
{
DbpString("Stand-alone mode! No PC necessary.");
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
// 3 possible options? no just 2 for now
#define OPTS 2
case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
break;
+ case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
+ SnoopLFRawAdcSamples(c->arg[0], c->arg[1]);
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ break;
case CMD_HID_DEMOD_FSK:
CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
break;
SnoopIClass();
break;
case CMD_SIMULATE_TAG_ICLASS:
- SimulateIClass(c->arg[0], c->d.asBytes);
+ SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_READER_ICLASS:
ReaderIClass(c->arg[0]);
break;
+ case CMD_READER_ICLASS_REPLAY:
+ ReaderIClass_Replay(c->arg[0], c->d.asBytes);
+ break;
+ case CMD_ICLASS_ISO14443A_GETPUBLIC:
+ IClass_iso14443A_GetPublic(c->arg[0]);
+ break;
#endif
case CMD_SIMULATE_TAG_HF_LISTEN:
break;
case CMD_SET_LF_DIVISOR:
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
break;
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
// Load the FPGA image, which we have stored in our flash.
- FpgaDownloadAndGo();
+ // (the HF version by default)
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
StartTickCount();
void ToSendReset(void);
void ListenReaderField(int limit);
void AcquireRawAdcSamples125k(int at134khz);
-void DoAcquisition125k(void);
+void SnoopLFRawAdcSamples(int divisor, int trigger_threshold);
+void DoAcquisition125k(int trigger_threshold);
extern int ToSendMax;
extern uint8_t ToSend[];
extern uint32_t BigBuf[];
/// fpga.h
void FpgaSendCommand(uint16_t cmd, uint16_t v);
void FpgaWriteConfWord(uint8_t v);
-void FpgaDownloadAndGo(void);
+void FpgaDownloadAndGo(int bitstream_version);
+int FpgaGatherBitstreamVersion();
void FpgaGatherVersion(char *dst, int len);
void FpgaSetupSsc(void);
void SetupSpi(int mode);
void SetAdcMuxFor(uint32_t whichGpio);
// Definitions for the FPGA commands.
-#define FPGA_CMD_SET_CONFREG (1<<12)
-#define FPGA_CMD_SET_DIVISOR (2<<12)
+#define FPGA_CMD_SET_CONFREG (1<<12)
+#define FPGA_CMD_SET_DIVISOR (2<<12)
+#define FPGA_CMD_SET_USER_BYTE1 (3<<12)
// Definitions for the FPGA configuration word.
-#define FPGA_MAJOR_MODE_LF_READER (0<<5)
-#define FPGA_MAJOR_MODE_LF_EDGE_DETECT (1<<5)
-#define FPGA_MAJOR_MODE_HF_READER_TX (2<<5)
-#define FPGA_MAJOR_MODE_HF_READER_RX_XCORR (3<<5)
-#define FPGA_MAJOR_MODE_HF_SIMULATOR (4<<5)
-#define FPGA_MAJOR_MODE_HF_ISO14443A (5<<5)
-#define FPGA_MAJOR_MODE_LF_PASSTHRU (6<<5)
-#define FPGA_MAJOR_MODE_OFF (7<<5)
+// LF
+#define FPGA_MAJOR_MODE_LF_ADC (0<<5)
+#define FPGA_MAJOR_MODE_LF_EDGE_DETECT (1<<5)
+#define FPGA_MAJOR_MODE_LF_PASSTHRU (2<<5)
+// HF
+#define FPGA_MAJOR_MODE_HF_READER_TX (0<<5)
+#define FPGA_MAJOR_MODE_HF_READER_RX_XCORR (1<<5)
+#define FPGA_MAJOR_MODE_HF_SIMULATOR (2<<5)
+#define FPGA_MAJOR_MODE_HF_ISO14443A (3<<5)
+// BOTH
+#define FPGA_MAJOR_MODE_OFF (7<<5)
+// Options for LF_ADC
+#define FPGA_LF_ADC_READER_FIELD (1<<0)
// Options for LF_EDGE_DETECT
+#define FPGA_CMD_SET_EDGE_DETECT_THRESHOLD FPGA_CMD_SET_USER_BYTE1
#define FPGA_LF_EDGE_DETECT_READER_FIELD (1<<0)
+#define FPGA_LF_EDGE_DETECT_TOGGLE_MODE (1<<1)
// Options for the HF reader, tx to tag
#define FPGA_HF_READER_TX_SHALLOW_MOD (1<<0)
// Options for the HF reader, correlating against rx from tag
#define FPGA_HF_READER_RX_XCORR_848_KHZ (1<<0)
#define FPGA_HF_READER_RX_XCORR_SNOOP (1<<1)
-#define FPGA_HF_READER_RX_XCORR_QUARTER_FREQ (1<<2)
+#define FPGA_HF_READER_RX_XCORR_QUARTER_FREQ (1<<2)
// Options for the HF simulated tag, how to modulate
#define FPGA_HF_SIMULATOR_NO_MODULATION (0<<0)
#define FPGA_HF_SIMULATOR_MODULATE_BPSK (1<<0)
#define FPGA_HF_SIMULATOR_MODULATE_212K (2<<0)
+#define FPGA_HF_SIMULATOR_MODULATE_424K (4<<0)
// Options for ISO14443A
-#define FPGA_HF_ISO14443A_SNIFFER (0<<0)
+#define FPGA_HF_ISO14443A_SNIFFER (0<<0)
#define FPGA_HF_ISO14443A_TAGSIM_LISTEN (1<<0)
#define FPGA_HF_ISO14443A_TAGSIM_MOD (2<<0)
#define FPGA_HF_ISO14443A_READER_LISTEN (3<<0)
void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data);
void ReaderIso14443a(UsbCommand * c);
// Also used in iclass.c
-bool RAMFUNC LogTrace(const uint8_t * btBytes, uint8_t iLen, uint32_t iSamples, uint32_t dwParity, bool bReader);
+bool RAMFUNC LogTrace(const uint8_t * btBytes, uint8_t iLen, uint32_t iSamples, uint32_t dwParity, bool readerToTag);
uint32_t GetParity(const uint8_t * pbtCmd, int iLen);
void iso14a_set_trigger(bool enable);
void iso14a_clear_trace();
/// iclass.h
void RAMFUNC SnoopIClass(void);
-void SimulateIClass(uint8_t arg0, uint8_t *datain);
+void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);
void ReaderIClass(uint8_t arg0);
- //int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived);
+ void ReaderIClass_Replay(uint8_t arg0,uint8_t *MAC);
+ void IClass_iso14443A_GetPublic(uint8_t arg0);
+
// hitag2.h
void SnoopHitag(uint32_t type);
void SimulateHitagTag(bool tag_mem_supplied, byte_t* data);
#include "util.h"
#include "string.h"
#include "common.h"
+ #include "cmd.h"
// Needed for CRC in emulation mode;
// same construction as in ISO 14443;
// different initial value (CRC_ICLASS)
#include "iso14443crc.h"
+ #include "iso15693tools.h"
static int timeout = 4096;
-// CARD TO READER
-// Sequence D: 11110000 modulation with subcarrier during first half
-// Sequence E: 00001111 modulation with subcarrier during second half
-// Sequence F: 00000000 no modulation with subcarrier
-// READER TO CARD
-// Sequence X: 00001100 drop after half a period
-// Sequence Y: 00000000 no drop
-// Sequence Z: 11000000 drop at start
-#define SEC_X 0x0c
-#define SEC_Y 0x00
-#define SEC_Z 0xc0
static int SendIClassAnswer(uint8_t *resp, int respLen, int delay);
//-----------------------------------------------------------------------------
void RAMFUNC SnoopIClass(void)
{
-// DEFINED ABOVE
-// #define RECV_CMD_OFFSET 3032
-// #define RECV_RES_OFFSET 3096
-// #define DMA_BUFFER_OFFSET 3160
-// #define DMA_BUFFER_SIZE 4096
-// #define TRACE_SIZE 3000
+
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
// The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
// So 32 should be enough!
- uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+ uint8_t *readerToTagCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
// The response (tag -> reader) that we're receiving.
- uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
+ uint8_t *tagToReaderResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
- // As we receive stuff, we copy it from receivedCmd or receivedResponse
- // into trace, along with its length and other annotations.
- //uint8_t *trace = (uint8_t *)BigBuf;
-
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
// reset traceLen to 0
iso14a_set_tracing(TRUE);
iso14a_clear_trace();
int samples = 0;
rsamples = 0;
- memset(trace, 0x44, RECV_CMD_OFFSET);
-
// Set up the demodulator for tag -> reader responses.
- Demod.output = receivedResponse;
+ Demod.output = tagToReaderResponse;
Demod.len = 0;
Demod.state = DEMOD_UNSYNCD;
// And the reader -> tag commands
memset(&Uart, 0, sizeof(Uart));
- Uart.output = receivedCmd;
+ Uart.output = readerToTagCmd;
Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
Uart.state = STATE_UNSYNCD;
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ uint32_t time_0 = GetCountSspClk();
+
+
int div = 0;
//int div2 = 0;
int decbyte = 0;
//samples += 4;
samples += 1;
- //div2++;
- //if(div2 > 3) {
- //div2 = 0;
- //decbyte ^= ((smpl & 0x01) << (3 - div));
- //decbyte ^= (((smpl & 0x01) | ((smpl & 0x02) >> 1)) << (3 - div)); // better already...
- //decbyte ^= (((smpl & 0x01) | ((smpl & 0x02) >> 1) | ((smpl & 0x04) >> 2)) << (3 - div)); // even better...
if(smpl & 0xF) {
decbyte ^= (1 << (3 - div));
}
- //decbyte ^= (MajorityNibble[(smpl & 0x0F)] << (3 - div));
// FOR READER SIDE COMMUMICATION...
- //decbyte ^= ((smpl & 0x10) << (3 - div));
+
decbyter <<= 2;
decbyter ^= (smpl & 0x30);
if(OutOfNDecoding((smpl & 0xF0) >> 4)) {
rsamples = samples - Uart.samples;
LED_C_ON();
- //if(triggered) {
- trace[traceLen++] = ((rsamples >> 0) & 0xff);
- trace[traceLen++] = ((rsamples >> 8) & 0xff);
- trace[traceLen++] = ((rsamples >> 16) & 0xff);
- trace[traceLen++] = ((rsamples >> 24) & 0xff);
- trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff);
- trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff);
- trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff);
- trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff);
- trace[traceLen++] = Uart.byteCnt;
- memcpy(trace+traceLen, receivedCmd, Uart.byteCnt);
- traceLen += Uart.byteCnt;
- if(traceLen > TRACE_SIZE) break;
- //}
- /* And ready to receive another command. */
+
+ //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break;
+ //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
+ if(tracing)
+ {
+ LogTrace(Uart.output,Uart.byteCnt, (GetCountSspClk()-time_0) << 4, Uart.parityBits,TRUE);
+ LogTrace(NULL, 0, (GetCountSspClk()-time_0) << 4, 0, TRUE);
+ }
+
+
+ /* And ready to receive another command. */
Uart.state = STATE_UNSYNCD;
/* And also reset the demod code, which might have been */
/* false-triggered by the commands from the reader. */
rsamples = samples - Demod.samples;
LED_B_ON();
- // timestamp, as a count of samples
- trace[traceLen++] = ((rsamples >> 0) & 0xff);
- trace[traceLen++] = ((rsamples >> 8) & 0xff);
- trace[traceLen++] = ((rsamples >> 16) & 0xff);
- trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
- trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
- trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
- trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
- trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
- // length
- trace[traceLen++] = Demod.len;
- memcpy(trace+traceLen, receivedResponse, Demod.len);
- traceLen += Demod.len;
- if(traceLen > TRACE_SIZE) break;
-
- //triggered = TRUE;
+ if(tracing)
+ {
+ LogTrace(Demod.output,Demod.len, (GetCountSspClk()-time_0) << 4 , Demod.parityBits,FALSE);
+ LogTrace(NULL, 0, (GetCountSspClk()-time_0) << 4, 0, FALSE);
+ }
+
// And ready to receive another response.
memset(&Demod, 0, sizeof(Demod));
- Demod.output = receivedResponse;
+ Demod.output = tagToReaderResponse;
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
}
//-----------------------------------------------------------------------------
static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
{
+ //So far a dummy implementation, not used
+ //int lastProxToAirDuration =0;
int i;
ToSendReset();
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0xff;
+ ToSend[++ToSendMax] = 0xff;//Proxtoair duration starts here
ToSend[++ToSendMax] = 0xff;
ToSend[++ToSendMax] = 0xff;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0xff;
ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0xff;
+ ToSend[++ToSendMax] = 0xff;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0x00;
+ //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
+
// Convert from last byte pos to length
ToSendMax++;
}
// Only SOF
static void CodeIClassTagSOF()
{
- ToSendReset();
+ //So far a dummy implementation, not used
+ //int lastProxToAirDuration =0;
+ ToSendReset();
// Send SOF
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0xff;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0xff;
+
+// lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
+
// Convert from last byte pos to length
ToSendMax++;
}
+int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf);
+/**
+ * @brief SimulateIClass simulates an iClass card.
+ * @param arg0 type of simulation
+ * - 0 uses the first 8 bytes in usb data as CSN
+ * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
+ * in the usb data. This mode collects MAC from the reader, in order to do an offline
+ * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
+ * - Other : Uses the default CSN (031fec8af7ff12e0)
+ * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
+ * @param arg2
+ * @param datain
+ */
+void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
+{
+ uint32_t simType = arg0;
+ uint32_t numberOfCSNS = arg1;
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
-//-----------------------------------------------------------------------------
-// Simulate iClass Card
-// Only CSN (Card Serial Number)
-//
-//-----------------------------------------------------------------------------
-void SimulateIClass(uint8_t arg0, uint8_t *datain)
+ // Enable and clear the trace
+ iso14a_set_tracing(TRUE);
+ iso14a_clear_trace();
+
+ uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
+ if(simType == 0) {
+ // Use the CSN from commandline
+ memcpy(csn_crc, datain, 8);
+ doIClassSimulation(csn_crc,0,NULL);
+ }else if(simType == 1)
+ {
+ doIClassSimulation(csn_crc,0,NULL);
+ }
+ else if(simType == 2)
+ {
+
+ uint8_t mac_responses[64] = { 0 };
+ Dbprintf("Going into attack mode");
+ // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
+ // in order to collect MAC's from the reader. This can later be used in an offlne-attack
+ // in order to obtain the keys, as in the "dismantling iclass"-paper.
+ int i = 0;
+ for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++)
+ {
+ // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
+
+ memcpy(csn_crc, datain+(i*8), 8);
+ if(doIClassSimulation(csn_crc,1,mac_responses))
+ {
+ return; // Button pressed
+ }
+ }
+ cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
+
+ }
+ else{
+ // We may want a mode here where we hardcode the csns to use (from proxclone).
+ // That will speed things up a little, but not required just yet.
+ Dbprintf("The mode is not implemented, reserved for future use");
+ }
+ Dbprintf("Done...");
+
+}
+/**
+ * @brief Does the actual simulation
+ * @param csn - csn to use
+ * @param breakAfterMacReceived if true, returns after reader MAC has been received.
+ */
+int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf)
{
- uint8_t simType = arg0;
- // Enable and clear the trace
- tracing = TRUE;
- traceLen = 0;
- memset(trace, 0x44, TRACE_SIZE);
// CSN followed by two CRC bytes
uint8_t response2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- uint8_t response3[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
-
+ uint8_t response3[] = { 0,0,0,0,0,0,0,0,0,0};
+ memcpy(response3,csn,sizeof(response3));
+ Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
// e-Purse
uint8_t response4[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- if(simType == 0) {
- // Use the CSN from commandline
- memcpy(response3, datain, 8);
- }
-
// Construct anticollision-CSN
rotateCSN(response3,response2);
ComputeCrc14443(CRC_ICLASS, response2, 8, &response2[8], &response2[9]);
ComputeCrc14443(CRC_ICLASS, response3, 8, &response3[8], &response3[9]);
+ int exitLoop = 0;
// Reader 0a
// Tag 0f
// Reader 0c
int resp4Len;
// + 1720..
- uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+ uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
memset(receivedCmd, 0x44, RECV_CMD_SIZE);
int len;
CodeIClassTagAnswer(response4, sizeof(response4));
memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
+
+ // Start from off (no field generated)
+ //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ //SpinDelay(200);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+ SpinDelay(100);
+ StartCountSspClk();
// We need to listen to the high-frequency, peak-detected path.
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc();
// To control where we are in the protocol
int cmdsRecvd = 0;
+ uint32_t time_0 = GetCountSspClk();
+ uint32_t t2r_time =0;
+ uint32_t r2t_time =0;
LED_A_ON();
- for(;;) {
+ bool buttonPressed = false;
+
+ /** Hack for testing
+ memcpy(reader_mac_buf,csn,8);
+ exitLoop = true;
+ end hack **/
+
+ while(!exitLoop) {
+
LED_B_OFF();
+ //Signal tracer
+ // Can be used to get a trigger for an oscilloscope..
+ LED_C_OFF();
+
if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
- DbpString("button press");
+ buttonPressed = true;
break;
}
+ r2t_time = GetCountSspClk();
+ //Signal tracer
+ LED_C_ON();
// Okay, look at the command now.
- if(receivedCmd[0] == 0x0a) {
+ if(receivedCmd[0] == 0x0a ) {
// Reader in anticollission phase
resp = resp1; respLen = resp1Len; //order = 1;
respdata = &sof;
respsize = sizeof(sof);
- //resp = resp2; respLen = resp2Len; order = 2;
- //DbpString("Hello request from reader:");
} else if(receivedCmd[0] == 0x0c) {
// Reader asks for anticollission CSN
resp = resp2; respLen = resp2Len; //order = 2;
LED_B_ON();
} else if(receivedCmd[0] == 0x05) {
// Reader random and reader MAC!!!
- // Lets store this ;-)
-/*
- Dbprintf(" CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
- response3[0], response3[1], response3[2],
- response3[3], response3[4], response3[5],
- response3[6], response3[7]);
-*/
- Dbprintf("READER AUTH (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",
- len,
- receivedCmd[0], receivedCmd[1], receivedCmd[2],
- receivedCmd[3], receivedCmd[4], receivedCmd[5],
- receivedCmd[6], receivedCmd[7], receivedCmd[8]);
-
// Do not respond
// We do not know what to answer, so lets keep quit
resp = resp1; respLen = 0; //order = 5;
respdata = NULL;
respsize = 0;
+ if (breakAfterMacReceived){
+ // TODO, actually return this to the caller instead of just
+ // dbprintf:ing ...
+ Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
+ Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len,
+ receivedCmd[0], receivedCmd[1], receivedCmd[2],
+ receivedCmd[3], receivedCmd[4], receivedCmd[5],
+ receivedCmd[6], receivedCmd[7], receivedCmd[8]);
+ if (reader_mac_buf != NULL)
+ {
+ memcpy(reader_mac_buf,receivedCmd+1,8);
+ }
+ exitLoop = true;
+ }
} else if(receivedCmd[0] == 0x00 && len == 1) {
// Reader ends the session
resp = resp1; respLen = 0; //order = 0;
respdata = NULL;
respsize = 0;
} else {
+ //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
// Never seen this command before
Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
len,
respsize = 0;
}
- if(cmdsRecvd > 999) {
- DbpString("1000 commands later...");
- break;
+ if(cmdsRecvd > 100) {
+ //DbpString("100 commands later...");
+ //break;
}
else {
cmdsRecvd++;
if(respLen > 0) {
SendIClassAnswer(resp, respLen, 21);
+ t2r_time = GetCountSspClk();
}
-
+
if (tracing) {
- LogTrace(receivedCmd,len, rsamples, Uart.parityBits, TRUE);
+ LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, Uart.parityBits,TRUE);
+ LogTrace(NULL,0, (r2t_time-time_0) << 4, 0,TRUE);
+
if (respdata != NULL) {
- LogTrace(respdata,respsize, rsamples, SwapBits(GetParity(respdata,respsize),respsize), FALSE);
+ LogTrace(respdata,respsize, (t2r_time-time_0) << 4,SwapBits(GetParity(respdata,respsize),respsize),FALSE);
+ LogTrace(NULL,0, (t2r_time-time_0) << 4,0,FALSE);
+
+
}
- if(traceLen > TRACE_SIZE) {
+ if(!tracing) {
DbpString("Trace full");
- break;
+ //break;
}
- }
+ }
memset(receivedCmd, 0x44, RECV_CMD_SIZE);
}
- Dbprintf("%x", cmdsRecvd);
+ //Dbprintf("%x", cmdsRecvd);
LED_A_OFF();
LED_B_OFF();
+ if(buttonPressed)
+ {
+ DbpString("Button pressed");
+ }
+ return buttonPressed;
}
static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
{
- int i = 0, u = 0, d = 0;
+ int i = 0, d=0;//, u = 0, d = 0;
uint8_t b = 0;
- // return 0;
- // Modulate Manchester
- // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD424);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
+
AT91C_BASE_SSC->SSC_THR = 0x00;
FpgaSetupSsc();
-
- // send cycle
- for(;;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- (void)b;
+ while(!BUTTON_PRESS()) {
+ if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
+ b = AT91C_BASE_SSC->SSC_RHR; (void) b;
}
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
+ b = 0x00;
if(d < delay) {
- b = 0x00;
d++;
}
- else if(i >= respLen) {
- b = 0x00;
- u++;
- } else {
- b = resp[i];
- u++;
- if(u > 1) { i++; u = 0; }
+ else {
+ if( i < respLen){
+ b = resp[i];
+ //Hack
+ //b = 0xAC;
+ }
+ i++;
}
AT91C_BASE_SSC->SSC_THR = b;
-
- if(u > 4) break;
- }
- if(BUTTON_PRESS()) {
- break;
}
+
+ if (i > respLen +4) break;
}
return 0;
static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait)
{
int c;
-
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
AT91C_BASE_SSC->SSC_THR = 0x00;
FpgaSetupSsc();
b = cmd[i];
for(j = 0; j < 4; j++) {
for(k = 0; k < 4; k++) {
- if(k == (b & 3)) {
- ToSend[++ToSendMax] = 0x0f;
- }
- else {
- ToSend[++ToSendMax] = 0x00;
- }
+ if(k == (b & 3)) {
+ ToSend[++ToSendMax] = 0x0f;
+ }
+ else {
+ ToSend[++ToSendMax] = 0x00;
+ }
}
b >>= 2;
}
uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
// Reset trace buffer
- memset(trace, 0x44, RECV_CMD_OFFSET);
+ memset(trace, 0x44, RECV_CMD_OFFSET);
traceLen = 0;
// Setup SSC
LED_A_OFF();
}
+ void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
+ uint8_t act_all[] = { 0x0a };
+ uint8_t identify[] = { 0x0c };
+ uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
+ uint8_t readcheck_cc[]= { 0x88, 0x02 };
+ uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
+ uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
+
+ uint16_t crc = 0;
+ uint8_t cardsize=0;
+ bool read_success=false;
+ uint8_t mem=0;
+
+ static struct memory_t{
+ int k16;
+ int book;
+ int k2;
+ int lockauth;
+ int keyaccess;
+ } memory;
+
+ uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
+
+ // Reset trace buffer
+ memset(trace, 0x44, RECV_CMD_OFFSET);
+ traceLen = 0;
+
+ // Setup SSC
+ FpgaSetupSsc();
+ // Start from off (no field generated)
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ // Now give it time to spin up.
+ // Signal field is on with the appropriate LED
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+ SpinDelay(200);
+
+ LED_A_ON();
+
+ for(int i=0;i<1;i++) {
+
+ if(traceLen > TRACE_SIZE) {
+ DbpString("Trace full");
+ break;
+ }
+
+ if (BUTTON_PRESS()) break;
+
+ // Send act_all
+ ReaderTransmitIClass(act_all, 1);
+ // Card present?
+ if(ReaderReceiveIClass(resp)) {
+ ReaderTransmitIClass(identify, 1);
+ if(ReaderReceiveIClass(resp) == 10) {
+ // Select card
+ memcpy(&select[1],resp,8);
+ ReaderTransmitIClass(select, sizeof(select));
+
+ if(ReaderReceiveIClass(resp) == 10) {
+ Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
+ resp[0], resp[1], resp[2],
+ resp[3], resp[4], resp[5],
+ resp[6], resp[7]);
+ }
+ // Card selected
+ Dbprintf("Readcheck on Sector 2");
+ ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
+ if(ReaderReceiveIClass(resp) == 8) {
+ Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
+ resp[0], resp[1], resp[2],
+ resp[3], resp[4], resp[5],
+ resp[6], resp[7]);
+ }else return;
+ Dbprintf("Authenticate");
+ //for now replay captured auth (as cc not updated)
+ memcpy(check+5,MAC,4);
+ Dbprintf(" AA: %02x %02x %02x %02x",
+ check[5], check[6], check[7],check[8]);
+ ReaderTransmitIClass(check, sizeof(check));
+ if(ReaderReceiveIClass(resp) == 4) {
+ Dbprintf(" AR: %02x %02x %02x %02x",
+ resp[0], resp[1], resp[2],resp[3]);
+ }else {
+ Dbprintf("Error: Authentication Fail!");
+ return;
+ }
+ Dbprintf("Dump Contents");
+ //first get configuration block
+ read_success=false;
+ read[1]=1;
+ uint8_t *blockno=&read[1];
+ crc = iclass_crc16((char *)blockno,1);
+ read[2] = crc >> 8;
+ read[3] = crc & 0xff;
+ while(!read_success){
+ ReaderTransmitIClass(read, sizeof(read));
+ if(ReaderReceiveIClass(resp) == 10) {
+ read_success=true;
+ mem=resp[5];
+ memory.k16= (mem & 0x80);
+ memory.book= (mem & 0x20);
+ memory.k2= (mem & 0x8);
+ memory.lockauth= (mem & 0x2);
+ memory.keyaccess= (mem & 0x1);
+
+ }
+ }
+ if (memory.k16){
+ cardsize=255;
+ }else cardsize=32;
+ //then loop around remaining blocks
+ for(uint8_t j=0; j<cardsize; j++){
+ read_success=false;
+ uint8_t *blockno=&j;
+ //crc_data[0]=j;
+ read[1]=j;
+ crc = iclass_crc16((char *)blockno,1);
+ read[2] = crc >> 8;
+ read[3] = crc & 0xff;
+ while(!read_success){
+ ReaderTransmitIClass(read, sizeof(read));
+ if(ReaderReceiveIClass(resp) == 10) {
+ read_success=true;
+ Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
+ j, resp[0], resp[1], resp[2],
+ resp[3], resp[4], resp[5],
+ resp[6], resp[7]);
+ }
+ }
+ }
+ }
+ }
+ WDT_HIT();
+ }
+
+ LED_A_OFF();
+ }
+
+ //1. Create Method to Read sectors/blocks 0,1,2 and Send to client
+ void IClass_iso14443A_GetPublic(uint8_t arg0) {
+ uint8_t act_all[] = { 0x0a };
+ uint8_t identify[] = { 0x0c };
+ uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
+ uint8_t readcheck_cc[]= { 0x88, 0x02 };
+ //uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
+ uint8_t card_data[24]={0};
+
+ //bool read_success=false;
+ uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
+
+ // Reset trace buffer
+ memset(trace, 0x44, RECV_CMD_OFFSET);
+ traceLen = 0;
+ // Setup SSC
+ FpgaSetupSsc();
+ // Start from off (no field generated)
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ // Now give it time to spin up.
+ // Signal field is on with the appropriate LED
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+ SpinDelay(200);
+
+ LED_A_ON();
+
+ for(int i=0;i<1;i++) {
+
+ if(traceLen > TRACE_SIZE) {
+ DbpString("Trace full");
+ break;
+ }
+
+ if (BUTTON_PRESS()) break;
+
+ // Send act_all
+ ReaderTransmitIClass(act_all, 1);
+ // Card present?
+ if(ReaderReceiveIClass(resp)) {
+ ReaderTransmitIClass(identify, 1);
+ if(ReaderReceiveIClass(resp) == 10) {
+ // Select card
+ memcpy(&select[1],resp,8);
+ ReaderTransmitIClass(select, sizeof(select));
+
+ if(ReaderReceiveIClass(resp) == 10) {
+ Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
+ resp[0], resp[1], resp[2],
+ resp[3], resp[4], resp[5],
+ resp[6], resp[7]);
+ }
+ memcpy(card_data,resp,8);
+ // Card selected
+ Dbprintf("Readcheck on Sector 2");
+ ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
+ if(ReaderReceiveIClass(resp) == 8) {
+ Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
+ resp[0], resp[1], resp[2],
+ resp[3], resp[4], resp[5],
+ resp[6], resp[7]);
+ }
+ memcpy(card_data+8,resp,8);
+ //prep to read config block
+ /* read card configuration block
+ while(!read_success){
+ uint8_t sector_config=0x01;
+ memcpy(read+1,§or_config,1);
+ ReaderTransmitIClass(read, sizeof(read));
+ if(ReaderReceiveIClass(resp) == 8) {
+ Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
+ resp[0], resp[1], resp[2],
+ resp[3], resp[4], resp[5],
+ resp[6], resp[7]);
+ read_success=true;
+ memcpy(card_data+16,resp,8);
+ }
+ }*/
+ }
+ }
+ WDT_HIT();
+ }
+ //Dbprintf("DEBUG: %02x%02x%02x%02x%02x%02x%02x%02x",card_data[0],card_data[1],card_data[2],card_data[3],card_data[4],card_data[5],card_data[6],card_data[7]);
+ //Dbprintf("DEBUG: %02x%02x%02x%02x%02x%02x%02x%02x",card_data[8],card_data[9],card_data[10],card_data[11],card_data[12],card_data[13],card_data[14],card_data[15]);
+ LED_A_OFF();
+ LED_B_ON();
+ //send data back to the client
+ cmd_send(CMD_ACK,0,0,0,card_data,16);
+ LED_B_OFF();
+ }
+
+ //2. Create Read method (cut-down from above) based off responses from 1.
+ // Since we have the MAC could continue to use replay function.
+ //3. Create Write method
+ /*
+ void IClass_iso14443A_write(uint8_t arg0, uint8_t blockNo, uint8_t *data, uint8_t *MAC) {
+ uint8_t act_all[] = { 0x0a };
+ uint8_t identify[] = { 0x0c };
+ uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
+ uint8_t readcheck_cc[]= { 0x88, 0x02 };
+ uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
+ uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
+ uint8_t write[] = { 0x87, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
+
+ uint16_t crc = 0;
+
+ uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
+
+ // Reset trace buffer
+ memset(trace, 0x44, RECV_CMD_OFFSET);
+ traceLen = 0;
+
+ // Setup SSC
+ FpgaSetupSsc();
+ // Start from off (no field generated)
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ // Now give it time to spin up.
+ // Signal field is on with the appropriate LED
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+ SpinDelay(200);
+
+ LED_A_ON();
+
+ for(int i=0;i<1;i++) {
+
+ if(traceLen > TRACE_SIZE) {
+ DbpString("Trace full");
+ break;
+ }
+
+ if (BUTTON_PRESS()) break;
+
+ // Send act_all
+ ReaderTransmitIClass(act_all, 1);
+ // Card present?
+ if(ReaderReceiveIClass(resp)) {
+ ReaderTransmitIClass(identify, 1);
+ if(ReaderReceiveIClass(resp) == 10) {
+ // Select card
+ memcpy(&select[1],resp,8);
+ ReaderTransmitIClass(select, sizeof(select));
+
+ if(ReaderReceiveIClass(resp) == 10) {
+ Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
+ resp[0], resp[1], resp[2],
+ resp[3], resp[4], resp[5],
+ resp[6], resp[7]);
+ }
+ // Card selected
+ Dbprintf("Readcheck on Sector 2");
+ ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
+ if(ReaderReceiveIClass(resp) == 8) {
+ Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
+ resp[0], resp[1], resp[2],
+ resp[3], resp[4], resp[5],
+ resp[6], resp[7]);
+ }else return;
+ Dbprintf("Authenticate");
+ //for now replay captured auth (as cc not updated)
+ memcpy(check+5,MAC,4);
+ Dbprintf(" AA: %02x %02x %02x %02x",
+ check[5], check[6], check[7],check[8]);
+ ReaderTransmitIClass(check, sizeof(check));
+ if(ReaderReceiveIClass(resp) == 4) {
+ Dbprintf(" AR: %02x %02x %02x %02x",
+ resp[0], resp[1], resp[2],resp[3]);
+ }else {
+ Dbprintf("Error: Authentication Fail!");
+ return;
+ }
+ Dbprintf("Write Block");
+
+ //read configuration for max block number
+ read_success=false;
+ read[1]=1;
+ uint8_t *blockno=&read[1];
+ crc = iclass_crc16((char *)blockno,1);
+ read[2] = crc >> 8;
+ read[3] = crc & 0xff;
+ while(!read_success){
+ ReaderTransmitIClass(read, sizeof(read));
+ if(ReaderReceiveIClass(resp) == 10) {
+ read_success=true;
+ mem=resp[5];
+ memory.k16= (mem & 0x80);
+ memory.book= (mem & 0x20);
+ memory.k2= (mem & 0x8);
+ memory.lockauth= (mem & 0x2);
+ memory.keyaccess= (mem & 0x1);
+
+ }
+ }
+ if (memory.k16){
+ cardsize=255;
+ }else cardsize=32;
+ //check card_size
+
+ memcpy(write+1,blockNo,1);
+ memcpy(write+2,data,8);
+ memcpy(write+10,mac,4);
+ while(!send_success){
+ ReaderTransmitIClass(write, sizeof(write));
+ if(ReaderReceiveIClass(resp) == 10) {
+ write_success=true;
+ }
+ }//
+ }
+ WDT_HIT();
+ }
+
+ LED_A_OFF();
+ }*/
LDLIBS = -L/opt/local/lib -L/usr/local/lib -lreadline -lpthread ../liblua/liblua.a
LDFLAGS = $(COMMON_FLAGS)
- CFLAGS = -std=c99 -I. -I../include -I../common -I/opt/local/include -I../liblua -Wall $(COMMON_FLAGS) -g -O4
+ CFLAGS = -std=c99 -lcrypto -I. -I../include -I../common -I/opt/local/include -I../liblua -Wall $(COMMON_FLAGS) -g -O4
LUAPLATFORM = generic
ifneq (,$(findstring MINGW,$(platform)))
MOC = $(QTDIR)/bin/moc
LUAPLATFORM = mingw
else ifeq ($(platform),Darwin)
- #CXXFLAGS = -I/Library/Frameworks/QtGui.framework/Versions/Current/Headers -I/Library/Frameworks/QtCore.framework/Versions/Current/Headers
- #QTLDLIBS = -framework QtGui -framework QtCore
- CXXFLAGS = -I$(QTDIR)/include -I$(QTDIR)/include/QtCore -I$(QTDIR)/include/QtGui
- QTLDLIBS = -F/opt/local/Library/Frameworks -framework QtGui -framework QtCore
- MOC = moc
+ CXXFLAGS = $(shell pkg-config --cflags QtCore QtGui 2>/dev/null) -Wall -O4
+ QTLDLIBS = $(shell pkg-config --libs QtCore QtGui 2>/dev/null)
+ MOC = $(shell pkg-config --variable=moc_location QtCore)
LUAPLATFORM = macosx
else
CXXFLAGS = $(shell pkg-config --cflags QtCore QtGui 2>/dev/null) -Wall -O4
CMDSRCS = nonce2key/crapto1.c\
nonce2key/crypto1.c\
nonce2key/nonce2key.c\
+ loclass/cipher.c \
+ loclass/cipherutils.c \
+ loclass/des.c \
+ loclass/ikeys.c \
++ loclass/elite_crack.c\
++ loclass/fileutils.c\
mifarehost.c\
crc16.c \
iso14443crc.c \
cmdhfmf.c \
cmdhw.c \
cmdlf.c \
- cmdlfhid.c \
cmdlfio.c \
+ cmdlfhid.c \
cmdlfem4x.c \
cmdlfhitag.c \
cmdlfti.c \
//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>, Hagen Fritsch
// Copyright (C) 2011 Gerhard de Koning Gans
+ // Copyright (C) 2014 Midnitesnake & Andy Davies
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
+#include <sys/stat.h>
#include "iso14443crc.h" // Can also be used for iClass, using 0xE012 as CRC-type
#include "data.h"
//#include "proxusb.h"
#include "cmdhficlass.h"
#include "common.h"
#include "util.h"
+#include "cmdmain.h"
+ #include "loclass/des.h"
+ #include "loclass/cipherutils.h"
+ #include "loclass/cipher.h"
+ #include "loclass/ikeys.h"
++#include "loclass/elite_crack.h"
++#include "loclass/fileutils.h"
static int CmdHelp(const char *Cmd);
- uint8_t res = val ^ (val >> 1); //1st pass
- res = res ^ (res >> 1); // 2nd pass
- res = res ^ (res >> 2); // 3rd pass
- res = res ^ (res >> 4); // 4th pass
- return res & 1;
+int xorbits_8(uint8_t val)
+{
++ uint8_t res = val ^ (val >> 1); //1st pass
++ res = res ^ (res >> 1); // 2nd pass
++ res = res ^ (res >> 2); // 3rd pass
++ res = res ^ (res >> 4); // 4th pass
++ return res & 1;
+}
+
int CmdHFiClassList(const char *Cmd)
+{
+
+ bool ShowWaitCycles = false;
+ char param = param_getchar(Cmd, 0);
+
+ if (param != 0) {
+ PrintAndLog("List data in trace buffer.");
+ PrintAndLog("Usage: hf iclass list");
+ PrintAndLog("h - help");
+ PrintAndLog("sample: hf iclass list");
+ return 0;
+ }
+
+ uint8_t got[1920];
+ GetFromBigBuf(got,sizeof(got),0);
+ WaitForResponse(CMD_ACK,NULL);
+
+ PrintAndLog("Recorded Activity");
+ PrintAndLog("");
+ PrintAndLog("Start = Start of Start Bit, End = End of last modulation. Src = Source of Transfer");
+ PrintAndLog("All times are in carrier periods (1/13.56Mhz)");
+ PrintAndLog("");
+ PrintAndLog(" Start | End | Src | Data");
+ PrintAndLog("-----------|-----------|-----|--------");
+
+ int i;
+ uint32_t first_timestamp = 0;
+ uint32_t timestamp;
+ bool tagToReader;
+ uint32_t parityBits;
+ uint8_t len;
+ uint8_t *frame;
+ uint32_t EndOfTransmissionTimestamp = 0;
+
+
+ for( i=0; i < 1900;)
+ {
+ //First 32 bits contain
+ // isResponse (1 bit)
+ // timestamp (remaining)
+ //Then paritybits
+ //Then length
+ timestamp = *((uint32_t *)(got+i));
+ parityBits = *((uint32_t *)(got+i+4));
+ len = got[i+8];
+ frame = (got+i+9);
+ uint32_t next_timestamp = (*((uint32_t *)(got+i+9))) & 0x7fffffff;
+
+ tagToReader = timestamp & 0x80000000;
+ timestamp &= 0x7fffffff;
+
+ if(i==0) {
+ first_timestamp = timestamp;
+ }
+
+ // Break and stick with current result if buffer was not completely full
+ if (frame[0] == 0x44 && frame[1] == 0x44 && frame[2] == 0x44 && frame[3] == 0x44) break;
+
+ char line[1000] = "";
+
+ if(len)//We have some data to display
+ {
+ int j,oddparity;
+
+ for(j = 0; j < len ; j++)
+ {
+ oddparity = 0x01 ^ xorbits_8(frame[j] & 0xFF);
+
+ if (tagToReader && (oddparity != ((parityBits >> (len - j - 1)) & 0x01))) {
+ sprintf(line+(j*4), "%02x! ", frame[j]);
+ } else {
+ sprintf(line+(j*4), "%02x ", frame[j]);
+ }
+ }
+ }else
+ {
+ if (ShowWaitCycles) {
+ sprintf(line, "fdt (Frame Delay Time): %d", (next_timestamp - timestamp));
+ }
+ }
+
+ char *crc = "";
+
+ if(len > 2)
+ {
+ uint8_t b1, b2;
+ if(!tagToReader && len == 4) {
+ // Rough guess that this is a command from the reader
+ // For iClass the command byte is not part of the CRC
+ ComputeCrc14443(CRC_ICLASS, &frame[1], len-3, &b1, &b2);
+ }
+ else {
+ // For other data.. CRC might not be applicable (UPDATE commands etc.)
+ ComputeCrc14443(CRC_ICLASS, frame, len-2, &b1, &b2);
+ }
+
+ if (b1 != frame[len-2] || b2 != frame[len-1]) {
+ crc = (tagToReader & (len < 8)) ? "" : " !crc";
+ }
+ }
+
+ i += (len + 9);
+ EndOfTransmissionTimestamp = (*((uint32_t *)(got+i))) & 0x7fffffff;
+
+ // Not implemented for iclass on the ARM-side
+ //if (!ShowWaitCycles) i += 9;
+
+ PrintAndLog(" %9d | %9d | %s | %s %s",
+ (timestamp - first_timestamp),
+ (EndOfTransmissionTimestamp - first_timestamp),
+ (len?(tagToReader ? "Tag" : "Rdr"):" "),
+ line, crc);
+ }
+ return 0;
+}
+
+int CmdHFiClassListOld(const char *Cmd)
{
uint8_t got[1920];
GetFromBigBuf(got,sizeof(got),0);
isResponse = 0;
}
+
int metric = 0;
+
int parityBits = *((uint32_t *)(got+i+4));
// 4 bytes of additional information...
// maximum of 32 additional parity bit information
return 0;
}
- /*void iso14a_set_timeout(uint32_t timeout) {
- UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_SET_TIMEOUT, 0, timeout}};
- SendCommand(&c);
- }*/
-
int CmdHFiClassSnoop(const char *Cmd)
{
UsbCommand c = {CMD_SNOOP_ICLASS};
uint8_t simType = 0;
uint8_t CSN[8] = {0, 0, 0, 0, 0, 0, 0, 0};
- if (strlen(Cmd)<2) {
- PrintAndLog("Usage: hf iclass sim <sim type> <CSN (16 hex symbols)>");
+ if (strlen(Cmd)<1) {
+ PrintAndLog("Usage: hf iclass sim [0 <CSN>] | x");
+ PrintAndLog(" options");
+ PrintAndLog(" 0 <CSN> simulate the given CSN");
+ PrintAndLog(" 1 simulate default CSN");
+ PrintAndLog(" 2 iterate CSNs, gather MACs");
PrintAndLog(" sample: hf iclass sim 0 031FEC8AF7FF12E0");
+ PrintAndLog(" sample: hf iclass sim 2");
return 0;
}
simType = param_get8(Cmd, 0);
- if (param_gethex(Cmd, 1, CSN, 16)) {
- PrintAndLog("A CSN should consist of 16 HEX symbols");
- return 1;
- }
- PrintAndLog("--simtype:%02x csn:%s", simType, sprint_hex(CSN, 8));
- UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType}};
- memcpy(c.d.asBytes, CSN, 8);
- SendCommand(&c);
+ if(simType == 0)
+ {
+ if (param_gethex(Cmd, 1, CSN, 16)) {
+ PrintAndLog("A CSN should consist of 16 HEX symbols");
+ return 1;
+ }
+ PrintAndLog("--simtype:%02x csn:%s", simType, sprint_hex(CSN, 8));
+
+ }
+ if(simType > 2)
+ {
+ PrintAndLog("Undefined simptype %d", simType);
+ return 1;
+ }
+ uint8_t numberOfCSNs=0;
+
+ if(simType == 2)
+ {
+ UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType,63}};
+ UsbCommand resp = {0};
+
+ uint8_t csns[64] = {
+ 0x00,0x0B,0x0F,0xFF,0xF7,0xFF,0x12,0xE0 ,
+ 0x00,0x13,0x94,0x7e,0x76,0xff,0x12,0xe0 ,
+ 0x2a,0x99,0xac,0x79,0xec,0xff,0x12,0xe0 ,
+ 0x17,0x12,0x01,0xfd,0xf7,0xff,0x12,0xe0 ,
+ 0xcd,0x56,0x01,0x7c,0x6f,0xff,0x12,0xe0 ,
+ 0x4b,0x5e,0x0b,0x72,0xef,0xff,0x12,0xe0 ,
+ 0x00,0x73,0xd8,0x75,0x58,0xff,0x12,0xe0 ,
+ 0x0c,0x90,0x32,0xf3,0x5d,0xff,0x12,0xe0 };
+
+ memcpy(c.d.asBytes, csns, 64);
+
+ SendCommand(&c);
+ if (!WaitForResponseTimeout(CMD_ACK, &resp, -1)) {
+ PrintAndLog("Command timed out");
+ return 0;
+ }
+
+ uint8_t num_mac_responses = resp.arg[1];
+ PrintAndLog("Mac responses: %d MACs obtained (should be 8)", num_mac_responses);
+
+ size_t datalen = 8*24;
+ /*
+ * Now, time to dump to file. We'll use this format:
+ * <8-byte CSN><8-byte CC><4 byte NR><4 byte MAC>....
+ * So, it should wind up as
+ * 8 * 24 bytes.
+ *
+ * The returndata from the pm3 is on the following format
+ * <4 byte NR><4 byte MAC>
+ * CC are all zeroes, CSN is the same as was sent in
+ **/
+ void* dump = malloc(datalen);
+ memset(dump,0,datalen);//<-- Need zeroes for the CC-field
+ uint8_t i = 0;
+ for(i = 0 ; i < 8 ; i++)
+ {
+ memcpy(dump+i*24, csns+i*8,8); //CSN
+ //8 zero bytes here...
+ //Then comes NR_MAC (eight bytes from the response)
+ memcpy(dump+i*24+16,resp.d.asBytes+i*8,8);
+
+ }
+ /** Now, save to dumpfile **/
+ saveFile("iclass_mac_attack", "bin", dump,datalen);
+ free(dump);
+ }else
+ {
+ UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType,numberOfCSNs}};
+ memcpy(c.d.asBytes, CSN, 8);
+ SendCommand(&c);
+ }
+
return 0;
}
PrintAndLog("--readertype:%02x", readerType);
UsbCommand c = {CMD_READER_ICLASS, {readerType}};
- //memcpy(c.d.asBytes, CSN, 8);
SendCommand(&c);
- /*UsbCommand * resp = WaitForResponseTimeout(CMD_ACK, 1500);
- if (resp != NULL) {
- uint8_t isOK = resp->arg[0] & 0xff;
+ return 0;
+ }
+
+ int CmdHFiClassReader_Replay(const char *Cmd)
+ {
+ uint8_t readerType = 0;
+ uint8_t MAC[4]={0x00, 0x00, 0x00, 0x00};
+
+ if (strlen(Cmd)<1) {
+ PrintAndLog("Usage: hf iclass replay <MAC>");
+ PrintAndLog(" sample: hf iclass replay 00112233");
+ return 0;
+ }
+
+ if (param_gethex(Cmd, 0, MAC, 8)) {
+ PrintAndLog("MAC must include 8 HEX symbols");
+ return 1;
+ }
+
+ UsbCommand c = {CMD_READER_ICLASS_REPLAY, {readerType}};
+ memcpy(c.d.asBytes, MAC, 4);
+ SendCommand(&c);
+
+ return 0;
+ }
+
+ int CmdHFiClassReader_Dump(const char *Cmd)
+ {
+ uint8_t readerType = 0;
+ uint8_t MAC[4]={0x00,0x00,0x00,0x00};
+ uint8_t KEY[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
+ uint8_t CSN[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
+ uint8_t CCNR[12]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
+ //uint8_t CC_temp[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
- uint8_t result[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
+ uint8_t div_key[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
- des_context ctx_enc;
- uint64_t crypted_id=0;
+
+ if (strlen(Cmd)<1)
+ {
+ //PrintAndLog("Usage: hf iclass dump <Key> <CSN> <CC>");
+ //PrintAndLog(" sample: hf iclass dump 0011223344556677 aabbccddeeffgghh FFFFFFFFFFFFFFFF");
+ PrintAndLog("Usage: hf iclass dump <Key>");
+ PrintAndLog(" sample: hf iclass dump 0011223344556677");
+ return 0;
+ }
+
+ if (param_gethex(Cmd, 0, KEY, 16))
+ {
+ PrintAndLog("KEY must include 16 HEX symbols");
+ return 1;
+ }
+
+ /*if (param_gethex(Cmd, 1, CSN, 16))
+ {
+ PrintAndLog("CSN must include 16 HEX symbols");
+ return 1;
+ }
+ if (param_gethex(Cmd, 2, CC_temp, 16))
+ {
+ PrintAndLog("CC must include 16 HEX symbols");
+ return 1;
+ }*/
+
+ UsbCommand c = {CMD_ICLASS_ISO14443A_GETPUBLIC, {0}};
+ //memcpy(c.d.asBytes, MAC, 4);
+ SendCommand(&c);
+
+ UsbCommand resp;
+ if (WaitForResponseTimeout(CMD_ACK,&resp,4500)) {
+ uint8_t isOK = resp.arg[0] & 0xff;
+ uint8_t * data = resp.d.asBytes;
+
+ memcpy(CSN,data,8);
+ memcpy(CCNR,data+8,8);
+ PrintAndLog("DEBUG: %s",sprint_hex(CSN,8));
+ PrintAndLog("DEBUG: %s",sprint_hex(CCNR,8));
PrintAndLog("isOk:%02x", isOK);
} else {
PrintAndLog("Command execute timeout");
- }*/
+ }
-
-
- //memcpy(CCNR,CC_temp,8);
- des_setkey_enc( &ctx_enc, KEY);
- des_crypt_ecb(&ctx_enc,CSN,result);
- PrintAndLog("DES Key: %s",sprint_hex(result,8));
- uint64_t newz=0;
- crypted_id = bytes_to_num(result,8);
- uint64_t x = (crypted_id & 0xFFFF000000000000 );
- pushbackSixBitByte(&newz, getSixBitByte(crypted_id,0),7);
- pushbackSixBitByte(&newz, getSixBitByte(crypted_id,1),6);
- pushbackSixBitByte(&newz, getSixBitByte(crypted_id,2),5);
- pushbackSixBitByte(&newz, getSixBitByte(crypted_id,3),4);
- pushbackSixBitByte(&newz, getSixBitByte(crypted_id,4),3);
- pushbackSixBitByte(&newz, getSixBitByte(crypted_id,5),2);
- pushbackSixBitByte(&newz, getSixBitByte(crypted_id,6),1);
- pushbackSixBitByte(&newz, getSixBitByte(crypted_id,7),0);
- newz|= x;
- crypted_id=newz;
- num_to_bytes(crypted_id,8,result);
- PrintAndLog("DESr Key: %s",sprint_hex(result,8));
- hash0(crypted_id,div_key);
- PrintAndLog("Div Key: %s",sprint_hex(div_key,8));
- calc_iclass_mac(CCNR,12,div_key,MAC);
++
++ diversifyKey(CSN,KEY, div_key);
++
++ doMAC(CCNR,div_key, MAC);
+
+ UsbCommand d = {CMD_READER_ICLASS_REPLAY, {readerType}};
+ memcpy(d.d.asBytes, MAC, 4);
+ SendCommand(&d);
return 0;
}
- uint8_t CC_temp[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
- uint8_t result[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
+ int CmdHFiClass_iso14443A_write(const char *Cmd)
+ {
+ uint8_t readerType = 0;
+ uint8_t MAC[4]={0x00,0x00,0x00,0x00};
+ uint8_t KEY[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
+ uint8_t CSN[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
+ uint8_t CCNR[12]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
- des_context ctx_enc;
- uint64_t crypted_id=0;
+ uint8_t div_key[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
- //memcpy(c.d.asBytes, MAC, 4);
++
+ uint8_t blockNo=0;
+ uint8_t bldata[8]={0};
+
+ if (strlen(Cmd)<3)
+ {
+ PrintAndLog("Usage: hf iclass write <Key> <Block> <Data>");
+ PrintAndLog(" sample: hf iclass write 0011223344556677 10 AAAAAAAAAAAAAAAA");
+ return 0;
+ }
+
+ if (param_gethex(Cmd, 0, KEY, 16))
+ {
+ PrintAndLog("KEY must include 16 HEX symbols");
+ return 1;
+ }
+
+ blockNo = param_get8(Cmd, 1);
+ if (blockNo>32)
+ {
+ PrintAndLog("Error: Maximum number of blocks is 32 for iClass 2K Cards!");
+ return 1;
+ }
+ if (param_gethex(Cmd, 2, bldata, 8))
+ {
+ PrintAndLog("Block data must include 8 HEX symbols");
+ return 1;
+ }
+
+ UsbCommand c = {CMD_ICLASS_ISO14443A_GETPUBLIC, {0}};
-
+ SendCommand(&c);
-
- des_setkey_enc( &ctx_enc, KEY);
- des_crypt_ecb(&ctx_enc,CSN,result);
- PrintAndLog("DES Key: %s",sprint_hex(result,8));
- uint64_t newz=0;
- crypted_id = bytes_to_num(result,8);
- uint64_t x = (crypted_id & 0xFFFF000000000000 );
- pushbackSixBitByte(&newz, getSixBitByte(crypted_id,0),7);
- pushbackSixBitByte(&newz, getSixBitByte(crypted_id,1),6);
- pushbackSixBitByte(&newz, getSixBitByte(crypted_id,2),5);
- pushbackSixBitByte(&newz, getSixBitByte(crypted_id,3),4);
- pushbackSixBitByte(&newz, getSixBitByte(crypted_id,4),3);
- pushbackSixBitByte(&newz, getSixBitByte(crypted_id,5),2);
- pushbackSixBitByte(&newz, getSixBitByte(crypted_id,6),1);
- pushbackSixBitByte(&newz, getSixBitByte(crypted_id,7),0);
- newz|= x;
- crypted_id=newz;
- num_to_bytes(crypted_id,8,result);
- PrintAndLog("DESr Key: %s",sprint_hex(result,8));
- hash0(crypted_id,div_key);
+ UsbCommand resp;
++
+ if (WaitForResponseTimeout(CMD_ACK,&resp,4500)) {
+ uint8_t isOK = resp.arg[0] & 0xff;
+ uint8_t * data = resp.d.asBytes;
+
+ memcpy(CSN,data,8);
+ memcpy(CCNR,data+8,8);
+ PrintAndLog("DEBUG: %s",sprint_hex(CSN,8));
+ PrintAndLog("DEBUG: %s",sprint_hex(CCNR,8));
+ PrintAndLog("isOk:%02x", isOK);
+ } else {
+ PrintAndLog("Command execute timeout");
+ }
- calc_iclass_mac(CCNR,12,div_key,MAC);
++
++ diversifyKey(CSN,KEY, div_key);
++
+ PrintAndLog("Div Key: %s",sprint_hex(div_key,8));
- UsbCommand c = {CMD_ICLASS_ISO14443A_WRITE, {readerType,blockNo}};
- memcpy(c.d.asBytes, bldata, 8);
- memcpy(c.d.asBytes+8, MAC, 4);
- SendCommand(&c);
++ doMAC(CCNR, div_key, MAC);
+
- UsbCommand resp;
++ UsbCommand c2 = {CMD_ICLASS_ISO14443A_WRITE, {readerType,blockNo}};
++ memcpy(c2.d.asBytes, bldata, 8);
++ memcpy(c2.d.asBytes+8, MAC, 4);
++ SendCommand(&c2);
+
+ if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
+ uint8_t isOK = resp.arg[0] & 0xff;
+ uint8_t * data = resp.d.asBytes;
+
+ if (isOK)
+ PrintAndLog("isOk:%02x data:%s", isOK, sprint_hex(data, 4));
+ else
+ PrintAndLog("isOk:%02x", isOK);
+ } else {
+ PrintAndLog("Command execute timeout");
+ }
+ return 0;
+ }
+
+
static command_t CommandTable[] =
{
- {"help", CmdHelp, 1, "This help"},
- {"list", CmdHFiClassList, 0, "List iClass history"},
- {"snoop", CmdHFiClassSnoop, 0, "Eavesdrop iClass communication"},
- {"sim", CmdHFiClassSim, 0, "Simulate iClass tag"},
- {"reader", CmdHFiClassReader, 0, "Read an iClass tag"},
+ {"help", CmdHelp, 1, "This help"},
+ {"list", CmdHFiClassList, 0, "List iClass history"},
+ {"snoop", CmdHFiClassSnoop, 0, "Eavesdrop iClass communication"},
+ {"sim", CmdHFiClassSim, 0, "Simulate iClass tag"},
+ {"reader",CmdHFiClassReader, 0, "Read an iClass tag"},
+ {"replay",CmdHFiClassReader_Replay, 0, "Read an iClass tag via Reply Attack"},
+ {"dump", CmdHFiClassReader_Dump, 0, "Authenticate and Dump iClass tag"},
+ {"write", CmdHFiClass_iso14443A_write, 0, "Authenticate and Write iClass block"},
{NULL, NULL, 0, NULL}
};
CmdsHelp(CommandTable);
return 0;
}
-
- /**
- * @brief checks if a file exists
- * @param filename
- * @return
- */
- int fileExists(const char *filename) {
- struct stat st;
- int result = stat(filename, &st);
- return result == 0;
- }
- /**
- * @brief Utility function to save data to a file. This method takes a preferred name, but if that
- * file already exists, it tries with another name until it finds something suitable.
- * E.g. dumpdata-15.txt
- * @param preferredName
- * @param suffix the file suffix. Leave out the ".".
- * @param data The binary data to write to the file
- * @param datalen the length of the data
- * @return 0 for ok, 1 for failz
- */
- int saveFile(const char *preferredName, const char *suffix, const void* data, size_t datalen)
- {
- FILE *f = fopen(preferredName, "wb");
- int size = sizeof(char) * (strlen(preferredName)+strlen(suffix)+5);
- char * fileName = malloc(size);
-
- memset(fileName,0,size);
- int num = 1;
- sprintf(fileName,"%s.%s", preferredName, suffix);
- while(fileExists(fileName))
- {
- sprintf(fileName,"%s-%d.%s", preferredName, num, suffix);
- num++;
- }
- /* We should have a valid filename now, e.g. dumpdata-3.bin */
-
- /*Opening file for writing in binary mode*/
- FILE *fileHandle=fopen(fileName,"wb");
- if(!f) {
- PrintAndLog("Failed to write to file '%s'", fileName);
- return 0;
- }
- fwrite(data, 1, datalen, fileHandle);
- fclose(fileHandle);
- PrintAndLog("Saved data to '%s'", fileName);
-
- free(fileName);
- return 0;
- }
--- /dev/null
-#include "loclass/cipher.h"
-#include "loclass/cipherutils.h"
-#include "loclass/ikeys.h"
-
+ /*****************************************************************************
+ * This file is part of iClassCipher. It is a reconstructon of the cipher engine
+ * used in iClass, and RFID techology.
+ *
+ * The implementation is based on the work performed by
+ * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
+ * Milosch Meriac in the paper "Dismantling IClass".
+ *
+ * Copyright (C) 2014 Martin Holst Swende
+ *
+ * This is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation.
+ *
+ * This file is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with IClassCipher. If not, see <http://www.gnu.org/licenses/>.
+ ****************************************************************************/
+
++#include "cipher.h"
++#include "cipherutils.h"
+ #include <stdio.h>
+ #include <stdlib.h>
+ #include <string.h>
+ #include <stdbool.h>
+ #include <stdint.h>
- //printf("bitsleft %d" , bitsLeft(in));
- //printf(" %0d", s.r >> 2 & 1);
++#include <time.h>
++#include "fileutils.h"
+ uint8_t keytable[] = { 0,0,0,0,0,0,0,0};
+
++/**
++* Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2
++* consisting of the following four components:
++* 1. the left register l = (l 0 . . . l 7 ) ∈ F 8/2 ;
++* 2. the right register r = (r 0 . . . r 7 ) ∈ F 8/2 ;
++* 3. the top register t = (t 0 . . . t 15 ) ∈ F 16/2 .
++* 4. the bottom register b = (b 0 . . . b 7 ) ∈ F 8/2 .
++**/
++typedef struct {
++ uint8_t l;
++ uint8_t r;
++ uint8_t b;
++ uint16_t t;
++} State;
++
+ /**
+ * Definition 2. The feedback function for the top register T : F 16/2 → F 2
+ * is defined as
+ * T (x 0 x 1 . . . . . . x 15 ) = x 0 ⊕ x 1 ⊕ x 5 ⊕ x 7 ⊕ x 10 ⊕ x 11 ⊕ x 14 ⊕ x 15 .
+ **/
+ bool T(State state)
+ {
+ bool x0 = state.t & 0x8000;
+ bool x1 = state.t & 0x4000;
+ bool x5 = state.t & 0x0400;
+ bool x7 = state.t & 0x0100;
+ bool x10 = state.t & 0x0020;
+ bool x11 = state.t & 0x0010;
+ bool x14 = state.t & 0x0002;
+ bool x15 = state.t & 0x0001;
+ return x0 ^ x1 ^ x5 ^ x7 ^ x10 ^ x11 ^ x14 ^ x15;
+ }
+ /**
+ * Similarly, the feedback function for the bottom register B : F 8/2 → F 2 is defined as
+ * B(x 0 x 1 . . . x 7 ) = x 1 ⊕ x 2 ⊕ x 3 ⊕ x 7 .
+ **/
+ bool B(State state)
+ {
+ bool x1 = state.b & 0x40;
+ bool x2 = state.b & 0x20;
+ bool x3 = state.b & 0x10;
+ bool x7 = state.b & 0x01;
+
+ return x1 ^ x2 ^ x3 ^ x7;
+
+ }
+
+
+ /**
+ * Definition 3 (Selection function). The selection function select : F 2 × F 2 ×
+ * F 8/2 → F 3/2 is defined as select(x, y, r) = z 0 z 1 z 2 where
+ * z 0 = (r 0 ∧ r 2 ) ⊕ (r 1 ∧ r 3 ) ⊕ (r 2 ∨ r 4 )
+ * z 1 = (r 0 ∨ r 2 ) ⊕ (r 5 ∨ r 7 ) ⊕ r 1 ⊕ r 6 ⊕ x ⊕ y
+ * z 2 = (r 3 ∧ r 5 ) ⊕ (r 4 ∧ r 6 ) ⊕ r 7 ⊕ x
+ **/
+ uint8_t _select(bool x, bool y, uint8_t r)
+ {
+ bool r0 = r >> 7 & 0x1;
+ bool r1 = r >> 6 & 0x1;
+ bool r2 = r >> 5 & 0x1;
+ bool r3 = r >> 4 & 0x1;
+ bool r4 = r >> 3 & 0x1;
+ bool r5 = r >> 2 & 0x1;
+ bool r6 = r >> 1 & 0x1;
+ bool r7 = r & 0x1;
+
+ bool z0 = (r0 & r2) ^ (r1 & ~r3) ^ (r2 | r4);
+ bool z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y;
+ bool z2 = (r3 & ~r5) ^ (r4 & r6 ) ^ r7 ^ x;
+
+ // The three bitz z0.. z1 are packed into a uint8_t:
+ // 00000ZZZ
+ //Return value is a uint8_t
+ uint8_t retval = 0;
+ retval |= (z0 << 2) & 4;
+ retval |= (z1 << 1) & 2;
+ retval |= z2 & 1;
+
+ // Return value 0 <= retval <= 7
+ return retval;
+ }
+
+ /**
+ * Definition 4 (Successor state). Let s = l, r, t, b be a cipher state, k ∈ (F 82 ) 8
+ * be a key and y ∈ F 2 be the input bit. Then, the successor cipher state s ′ =
+ * l ′ , r ′ , t ′ , b ′ is defined as
+ * t ′ := (T (t) ⊕ r 0 ⊕ r 4 )t 0 . . . t 14 l ′ := (k [select(T (t),y,r)] ⊕ b ′ ) ⊞ l ⊞ r
+ * b ′ := (B(b) ⊕ r 7 )b 0 . . . b 6 r ′ := (k [select(T (t),y,r)] ⊕ b ′ ) ⊞ l
+ *
+ * @param s - state
+ * @param k - array containing 8 bytes
+ **/
+ State successor(uint8_t* k, State s, bool y)
+ {
+ bool r0 = s.r >> 7 & 0x1;
+ bool r4 = s.r >> 3 & 0x1;
+ bool r7 = s.r & 0x1;
+
+ State successor = {0,0,0,0};
+
+ successor.t = s.t >> 1;
+ successor.t |= (T(s) ^ r0 ^ r4) << 15;
+
+ successor.b = s.b >> 1;
+ successor.b |= (B(s) ^ r7) << 7;
+
+ bool Tt = T(s);
+
+ successor.l = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l+s.r ) & 0xFF;
+ successor.r = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l ) & 0xFF;
+
+ return successor;
+ }
+ /**
+ * We define the successor function suc which takes a key k ∈ (F 82 ) 8 , a state s and
+ * an input y ∈ F 2 and outputs the successor state s ′ . We overload the function suc
+ * to multiple bit input x ∈ F n 2 which we define as
+ * @param k - array containing 8 bytes
+ **/
+ State suc(uint8_t* k,State s, BitstreamIn *bitstream)
+ {
+ if(bitsLeft(bitstream) == 0)
+ {
+ return s;
+ }
+ bool lastbit = tailBit(bitstream);
+ return successor(k,suc(k,s,bitstream), lastbit);
+ }
+
+ /**
+ * Definition 5 (Output). Define the function output which takes an internal
+ * state s =< l, r, t, b > and returns the bit r 5 . We also define the function output
+ * on multiple bits input which takes a key k, a state s and an input x ∈ F n 2 as
+ * output(k, s, ǫ) = ǫ
+ * output(k, s, x 0 . . . x n ) = output(s) · output(k, s ′ , x 1 . . . x n )
+ * where s ′ = suc(k, s, x 0 ).
+ **/
+ void output(uint8_t* k,State s, BitstreamIn* in, BitstreamOut* out)
+ {
+ if(bitsLeft(in) == 0)
+ {
+ return;
+ }
-
+ pushBit(out,(s.r >> 2) & 1);
+ //Remove first bit
+ uint8_t x0 = headBit(in);
+ State ss = successor(k,s,x0);
+ output(k,ss,in, out);
+ }
+
+ /**
+ * Definition 6 (Initial state). Define the function init which takes as input a
+ * key k ∈ (F 82 ) 8 and outputs the initial cipher state s =< l, r, t, b >
+ **/
+
+ State init(uint8_t* k)
+ {
+ State s = {
+ ((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l
+ ((k[0] ^ 0x4c) + 0x21) & 0xFF,// r
+ 0x4c, // b
+ 0xE012 // t
+ };
+ return s;
+ }
+ void MAC(uint8_t* k, BitstreamIn input, BitstreamOut out)
+ {
+ uint8_t zeroes_32[] = {0,0,0,0};
+ BitstreamIn input_32_zeroes = {zeroes_32,sizeof(zeroes_32)*8,0};
+ State initState = suc(k,init(k),&input);
+ output(k,initState,&input_32_zeroes,&out);
-
-void printarr(char * name, uint8_t* arr, int len)
+ }
+
- int i ;
- printf("uint8_t %s[] = {", name);
- for(i =0 ; i< len ; i++)
- {
- printf("0x%02x,",*(arr+i));
- }
- printf("};\n");
++void doMAC(uint8_t cc_nr[12],uint8_t div_key[8], uint8_t mac[4])
+ {
- // But actually, that must be reversed, it's "on-the-wire" data
- reverse_arraybytes(cc_nr,sizeof(cc_nr));
-
++ // Reversed "on-the-wire" data
++ uint8_t cc_nr_r[12] = {0};
++ reverse_arraycopy(cc_nr, cc_nr_r,12);
++ BitstreamIn bitstream = {cc_nr_r,12 * 8,0};
++ uint8_t dest [8]= {0,0,0,0,0,0,0,0};
++ BitstreamOut out = { dest, sizeof(dest)*8, 0 };
++ MAC(div_key,bitstream, out);
++
++ //The output MAC must also be reversed
++ reverse_arraybytes(dest, sizeof(dest));
++ memcpy(mac, dest, 4);
++ return;
+ }
+
+ int testMAC()
+ {
++ prnlog("[+] Testing MAC calculation...");
+
+ //From the "dismantling.IClass" paper:
+ uint8_t cc_nr[] = {0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0,0,0,0};
- uint8_t div_key[] = {0xE0,0x33,0xCA,0x41,0x9A,0xEE,0x43,0xF9};
- uint8_t correct_MAC[] = {0x1d,0x49,0xC9,0xDA};
+ //From the paper
- BitstreamIn bitstream = {cc_nr,sizeof(cc_nr) * 8,0};
- uint8_t dest []= {0,0,0,0,0,0,0,0};
- BitstreamOut out = { dest, sizeof(dest)*8, 0 };
- MAC(div_key,bitstream, out);
- //The output MAC must also be reversed
- reverse_arraybytes(dest, sizeof(dest));
++ uint8_t div_key[8] = {0xE0,0x33,0xCA,0x41,0x9A,0xEE,0x43,0xF9};
++ uint8_t correct_MAC[4] = {0x1d,0x49,0xC9,0xDA};
+
- if(false && memcmp(dest, correct_MAC,4) == 0)
++ uint8_t calculated_mac[4] = {0};
++ doMAC(cc_nr, div_key, calculated_mac);
+
- printf("MAC calculation OK!\n");
++ if(memcmp(calculated_mac, correct_MAC,4) == 0)
+ {
- printf("MAC calculation failed\n");
- printarr("Calculated_MAC", dest, 4);
- printarr("Correct_MAC ", correct_MAC, 4);
++ prnlog("[+] MAC calculation OK!");
+
+ }else
+ {
-
-int calc_iclass_mac(uint8_t *cc_nr_p, int length, uint8_t *div_key_p, uint8_t *mac)
-{
- uint8_t *cc_nr;
- uint8_t div_key[8];
- cc_nr=(uint8_t*)malloc(length+1);
- memcpy(cc_nr,cc_nr_p,length);
- memcpy(div_key,div_key_p,8);
-
- reverse_arraybytes(cc_nr,length);
- BitstreamIn bitstream = {cc_nr,length * 8,0};
- uint8_t dest []= {0,0,0,0,0,0,0,0};
- BitstreamOut out = { dest, sizeof(dest)*8, 0 };
- MAC(div_key,bitstream, out);
- //The output MAC must also be reversed
- reverse_arraybytes(dest, sizeof(dest));
-
- printf("Calculated_MAC\t%02x%02x%02x%02x\n", dest[0],dest[1],dest[2],dest[3]);
- memcpy(mac,dest,4);
- free(cc_nr);
- return 1;
-}
++ prnlog("[+] FAILED: MAC calculation failed:");
++ printarr(" Calculated_MAC", calculated_mac, 4);
++ printarr(" Correct_MAC ", correct_MAC, 4);
+ return 1;
+ }
++
+ return 0;
+ }
--- /dev/null
-/**
-* Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2
-* consisting of the following four components:
-* 1. the left register l = (l 0 . . . l 7 ) ∈ F 8/2 ;
-* 2. the right register r = (r 0 . . . r 7 ) ∈ F 8/2 ;
-* 3. the top register t = (t 0 . . . t 15 ) ∈ F 16/2 .
-* 4. the bottom register b = (b 0 . . . b 7 ) ∈ F 8/2 .
-**/
-typedef struct {
- uint8_t l;
- uint8_t r;
- uint8_t b;
- uint16_t t;
-} State;
-
-void printarr(char * name, uint8_t* arr, int len);
-int calc_iclass_mac(uint8_t *cc_nr_p, int length, uint8_t *div_key_p, uint8_t *mac);
+ /*****************************************************************************
+ * This file is part of iClassCipher. It is a reconstructon of the cipher engine
+ * used in iClass, and RFID techology.
+ *
+ * The implementation is based on the work performed by
+ * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
+ * Milosch Meriac in the paper "Dismantling IClass".
+ *
+ * Copyright (C) 2014 Martin Holst Swende
+ *
+ * This is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation.
+ *
+ * This file is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with IClassCipher. If not, see <http://www.gnu.org/licenses/>.
+ ****************************************************************************/
+
+ #ifndef CIPHER_H
+ #define CIPHER_H
+ #include <stdint.h>
+
++void doMAC(uint8_t cc_nr[12],uint8_t div_key[8], uint8_t mac[4]);
++int testMAC();
+
+ #endif // CIPHER_H
--- /dev/null
-#include "cipherutils.h"
-#include "../util.h"
+ /*****************************************************************************
+ * This file is part of iClassCipher. It is a reconstructon of the cipher engine
+ * used in iClass, and RFID techology.
+ *
+ * The implementation is based on the work performed by
+ * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
+ * Milosch Meriac in the paper "Dismantling IClass".
+ *
+ * Copyright (C) 2014 Martin Holst Swende
+ *
+ * This is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation.
+ *
+ * This file is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with IClassCipher. If not, see <http://www.gnu.org/licenses/>.
+ ****************************************************************************/
+
-
+ #include <stdint.h>
+ #include <stdio.h>
+ #include <string.h>
- printf("Bitstream test 1 ok\n");
++#include "fileutils.h"
++#include "cipherutils.h"
+ /**
+ *
+ * @brief Return and remove the first bit (x0) in the stream : <x0 x1 x2 x3 ... xn >
+ * @param stream
+ * @return
+ */
+ bool headBit( BitstreamIn *stream)
+ {
+ int bytepos = stream->position >> 3; // divide by 8
+ int bitpos = (stream->position++) & 7; // mask out 00000111
+ return (*(stream->buffer + bytepos) >> (7-bitpos)) & 1;
+ }
+ /**
+ * @brief Return and remove the last bit (xn) in the stream: <x0 x1 x2 ... xn>
+ * @param stream
+ * @return
+ */
+ bool tailBit( BitstreamIn *stream)
+ {
+ int bitpos = stream->numbits -1 - (stream->position++);
+
+ int bytepos= bitpos >> 3;
+ bitpos &= 7;
+ return (*(stream->buffer + bytepos) >> (7-bitpos)) & 1;
+ }
+ /**
+ * @brief Pushes bit onto the stream
+ * @param stream
+ * @param bit
+ */
+ void pushBit( BitstreamOut* stream, bool bit)
+ {
+ int bytepos = stream->position >> 3; // divide by 8
+ int bitpos = stream->position & 7;
+ *(stream->buffer+bytepos) |= (bit & 1) << (7 - bitpos);
+ stream->position++;
+ stream->numbits++;
+ }
+
+ /**
+ * @brief Pushes the lower six bits onto the stream
+ * as b0 b1 b2 b3 b4 b5 b6
+ * @param stream
+ * @param bits
+ */
+ void push6bits( BitstreamOut* stream, uint8_t bits)
+ {
+ pushBit(stream, bits & 0x20);
+ pushBit(stream, bits & 0x10);
+ pushBit(stream, bits & 0x08);
+ pushBit(stream, bits & 0x04);
+ pushBit(stream, bits & 0x02);
+ pushBit(stream, bits & 0x01);
+ }
+
+ /**
+ * @brief bitsLeft
+ * @param stream
+ * @return number of bits left in stream
+ */
+ int bitsLeft( BitstreamIn *stream)
+ {
+ return stream->numbits - stream->position;
+ }
+ /**
+ * @brief numBits
+ * @param stream
+ * @return Number of bits stored in stream
+ */
+ int numBits(BitstreamOut *stream)
+ {
+ return stream->numbits;
+ }
+
++void x_num_to_bytes(uint64_t n, size_t len, uint8_t* dest)
++{
++ while (len--) {
++ dest[len] = (uint8_t) n;
++ n >>= 8;
++ }
++}
++
++uint64_t x_bytes_to_num(uint8_t* src, size_t len)
++{
++ uint64_t num = 0;
++ while (len--)
++ {
++ num = (num << 8) | (*src);
++ src++;
++ }
++ return num;
++}
+ uint8_t reversebytes(uint8_t b) {
+ b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
+ b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
+ b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
+ return b;
+ }
+ void reverse_arraybytes(uint8_t* arr, size_t len)
+ {
+ uint8_t i;
+ for( i =0; i< len ; i++)
+ {
+ arr[i] = reversebytes(arr[i]);
+ }
+ }
++void reverse_arraycopy(uint8_t* arr, uint8_t* dest, size_t len)
++{
++ uint8_t i;
++ for( i =0; i< len ; i++)
++ {
++ dest[i] = reversebytes(arr[i]);
++ }
++}
++
++void printarr(char * name, uint8_t* arr, int len)
++{
++ int cx;
++ size_t outsize = 40+strlen(name)+len*5;
++ char* output = malloc(outsize);
++ memset(output, 0,outsize);
++
++ int i ;
++ cx = snprintf(output,outsize, "uint8_t %s[] = {", name);
++ for(i =0 ; i< len ; i++)
++ {
++ cx += snprintf(output+cx,outsize-cx,"0x%02x,",*(arr+i));//5 bytes per byte
++ }
++ cx += snprintf(output+cx,outsize-cx,"};");
++ prnlog(output);
++}
++
++void printvar(char * name, uint8_t* arr, int len)
++{
++ int cx;
++ size_t outsize = 40+strlen(name)+len*2;
++ char* output = malloc(outsize);
++ memset(output, 0,outsize);
++
++ int i ;
++ cx = snprintf(output,outsize,"%s = ", name);
++ for(i =0 ; i< len ; i++)
++ {
++ cx += snprintf(output+cx,outsize-cx,"%02x",*(arr+i));//2 bytes per byte
++ }
++
++ prnlog(output);
++}
++
++void printarr_human_readable(char * title, uint8_t* arr, int len)
++{
++ int cx;
++ size_t outsize = 100+strlen(title)+len*4;
++ char* output = malloc(outsize);
++ memset(output, 0,outsize);
+
+
++ int i;
++ cx = snprintf(output,outsize, "\n\t%s\n", title);
++ for(i =0 ; i< len ; i++)
++ {
++ if(i % 16 == 0)
++ cx += snprintf(output+cx,outsize-cx,"\n%02x| ", i );
++ cx += snprintf(output+cx,outsize-cx, "%02x ",*(arr+i));
++ }
++ prnlog(output);
++}
++
+ //-----------------------------
+ // Code for testing below
+ //-----------------------------
+
+
+ int testBitStream()
+ {
+ uint8_t input [] = {0xDE,0xAD,0xBE,0xEF,0xDE,0xAD,0xBE,0xEF};
+ uint8_t output [] = {0,0,0,0,0,0,0,0};
+ BitstreamIn in = { input, sizeof(input) * 8,0};
+ BitstreamOut out ={ output, 0,0}
+ ;
+ while(bitsLeft(&in) > 0)
+ {
+ pushBit(&out, headBit(&in));
+ //printf("Bits left: %d\n", bitsLeft(&in));
+ //printf("Bits out: %d\n", numBits(&out));
+ }
+ if(memcmp(input, output, sizeof(input)) == 0)
+ {
- printf("Bitstream test 1 failed\n");
++ prnlog(" Bitstream test 1 ok");
+ }else
+ {
- printf("IN %02x, OUT %02x\n", input[i], output[i]);
++ prnlog(" Bitstream test 1 failed");
+ uint8_t i;
+ for(i = 0 ; i < sizeof(input) ; i++)
+ {
- printf("Bitstream test 2 ok\n");
++ prnlog(" IN %02x, OUT %02x", input[i], output[i]);
+ }
+ return 1;
+ }
+ return 0;
+ }
+
+ int testReversedBitstream()
+ {
+ uint8_t input [] = {0xDE,0xAD,0xBE,0xEF,0xDE,0xAD,0xBE,0xEF};
+ uint8_t reverse [] = {0,0,0,0,0,0,0,0};
+ uint8_t output [] = {0,0,0,0,0,0,0,0};
+ BitstreamIn in = { input, sizeof(input) * 8,0};
+ BitstreamOut out ={ output, 0,0};
+ BitstreamIn reversed_in ={ reverse, sizeof(input)*8,0};
+ BitstreamOut reversed_out ={ reverse,0 ,0};
+
+ while(bitsLeft(&in) > 0)
+ {
+ pushBit(&reversed_out, tailBit(&in));
+ }
+ while(bitsLeft(&reversed_in) > 0)
+ {
+ pushBit(&out, tailBit(&reversed_in));
+ }
+ if(memcmp(input, output, sizeof(input)) == 0)
+ {
- printf("Bitstream test 2 failed\n");
++ prnlog(" Bitstream test 2 ok");
+ }else
+ {
- printf("IN %02x, MIDDLE: %02x, OUT %02x\n", input[i],reverse[i], output[i]);
++ prnlog(" Bitstream test 2 failed");
+ uint8_t i;
+ for(i = 0 ; i < sizeof(input) ; i++)
+ {
++ prnlog(" IN %02x, MIDDLE: %02x, OUT %02x", input[i],reverse[i], output[i]);
+ }
+ return 1;
+ }
+ return 0;
+ }
+
+
+ int testCipherUtils(void)
+ {
++ prnlog("[+] Testing some internals...");
+ int retval = 0;
+ retval |= testBitStream();
+ retval |= testReversedBitstream();
+ return retval;
+ }
--- /dev/null
-bool xorbits_8(uint8_t val);
-bool xorbits_16(uint16_t val);
+ /*****************************************************************************
+ * This file is part of iClassCipher. It is a reconstructon of the cipher engine
+ * used in iClass, and RFID techology.
+ *
+ * The implementation is based on the work performed by
+ * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
+ * Milosch Meriac in the paper "Dismantling IClass".
+ *
+ * Copyright (C) 2014 Martin Holst Swende
+ *
+ * This is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation.
+ *
+ * This file is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with IClassCipher. If not, see <http://www.gnu.org/licenses/>.
+ ****************************************************************************/
+
+ #ifndef CIPHERUTILS_H
+ #define CIPHERUTILS_H
+ #include <stdint.h>
+ #include <stdbool.h>
+ #include <stdlib.h>
+
+ typedef struct {
+ uint8_t * buffer;
+ uint8_t numbits;
+ uint8_t position;
+ } BitstreamIn;
+
+ typedef struct {
+ uint8_t * buffer;
+ uint8_t numbits;
+ uint8_t position;
+ }BitstreamOut;
+
+ bool headBit( BitstreamIn *stream);
+ bool tailBit( BitstreamIn *stream);
+ void pushBit( BitstreamOut *stream, bool bit);
+ int bitsLeft( BitstreamIn *stream);
-
++
+ int testCipherUtils(void);
+ int testMAC();
+ void push6bits( BitstreamOut* stream, uint8_t bits);
+ void EncryptDES(bool key[56], bool outBlk[64], bool inBlk[64], int verbose) ;
++void x_num_to_bytes(uint64_t n, size_t len, uint8_t* dest);
++uint64_t x_bytes_to_num(uint8_t* src, size_t len);
+ uint8_t reversebytes(uint8_t b);
+ void reverse_arraybytes(uint8_t* arr, size_t len);
++void reverse_arraycopy(uint8_t* arr, uint8_t* dest, size_t len);
++void printarr(char * name, uint8_t* arr, int len);
++void printvar(char * name, uint8_t* arr, int len);
++void printarr_human_readable(char * title, uint8_t* arr, int len);
+ #endif // CIPHERUTILS_H
--- /dev/null
--- /dev/null
++#include <stdint.h>
++#include <stdbool.h>
++#include <string.h>
++#include <stdio.h>
++#include <time.h>
++#include "cipherutils.h"
++#include "cipher.h"
++#include "ikeys.h"
++#include "elite_crack.h"
++#include "fileutils.h"
++#include "des.h"
++
++/**
++ * @brief Permutes a key from standard NIST format to Iclass specific format
++ * from http://www.proxmark.org/forum/viewtopic.php?pid=11220#p11220
++ *
++ * If you permute [6c 8d 44 f9 2a 2d 01 bf] you get [8a 0d b9 88 bb a7 90 ea] as shown below.
++ *
++ * 1 0 1 1 1 1 1 1 bf
++ * 0 0 0 0 0 0 0 1 01
++ * 0 0 1 0 1 1 0 1 2d
++ * 0 0 1 0 1 0 1 0 2a
++ * 1 1 1 1 1 0 0 1 f9
++ * 0 1 0 0 0 1 0 0 44
++ * 1 0 0 0 1 1 0 1 8d
++ * 0 1 1 0 1 1 0 0 6c
++ *
++ * 8 0 b 8 b a 9 e
++ * a d 9 8 b 7 0 a
++ *
++ * @param key
++ * @param dest
++ */
++void permutekey(uint8_t key[8], uint8_t dest[8])
++{
++
++ int i;
++ for(i = 0 ; i < 8 ; i++)
++ {
++ dest[i] = (((key[7] & (0x80 >> i)) >> (7-i)) << 7) |
++ (((key[6] & (0x80 >> i)) >> (7-i)) << 6) |
++ (((key[5] & (0x80 >> i)) >> (7-i)) << 5) |
++ (((key[4] & (0x80 >> i)) >> (7-i)) << 4) |
++ (((key[3] & (0x80 >> i)) >> (7-i)) << 3) |
++ (((key[2] & (0x80 >> i)) >> (7-i)) << 2) |
++ (((key[1] & (0x80 >> i)) >> (7-i)) << 1) |
++ (((key[0] & (0x80 >> i)) >> (7-i)) << 0);
++ }
++
++ return;
++}
++/**
++ * Permutes a key from iclass specific format to NIST format
++ * @brief permutekey_rev
++ * @param key
++ * @param dest
++ */
++void permutekey_rev(uint8_t key[8], uint8_t dest[8])
++{
++ int i;
++ for(i = 0 ; i < 8 ; i++)
++ {
++ dest[7-i] = (((key[0] & (0x80 >> i)) >> (7-i)) << 7) |
++ (((key[1] & (0x80 >> i)) >> (7-i)) << 6) |
++ (((key[2] & (0x80 >> i)) >> (7-i)) << 5) |
++ (((key[3] & (0x80 >> i)) >> (7-i)) << 4) |
++ (((key[4] & (0x80 >> i)) >> (7-i)) << 3) |
++ (((key[5] & (0x80 >> i)) >> (7-i)) << 2) |
++ (((key[6] & (0x80 >> i)) >> (7-i)) << 1) |
++ (((key[7] & (0x80 >> i)) >> (7-i)) << 0);
++ }
++}
++
++/**
++ * Helper function for hash1
++ * @brief rr
++ * @param val
++ * @return
++ */
++uint8_t rr(uint8_t val)
++{
++ return val >> 1 | (( val & 1) << 7);
++}
++/**
++ * Helper function for hash1
++ * @brief rl
++ * @param val
++ * @return
++ */
++uint8_t rl(uint8_t val)
++{
++ return val << 1 | (( val & 0x80) >> 7);
++}
++/**
++ * Helper function for hash1
++ * @brief swap
++ * @param val
++ * @return
++ */
++uint8_t swap(uint8_t val)
++{
++ return ((val >> 4) & 0xFF) | ((val &0xFF) << 4);
++}
++
++/**
++ * Hash1 takes CSN as input, and determines what bytes in the keytable will be used
++ * when constructing the K_sel.
++ * @param csn the CSN used
++ * @param k output
++ */
++void hash1(uint8_t csn[] , uint8_t k[])
++{
++ k[0] = csn[0]^csn[1]^csn[2]^csn[3]^csn[4]^csn[5]^csn[6]^csn[7];
++ k[1] = csn[0]+csn[1]+csn[2]+csn[3]+csn[4]+csn[5]+csn[6]+csn[7];
++ k[2] = rr(swap( csn[2]+k[1] ));
++ k[3] = rr(swap( csn[3]+k[0] ));
++ k[4] = ~rr(swap( csn[4]+k[2] ))+1;
++ k[5] = ~rr(swap( csn[5]+k[3] ))+1;
++ k[6] = rr( csn[6]+(k[4]^0x3c) );
++ k[7] = rl( csn[7]+(k[5]^0xc3) );
++ int i;
++ for(i = 7; i >=0; i--)
++ k[i] = k[i] & 0x7F;
++}
++
++
++/**
++ * @brief Reads data from the iclass-reader-attack dump file.
++ * @param dump, data from a iclass reader attack dump. The format of the dumpdata is expected to be as follows:
++ * <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC><8 byte HASH1><1 byte NUM_BYTES_TO_RECOVER><3 bytes BYTES_TO_RECOVER>
++ * .. N times...
++ *
++ * So the first attack, with 3 bytes to recover would be : ... 03000145
++ * And a later attack, with 1 byte to recover (byte 0x5)would be : ...01050000
++ * And an attack, with 2 bytes to recover (byte 0x5 and byte 0x07 )would be : ...02050700
++ *
++ * @param cc_nr an array to store cc_nr into (12 bytes)
++ * @param csn an arracy ot store CSN into (8 bytes)
++ * @param received_mac an array to store MAC into (4 bytes)
++ * @param i the number to read. Should be less than 127, or something is wrong...
++ * @return
++ */
++int _readFromDump(uint8_t dump[], dumpdata* item, uint8_t i)
++{
++ size_t itemsize = sizeof(dumpdata);
++ //dumpdata item = {0};
++ memcpy(item,dump+i*itemsize, itemsize);
++ if(true)
++ {
++ printvar("csn", item->csn,8);
++ printvar("cc_nr", item->cc_nr,12);
++ printvar("mac", item->mac,4);
++ }
++ return 0;
++}
++
++static uint32_t startvalue = 0;
++/**
++ * @brief Performs brute force attack against a dump-data item, containing csn, cc_nr and mac.
++ *This method calculates the hash1 for the CSN, and determines what bytes need to be bruteforced
++ *on the fly. If it finds that more than three bytes need to be bruteforced, it aborts.
++ *It updates the keytable with the findings, also using the upper half of the 16-bit ints
++ *to signal if the particular byte has been cracked or not.
++ *
++ * @param dump The dumpdata from iclass reader attack.
++ * @param keytable where to write found values.
++ * @return
++ */
++int bruteforceItem(dumpdata item, uint16_t keytable[])
++{
++ int errors = 0;
++ uint8_t key_sel_p[8] = { 0 };
++ uint8_t div_key[8] = {0};
++ int found = false;
++ uint8_t key_sel[8] = {0};
++ uint8_t calculated_MAC[4] = { 0 };
++
++ //Get the key index (hash1)
++ uint8_t key_index[8] = {0};
++ hash1(item.csn, key_index);
++
++
++ /*
++ * Determine which bytes to retrieve. A hash is typically
++ * 01010000454501
++ * We go through that hash, and in the corresponding keytable, we put markers
++ * on what state that particular index is:
++ * - CRACKED (this has already been cracked)
++ * - BEING_CRACKED (this is being bruteforced now)
++ * - CRACK_FAILED (self-explaining...)
++ *
++ * The markers are placed in the high area of the 16 bit key-table.
++ * Only the lower eight bits correspond to the (hopefully cracked) key-value.
++ **/
++ uint8_t bytes_to_recover[3] = {0};
++ uint8_t numbytes_to_recover = 0 ;
++ int i;
++ for(i =0 ; i < 8 ; i++)
++ {
++ if(keytable[key_index[i]] & (CRACKED | BEING_CRACKED)) continue;
++ bytes_to_recover[numbytes_to_recover++] = key_index[i];
++ keytable[key_index[i]] |= BEING_CRACKED;
++
++ if(numbytes_to_recover > 3)
++ {
++ prnlog("The CSN requires > 3 byte bruteforce, not supported");
++ printvar("CSN", item.csn,8);
++ printvar("HASH1", key_index,8);
++
++ //Before we exit, reset the 'BEING_CRACKED' to zero
++ keytable[bytes_to_recover[0]] &= ~BEING_CRACKED;
++ keytable[bytes_to_recover[1]] &= ~BEING_CRACKED;
++ keytable[bytes_to_recover[2]] &= ~BEING_CRACKED;
++
++ return 1;
++ }
++ }
++
++ /*
++ *A uint32 has room for 4 bytes, we'll only need 24 of those bits to bruteforce up to three bytes,
++ */
++ uint32_t brute = startvalue;
++ /*
++ Determine where to stop the bruteforce. A 1-byte attack stops after 256 tries,
++ (when brute reaches 0x100). And so on...
++ bytes_to_recover = 1 --> endmask = 0x0000100
++ bytes_to_recover = 2 --> endmask = 0x0010000
++ bytes_to_recover = 3 --> endmask = 0x1000000
++ */
++
++ uint32_t endmask = 1 << 8*numbytes_to_recover;
++
++ for(i =0 ; i < numbytes_to_recover && numbytes_to_recover > 1; i++)
++ prnlog("Bruteforcing byte %d", bytes_to_recover[i]);
++
++ while(!found && !(brute & endmask))
++ {
++
++ //Update the keytable with the brute-values
++ for(i =0 ; i < numbytes_to_recover; i++)
++ {
++ keytable[bytes_to_recover[i]] &= 0xFF00;
++ keytable[bytes_to_recover[i]] |= (brute >> (i*8) & 0xFF);
++ }
++
++ // Piece together the key
++ key_sel[0] = keytable[key_index[0]] & 0xFF;key_sel[1] = keytable[key_index[1]] & 0xFF;
++ key_sel[2] = keytable[key_index[2]] & 0xFF;key_sel[3] = keytable[key_index[3]] & 0xFF;
++ key_sel[4] = keytable[key_index[4]] & 0xFF;key_sel[5] = keytable[key_index[5]] & 0xFF;
++ key_sel[6] = keytable[key_index[6]] & 0xFF;key_sel[7] = keytable[key_index[7]] & 0xFF;
++
++ //Permute from iclass format to standard format
++ permutekey_rev(key_sel,key_sel_p);
++ //Diversify
++ diversifyKey(item.csn, key_sel_p, div_key);
++ //Calc mac
++ doMAC(item.cc_nr, div_key,calculated_MAC);
++
++ if(memcmp(calculated_MAC, item.mac, 4) == 0)
++ {
++ for(i =0 ; i < numbytes_to_recover; i++)
++ prnlog("=> %d: 0x%02x", bytes_to_recover[i],0xFF & keytable[bytes_to_recover[i]]);
++ found = true;
++ break;
++ }
++ brute++;
++ if((brute & 0xFFFF) == 0)
++ {
++ printf("%d",(brute >> 16) & 0xFF);
++ fflush(stdout);
++ }
++ }
++ if(! found)
++ {
++ prnlog("Failed to recover %d bytes using the following CSN",numbytes_to_recover);
++ printvar("CSN",item.csn,8);
++ errors++;
++ //Before we exit, reset the 'BEING_CRACKED' to zero
++ for(i =0 ; i < numbytes_to_recover; i++)
++ {
++ keytable[bytes_to_recover[i]] &= 0xFF;
++ keytable[bytes_to_recover[i]] |= CRACK_FAILED;
++ }
++
++ }else
++ {
++ for(i =0 ; i < numbytes_to_recover; i++)
++ {
++ keytable[bytes_to_recover[i]] &= 0xFF;
++ keytable[bytes_to_recover[i]] |= CRACKED;
++ }
++
++ }
++ return errors;
++}
++
++
++/**
++ * From dismantling iclass-paper:
++ * Assume that an adversary somehow learns the first 16 bytes of hash2(K_cus ), i.e., y [0] and z [0] .
++ * Then he can simply recover the master custom key K_cus by computing
++ * K_cus = ~DES(z[0] , y[0] ) .
++ *
++ * Furthermore, the adversary is able to verify that he has the correct K cus by
++ * checking whether z [0] = DES enc (K_cus , ~K_cus ).
++ * @param keytable an array (128 bytes) of hash2(kcus)
++ * @param master_key where to put the master key
++ * @return 0 for ok, 1 for failz
++ */
++int calculateMasterKey(uint8_t first16bytes[], uint64_t master_key[] )
++{
++ des_context ctx_e = {DES_ENCRYPT,{0}};
++
++ uint8_t z_0[8] = {0};
++ uint8_t y_0[8] = {0};
++ uint8_t z_0_rev[8] = {0};
++ uint8_t key64[8] = {0};
++ uint8_t key64_negated[8] = {0};
++ uint8_t result[8] = {0};
++
++ // y_0 and z_0 are the first 16 bytes of the keytable
++ memcpy(y_0,first16bytes,8);
++ memcpy(z_0,first16bytes+8,8);
++
++ // Our DES-implementation uses the standard NIST
++ // format for keys, thus must translate from iclass
++ // format to NIST-format
++ permutekey_rev(z_0, z_0_rev);
++
++ // ~K_cus = DESenc(z[0], y[0])
++ des_setkey_enc( &ctx_e, z_0_rev );
++ des_crypt_ecb(&ctx_e, y_0, key64_negated);
++
++ int i;
++ for(i = 0; i < 8 ; i++)
++ {
++ key64[i] = ~key64_negated[i];
++ }
++
++ // Can we verify that the key is correct?
++ // Once again, key is on iclass-format
++ uint8_t key64_stdformat[8] = {0};
++ permutekey_rev(key64, key64_stdformat);
++
++ des_setkey_enc( &ctx_e, key64_stdformat );
++ des_crypt_ecb(&ctx_e, key64_negated, result);
++ prnlog("\nHigh security custom key (Kcus):");
++ printvar("Std format ", key64_stdformat,8);
++ printvar("Iclass format", key64,8);
++
++ if(master_key != NULL)
++ memcpy(master_key, key64, 8);
++
++ if(memcmp(z_0,result,4) != 0)
++ {
++ prnlog("Failed to verify calculated master key (k_cus)! Something is wrong.");
++ return 1;
++ }else{
++ prnlog("Key verified ok!\n");
++ }
++ return 0;
++}
++/**
++ * @brief Same as bruteforcefile, but uses a an array of dumpdata instead
++ * @param dump
++ * @param dumpsize
++ * @param keytable
++ * @return
++ */
++int bruteforceDump(uint8_t dump[], size_t dumpsize, uint16_t keytable[])
++{
++ uint8_t i;
++ int errors = 0;
++ size_t itemsize = sizeof(dumpdata);
++ clock_t t1 = clock();
++
++ dumpdata* attack = (dumpdata* ) malloc(itemsize);
++
++ for(i = 0 ; i * itemsize < dumpsize ; i++ )
++ {
++ memcpy(attack,dump+i*itemsize, itemsize);
++ errors += bruteforceItem(*attack, keytable);
++ }
++ free(attack);
++ clock_t t2 = clock();
++ float diff = (((float)t2 - (float)t1) / CLOCKS_PER_SEC );
++ prnlog("\nPerformed full crack in %f seconds",diff);
++
++ // Pick out the first 16 bytes of the keytable.
++ // The keytable is now in 16-bit ints, where the upper 8 bits
++ // indicate crack-status. Those must be discarded for the
++ // master key calculation
++ uint8_t first16bytes[16] = {0};
++
++ for(i = 0 ; i < 16 ; i++)
++ {
++ first16bytes[i] = keytable[i] & 0xFF;
++ if(!(keytable[i] & CRACKED))
++ {
++ prnlog("Error, we are missing byte %d, custom key calculation will fail...", i);
++ }
++ }
++ errors += calculateMasterKey(first16bytes, NULL);
++ return errors;
++}
++/**
++ * Perform a bruteforce against a file which has been saved by pm3
++ *
++ * @brief bruteforceFile
++ * @param filename
++ * @return
++ */
++int bruteforceFile(const char *filename, uint16_t keytable[])
++{
++
++ FILE *f = fopen(filename, "rb");
++ if(!f) {
++ prnlog("Failed to read from file '%s'", filename);
++ return 1;
++ }
++
++ fseek(f, 0, SEEK_END);
++ long fsize = ftell(f);
++ fseek(f, 0, SEEK_SET);
++
++ uint8_t *dump = malloc(fsize);
++ size_t bytes_read = fread(dump, fsize, 1, f);
++
++ fclose(f);
++ if (bytes_read < fsize)
++ {
++ prnlog("Error, could only read %d bytes (should be %d)",bytes_read, fsize );
++ }
++ return bruteforceDump(dump,fsize,keytable);
++}
++/**
++ *
++ * @brief Same as above, if you don't care about the returned keytable (results only printed on screen)
++ * @param filename
++ * @return
++ */
++int bruteforceFileNoKeys(const char *filename)
++{
++ uint16_t keytable[128] = {0};
++ return bruteforceFile(filename, keytable);
++}
++
++// ---------------------------------------------------------------------------------
++// ALL CODE BELOW THIS LINE IS PURELY TESTING
++// ---------------------------------------------------------------------------------
++// ----------------------------------------------------------------------------
++// TEST CODE BELOW
++// ----------------------------------------------------------------------------
++
++int _testBruteforce()
++{
++ int errors = 0;
++ if(true){
++ // First test
++ prnlog("[+] Testing crack from dumpfile...");
++
++ /**
++ Expected values for the dumpfile:
++ High Security Key Table
++
++ 00 F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1
++ 10 BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21
++ 20 14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2
++ 30 A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C
++ 40 78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6
++ 50 31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42
++ 60 3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95
++ 70 43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB
++
++ **** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 ****
++ **/
++ uint16_t keytable[128] = {0};
++ //save some time...
++ startvalue = 0x7B0000;
++ errors |= bruteforceFile("iclass_dump.bin",keytable);
++ }
++ return errors;
++}
++
++int _test_iclass_key_permutation()
++{
++ uint8_t testcase[8] = {0x6c,0x8d,0x44,0xf9,0x2a,0x2d,0x01,0xbf};
++ uint8_t testcase_output[8] = {0};
++ uint8_t testcase_output_correct[8] = {0x8a,0x0d,0xb9,0x88,0xbb,0xa7,0x90,0xea};
++ uint8_t testcase_output_rev[8] = {0};
++ permutekey(testcase, testcase_output);
++ permutekey_rev(testcase_output, testcase_output_rev);
++
++
++ if(memcmp(testcase_output, testcase_output_correct,8) != 0)
++ {
++ prnlog("Error with iclass key permute!");
++ printarr("testcase_output", testcase_output, 8);
++ printarr("testcase_output_correct", testcase_output_correct, 8);
++ return 1;
++
++ }
++ if(memcmp(testcase, testcase_output_rev, 8) != 0)
++ {
++ prnlog("Error with reverse iclass key permute");
++ printarr("testcase", testcase, 8);
++ printarr("testcase_output_rev", testcase_output_rev, 8);
++ return 1;
++ }
++
++ prnlog("[+] Iclass key permutation OK!");
++ return 0;
++}
++
++int testElite()
++{
++ prnlog("[+] Testing iClass Elite functinality...");
++ prnlog("[+] Testing key diversification ...");
++
++ int errors = 0 ;
++ errors +=_test_iclass_key_permutation();
++ errors += _testBruteforce();
++ return errors;
++
++}
++
--- /dev/null
--- /dev/null
++#ifndef ELITE_CRACK_H
++#define ELITE_CRACK_H
++void permutekey(uint8_t key[8], uint8_t dest[8]);
++/**
++ * Permutes a key from iclass specific format to NIST format
++ * @brief permutekey_rev
++ * @param key
++ * @param dest
++ */
++void permutekey_rev(uint8_t key[8], uint8_t dest[8]);
++//Crack status, see below
++#define CRACKED 0x0100
++#define BEING_CRACKED 0x0200
++#define CRACK_FAILED 0x0400
++
++/**
++ * Perform a bruteforce against a file which has been saved by pm3
++ *
++ * @brief bruteforceFile
++ * @param filename
++ * @param keytable an arrah (128 x 16 bit ints). This is where the keydata is stored.
++ * OBS! the upper part of the 16 bits store crack-status,
++ * @return
++ */
++int bruteforceFile(const char *filename, uint16_t keytable[]);
++/**
++ *
++ * @brief Same as above, if you don't care about the returned keytable (results only printed on screen)
++ * @param filename
++ * @return
++ */
++int bruteforceFileNoKeys(const char *filename);
++/**
++ * @brief Same as bruteforcefile, but uses a an array of dumpdata instead
++ * @param dump
++ * @param dumpsize
++ * @param keytable
++ * @return
++ */
++int bruteforceDump(uint8_t dump[], size_t dumpsize, uint16_t keytable[]);
++
++/**
++ This is how we expect each 'entry' in a dumpfile to look
++**/
++typedef struct {
++ uint8_t csn[8];
++ uint8_t cc_nr[12];
++ uint8_t mac[4];
++
++}dumpdata;
++
++/**
++ * @brief Performs brute force attack against a dump-data item, containing csn, cc_nr and mac.
++ *This method calculates the hash1 for the CSN, and determines what bytes need to be bruteforced
++ *on the fly. If it finds that more than three bytes need to be bruteforced, it aborts.
++ *It updates the keytable with the findings, also using the upper half of the 16-bit ints
++ *to signal if the particular byte has been cracked or not.
++ *
++ * @param dump The dumpdata from iclass reader attack.
++ * @param keytable where to write found values.
++ * @return
++ */
++int bruteforceItem(dumpdata item, uint16_t keytable[]);
++/**
++ * Hash1 takes CSN as input, and determines what bytes in the keytable will be used
++ * when constructing the K_sel.
++ * @param csn the CSN used
++ * @param k output
++ */
++void hash1(uint8_t csn[] , uint8_t k[]);
++
++/**
++ * From dismantling iclass-paper:
++ * Assume that an adversary somehow learns the first 16 bytes of hash2(K_cus ), i.e., y [0] and z [0] .
++ * Then he can simply recover the master custom key K_cus by computing
++ * K_cus = ~DES(z[0] , y[0] ) .
++ *
++ * Furthermore, the adversary is able to verify that he has the correct K cus by
++ * checking whether z [0] = DES enc (K_cus , ~K_cus ).
++ * @param keytable an array (128 bytes) of hash2(kcus)
++ * @param master_key where to put the master key
++ * @return 0 for ok, 1 for failz
++ */
++int calculateMasterKey(uint8_t first16bytes[], uint64_t master_key[] );
++
++/**
++ * @brief Test function
++ * @return
++ */
++int testElite();
++
++/**
++ Here are some pretty optimal values that can be used to recover necessary data in only
++ eight auth attempts.
++// CSN HASH1 Bytes recovered //
++{ {0x00,0x0B,0x0F,0xFF,0xF7,0xFF,0x12,0xE0} , {0x01,0x01,0x00,0x00,0x45,0x01,0x45,0x45 } ,{0,1 }},
++{ {0x00,0x13,0x94,0x7e,0x76,0xff,0x12,0xe0} , {0x02,0x0c,0x01,0x00,0x45,0x01,0x45,0x45} , {2,12}},
++{ {0x2a,0x99,0xac,0x79,0xec,0xff,0x12,0xe0} , {0x07,0x45,0x0b,0x00,0x45,0x01,0x45,0x45} , {7,11}},
++{ {0x17,0x12,0x01,0xfd,0xf7,0xff,0x12,0xe0} , {0x03,0x0f,0x00,0x00,0x45,0x01,0x45,0x45} , {3,15}},
++{ {0xcd,0x56,0x01,0x7c,0x6f,0xff,0x12,0xe0} , {0x04,0x00,0x08,0x00,0x45,0x01,0x45,0x45} , {4,8}},
++{ {0x4b,0x5e,0x0b,0x72,0xef,0xff,0x12,0xe0} , {0x0e,0x06,0x08,0x00,0x45,0x01,0x45,0x45} , {6,14}},
++{ {0x00,0x73,0xd8,0x75,0x58,0xff,0x12,0xe0} , {0x0b,0x09,0x0f,0x00,0x45,0x01,0x05,0x45} , {9,5}},
++{ {0x0c,0x90,0x32,0xf3,0x5d,0xff,0x12,0xe0} , {0x0d,0x0f,0x0a,0x00,0x45,0x01,0x05,0x45} , {10,13}},
++
++**/
++
++
++#endif
--- /dev/null
--- /dev/null
++#include <stdio.h>
++#include <string.h>
++#include <stdlib.h>
++#include <sys/stat.h>
++#include <stdarg.h>
++#include "fileutils.h"
++#include "ui.h"
++/**
++ * @brief checks if a file exists
++ * @param filename
++ * @return
++ */
++int fileExists(const char *filename) {
++ struct stat st;
++ int result = stat(filename, &st);
++ return result == 0;
++}
++
++int saveFile(const char *preferredName, const char *suffix, const void* data, size_t datalen)
++{
++ int size = sizeof(char) * (strlen(preferredName)+strlen(suffix)+5);
++ char * fileName = malloc(size);
++
++ memset(fileName,0,size);
++ int num = 1;
++ sprintf(fileName,"%s.%s", preferredName, suffix);
++ while(fileExists(fileName))
++ {
++ sprintf(fileName,"%s-%d.%s", preferredName, num, suffix);
++ num++;
++ }
++ /* We should have a valid filename now, e.g. dumpdata-3.bin */
++
++ /*Opening file for writing in binary mode*/
++ FILE *fileHandle=fopen(fileName,"wb");
++ if(!fileHandle) {
++ prnlog("Failed to write to file '%s'", fileName);
++ return 1;
++ }
++ fwrite(data, 1, datalen, fileHandle);
++ fclose(fileHandle);
++ prnlog("Saved data to '%s'", fileName);
++ free(fileName);
++
++ return 0;
++}
++
++/**
++ * Utility function to print to console. This is used consistently within the library instead
++ * of printf, but it actually only calls printf (and adds a linebreak).
++ * The reason to have this method is to
++ * make it simple to plug this library into proxmark, which has this function already to
++ * write also to a logfile. When doing so, just delete this function.
++ * @param fmt
++ */
++void prnlog(char *fmt, ...)
++{
++
++ va_list args;
++ va_start(args,fmt);
++ PrintAndLog(fmt, args);
++ //vprintf(fmt,args);
++ va_end(args);
++ //printf("\n");
++}
--- /dev/null
--- /dev/null
++#ifndef FILEUTILS_H
++#define FILEUTILS_H
++/**
++ * @brief Utility function to save data to a file. This method takes a preferred name, but if that
++ * file already exists, it tries with another name until it finds something suitable.
++ * E.g. dumpdata-15.txt
++ * @param preferredName
++ * @param suffix the file suffix. Leave out the ".".
++ * @param data The binary data to write to the file
++ * @param datalen the length of the data
++ * @return 0 for ok, 1 for failz
++ */
++int saveFile(const char *preferredName, const char *suffix, const void* data, size_t datalen);
++
++
++/**
++ * Utility function to print to console. This is used consistently within the library instead
++ * of printf, but it actually only calls printf. The reason to have this method is to
++ *make it simple to plug this library into proxmark, which has this function already to
++ * write also to a logfile. When doing so, just point this function to use PrintAndLog
++ * @param fmt
++ */
++void prnlog(char *fmt, ...);
++#endif // FILEUTILS_H
--- /dev/null
-#include "cipherutils.h"
-#include "cipher.h"
-#include "../util.h"
+ /*****************************************************************************
+ * This file is part of iClassCipher. It is a reconstructon of the cipher engine
+ * used in iClass, and RFID techology.
+ *
+ * The implementation is based on the work performed by
+ * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
+ * Milosch Meriac in the paper "Dismantling IClass".
+ *
++ * This is a reference implementation of iclass key diversification. I'm sure it can be
++ * optimized heavily. It is written for ease of understanding and correctness, please take it
++ * and tweak it and make a super fast version instead, using this for testing and verification.
++
+ * Copyright (C) 2014 Martin Holst Swende
+ *
+ * This is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation.
+ *
+ * This file is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with IClassCipher. If not, see <http://www.gnu.org/licenses/>.
+ ****************************************************************************/
+ /**
++
++
+ From "Dismantling iclass":
+ This section describes in detail the built-in key diversification algorithm of iClass.
+ Besides the obvious purpose of deriving a card key from a master key, this
+ algorithm intends to circumvent weaknesses in the cipher by preventing the
+ usage of certain ‘weak’ keys. In order to compute a diversified key, the iClass
+ reader first encrypts the card identity id with the master key K, using single
+ DES. The resulting ciphertext is then input to a function called hash0 which
+ outputs the diversified key k.
+
+ k = hash0(DES enc (id, K))
+
+ Here the DES encryption of id with master key K outputs a cryptogram c
+ of 64 bits. These 64 bits are divided as c = x, y, z [0] , . . . , z [7] ∈ F 82 × F 82 × (F 62 ) 8
+ which is used as input to the hash0 function. This function introduces some
+ obfuscation by performing a number of permutations, complement and modulo
+ operations, see Figure 2.5. Besides that, it checks for and removes patterns like
+ similar key bytes, which could produce a strong bias in the cipher. Finally, the
+ output of hash0 is the diversified card key k = k [0] , . . . , k [7] ∈ (F 82 ) 8 .
+
+
+ **/
+
+
+ #include <stdint.h>
+ #include <stdbool.h>
+ #include <string.h>
-#include "des.h"
+ #include <stdio.h>
-static bool debug_print = false;
+ #include <inttypes.h>
++#include "fileutils.h"
++#include "cipherutils.h"
++#include "des.h"
+
+ uint8_t pi[35] = {0x0F,0x17,0x1B,0x1D,0x1E,0x27,0x2B,0x2D,0x2E,0x33,0x35,0x39,0x36,0x3A,0x3C,0x47,0x4B,0x4D,0x4E,0x53,0x55,0x56,0x59,0x5A,0x5C,0x63,0x65,0x66,0x69,0x6A,0x6C,0x71,0x72,0x74,0x78};
+
+ static des_context ctx_enc = {DES_ENCRYPT,{0}};
+ static des_context ctx_dec = {DES_DECRYPT,{0}};
+
- //return (c >> n*6) & 0x3f;
++static int debug_print = 0;
+
+ /**
+ * @brief The key diversification algorithm uses 6-bit bytes.
+ * This implementation uses 64 bit uint to pack seven of them into one
+ * variable. When they are there, they are placed as follows:
+ * XXXX XXXX N0 .... N7, occupying the lsat 48 bits.
+ *
+ * This function picks out one from such a collection
+ * @param all
+ * @param n bitnumber
+ * @return
+ */
+ uint8_t getSixBitByte(uint64_t c, int n)
+ {
+ return (c >> (42-6*n)) & 0x3F;
-
+ }
+
+ /**
+ * @brief Puts back a six-bit 'byte' into a uint64_t.
+ * @param c buffer
+ * @param z the value to place there
+ * @param n bitnumber.
+ */
+ void pushbackSixBitByte(uint64_t *c, uint8_t z, int n)
+ {
+ //0x XXXX YYYY ZZZZ ZZZZ ZZZZ
+ // ^z0 ^z7
+ //z0: 1111 1100 0000 0000
+
+ uint64_t masked = z & 0x3F;
+ uint64_t eraser = 0x3F;
+ masked <<= 42-6*n;
+ eraser <<= 42-6*n;
+
+ //masked <<= 6*n;
+ //eraser <<= 6*n;
+
+ eraser = ~eraser;
+ (*c) &= eraser;
+ (*c) |= masked;
+
+ }
-// printf("ck( i=%d, j=%d), zi=[%d],zj=[%d] \n",i,j,getSixBitByte(z,i),getSixBitByte(z,j) );
-
++/**
++ * @brief Swaps the z-values.
++ * If the input value has format XYZ0Z1...Z7, the output will have the format
++ * XYZ7Z6...Z0 instead
++ * @param c
++ * @return
++ */
+ uint64_t swapZvalues(uint64_t c)
+ {
+ uint64_t newz = 0;
+ pushbackSixBitByte(&newz, getSixBitByte(c,0),7);
+ pushbackSixBitByte(&newz, getSixBitByte(c,1),6);
+ pushbackSixBitByte(&newz, getSixBitByte(c,2),5);
+ pushbackSixBitByte(&newz, getSixBitByte(c,3),4);
+ pushbackSixBitByte(&newz, getSixBitByte(c,4),3);
+ pushbackSixBitByte(&newz, getSixBitByte(c,5),2);
+ pushbackSixBitByte(&newz, getSixBitByte(c,6),1);
+ pushbackSixBitByte(&newz, getSixBitByte(c,7),0);
+ newz |= (c & 0xFFFF000000000000);
+ return newz;
+ }
+
+ /**
+ * @return 4 six-bit bytes chunked into a uint64_t,as 00..00a0a1a2a3
+ */
+ uint64_t ck(int i, int j, uint64_t z)
+ {
+
- // TODO, I dont know what they mean here in the paper
+ if(i == 1 && j == -1)
+ {
+ // ck(1, −1, z [0] . . . z [3] ) = z [0] . . . z [3]
+ return z;
+
+ }else if( j == -1)
+ {
+ // ck(i, −1, z [0] . . . z [3] ) = ck(i − 1, i − 2, z [0] . . . z [3] )
+ return ck(i-1,i-2, z);
+ }
+
+ if(getSixBitByte(z,i) == getSixBitByte(z,j))
+ {
- //printf("z[i]=z[i] (0x%02x), i=%d, j=%d\n",getSixBitByte(z,i),i,j );
++
+ //ck(i, j − 1, z [0] . . . z [i] ← j . . . z [3] )
+ uint64_t newz = 0;
+ int c;
- //printf("oops\n");
+ for(c = 0; c < 4 ;c++)
+ {
+ uint8_t val = getSixBitByte(z,c);
+ if(c == i)
+ {
-
+ pushbackSixBitByte(&newz, j, c);
+ }else
+ {
+ pushbackSixBitByte(&newz, val, c);
+ }
+ }
+ return ck(i,j-1,newz);
+ }else
+ {
+ return ck(i,j-1,z);
+ }
- //printf("permute pushing, zl=0x%02x, zl+1=0x%02x\n", zl, zl+1);
+ }
+ /**
+
+ Definition 8.
+ Let the function check : (F 62 ) 8 → (F 62 ) 8 be defined as
+ check(z [0] . . . z [7] ) = ck(3, 2, z [0] . . . z [3] ) · ck(3, 2, z [4] . . . z [7] )
+
+ where ck : N × N × (F 62 ) 4 → (F 62 ) 4 is defined as
+
+ ck(1, −1, z [0] . . . z [3] ) = z [0] . . . z [3]
+ ck(i, −1, z [0] . . . z [3] ) = ck(i − 1, i − 2, z [0] . . . z [3] )
+ ck(i, j, z [0] . . . z [3] ) =
+ ck(i, j − 1, z [0] . . . z [i] ← j . . . z [3] ), if z [i] = z [j] ;
+ ck(i, j − 1, z [0] . . . z [3] ), otherwise
+
+ otherwise.
+ **/
+
+ uint64_t check(uint64_t z)
+ {
+ //These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
+
+ // ck(3, 2, z [0] . . . z [3] )
+ uint64_t ck1 = ck(3,2, z );
+
+ // ck(3, 2, z [4] . . . z [7] )
+ uint64_t ck2 = ck(3,2, z << 24);
++
++ //The ck function will place the values
++ // in the middle of z.
+ ck1 &= 0x00000000FFFFFF000000;
+ ck2 &= 0x00000000FFFFFF000000;
+
+ return ck1 | ck2 >> 24;
+
+ }
+
+ void permute(BitstreamIn *p_in, uint64_t z,int l,int r, BitstreamOut* out)
+ {
+ if(bitsLeft(p_in) == 0)
+ {
+ return;
+ }
+ bool pn = tailBit(p_in);
+ if( pn ) // pn = 1
+ {
+ uint8_t zl = getSixBitByte(z,l);
- //printf("permute pushing, zr=0x%02x\n", zr);
++
+ push6bits(out, zl+1);
+ permute(p_in, z, l+1,r, out);
+ }else // otherwise
+ {
+ uint8_t zr = getSixBitByte(z,r);
-void testPermute()
-{
-
- uint64_t x = 0;
- pushbackSixBitByte(&x,0x00,0);
- pushbackSixBitByte(&x,0x01,1);
- pushbackSixBitByte(&x,0x02,2);
- pushbackSixBitByte(&x,0x03,3);
- pushbackSixBitByte(&x,0x04,4);
- pushbackSixBitByte(&x,0x05,5);
- pushbackSixBitByte(&x,0x06,6);
- pushbackSixBitByte(&x,0x07,7);
-
- uint8_t mres[8] = { getSixBitByte(x, 0),
- getSixBitByte(x, 1),
- getSixBitByte(x, 2),
- getSixBitByte(x, 3),
- getSixBitByte(x, 4),
- getSixBitByte(x, 5),
- getSixBitByte(x, 6),
- getSixBitByte(x, 7)};
- printarr("input_perm", mres,8);
-
- uint8_t p = ~pi[0];
- BitstreamIn p_in = { &p, 8,0 };
- uint8_t outbuffer[] = {0,0,0,0,0,0,0,0};
- BitstreamOut out = {outbuffer,0,0};
-
- permute(&p_in, x,0,4, &out);
-
- uint64_t permuted = bytes_to_num(outbuffer,8);
- //printf("zTilde 0x%"PRIX64"\n", zTilde);
- permuted >>= 16;
-
- uint8_t res[8] = { getSixBitByte(permuted, 0),
- getSixBitByte(permuted, 1),
- getSixBitByte(permuted, 2),
- getSixBitByte(permuted, 3),
- getSixBitByte(permuted, 4),
- getSixBitByte(permuted, 5),
- getSixBitByte(permuted, 6),
- getSixBitByte(permuted, 7)};
- printarr("permuted", res, 8);
-}
++
+ push6bits(out, zr);
+ permute(p_in,z,l,r+1,out);
+ }
+ }
- if(! debug_print)
- return;
+ void printbegin()
+ {
- printf(" | x| y|z0|z1|z2|z3|z4|z5|z6|z7|\n");
++ if(debug_print <2)
++ return ;
+
-void printState(char* desc, int x,int y, uint64_t c)
++ prnlog(" | x| y|z0|z1|z2|z3|z4|z5|z6|z7|");
+ }
+
- if(! debug_print)
- return;
++void printState(char* desc, uint64_t c)
+ {
- //uint8_t x = (c & 0xFF00000000000000 ) >> 56;
- //uint8_t y = (c & 0x00FF000000000000 ) >> 48;
++ if(debug_print < 2)
++ return ;
+
+ printf("%s : ", desc);
-void hash0(uint64_t c, uint8_t *k)
++ uint8_t x = (c & 0xFF00000000000000 ) >> 56;
++ uint8_t y = (c & 0x00FF000000000000 ) >> 48;
+ printf(" %02x %02x", x,y);
+ int i ;
+ for(i =0 ; i < 8 ; i++)
+ {
+ printf(" %02x", getSixBitByte(c,i));
+ }
+ printf("\n");
+ }
+
+ /**
+ * @brief
+ *Definition 11. Let the function hash0 : F 82 × F 82 × (F 62 ) 8 → (F 82 ) 8 be defined as
+ * hash0(x, y, z [0] . . . z [7] ) = k [0] . . . k [7] where
+ * z'[i] = (z[i] mod (63-i)) + i i = 0...3
+ * z'[i+4] = (z[i+4] mod (64-i)) + i i = 0...3
+ * ẑ = check(z');
+ * @param c
+ * @param k this is where the diversified key is put (should be 8 bytes)
+ * @return
+ */
- printState("origin",x,y,c);
++void hash0(uint64_t c, uint8_t k[8])
+ {
++ c = swapZvalues(c);
++
+ printbegin();
++ printState("origin",c);
+ //These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
+ // x = 8 bits
+ // y = 8 bits
+ // z0-z7 6 bits each : 48 bits
+ uint8_t x = (c & 0xFF00000000000000 ) >> 56;
+ uint8_t y = (c & 0x00FF000000000000 ) >> 48;
- printState("x|y|z'",x,y,zP);
+ int n;
+ uint8_t zn, zn4, _zn, _zn4;
+ uint64_t zP = 0;
+
+ for(n = 0; n < 4 ; n++)
+ {
+ zn = getSixBitByte(c,n);
++
+ zn4 = getSixBitByte(c,n+4);
+
+ _zn = (zn % (63-n)) + n;
+ _zn4 = (zn4 % (64-n)) + n;
+
++
+ pushbackSixBitByte(&zP, _zn,n);
+ pushbackSixBitByte(&zP, _zn4,n+4);
+
+ }
- printState("x|y|z^",x,y,zP);
++ printState("0|0|z'",zP);
+
+ uint64_t zCaret = check(zP);
- printState("p|y|z^",p,y,zP);
- //if(debug_print) printf("p:%02x\n", p);
++ printState("0|0|z^",zP);
+
+
+ uint8_t p = pi[x % 35];
+
+ if(x & 1) //Check if x7 is 1
+ {
+ p = ~p;
+ }
- //printf("Permute output is %d num bits (48?)\n", out.numbits);
++
++ if(debug_print >= 2) prnlog("p:%02x", p);
+
+ BitstreamIn p_in = { &p, 8,0 };
+ uint8_t outbuffer[] = {0,0,0,0,0,0,0,0};
+ BitstreamOut out = {outbuffer,0,0};
+ permute(&p_in,zCaret,0,4,&out);//returns 48 bits? or 6 8-bytes
+
+ //Out is now a buffer containing six-bit bytes, should be 48 bits
+ // if all went well
- uint64_t zTilde = bytes_to_num(outbuffer,8);
+ //Shift z-values down onto the lower segment
+
- //printf("zTilde 0x%"PRIX64"\n", zTilde);
++ uint64_t zTilde = x_bytes_to_num(outbuffer,8);
+
- //printf("z~ 0x%"PRIX64"\n", zTilde);
- printState("p|y|z~", p,y,zTilde);
+ zTilde >>= 16;
- //printf("y%d = %d\n",i,(y << i) & 0x80);
++
++ printState("0|0|z~", zTilde);
+
+ int i;
+ int zerocounter =0 ;
+ for(i =0 ; i < 8 ; i++)
+ {
+
+ // the key on index i is first a bit from y
+ // then six bits from z,
+ // then a bit from p
+
+ // Init with zeroes
+ k[i] = 0;
+ // First, place yi leftmost in k
+ //k[i] |= (y << i) & 0x80 ;
+
+ // First, place y(7-i) leftmost in k
+ k[i] |= (y << (7-i)) & 0x80 ;
+
- //printf("zTilde_%d 0x%02x (should be <= 0x3F)\n",i, zTilde_i);
++
+
+ uint8_t zTilde_i = getSixBitByte(zTilde, i);
- //printf("zerocounter=%d (should be 4)\n",zerocounter);
- //printf("permute fin, y:0x%02x, x: 0x%02x\n", y, x);
+ // zTildeI is now on the form 00XXXXXX
+ // with one leftshift, it'll be
+ // 0XXXXXX0
+ // So after leftshift, we can OR it into k
+ // However, when doing complement, we need to
+ // again MASK 0XXXXXX0 (0x7E)
+ zTilde_i <<= 1;
+
+ //Finally, add bit from p or p-mod
+ //Shift bit i into rightmost location (mask only after complement)
+ uint8_t p_i = p >> i & 0x1;
+
+ if( k[i] )// yi = 1
+ {
+ //printf("k[%d] +1\n", i);
+ k[i] |= ~zTilde_i & 0x7E;
+ k[i] |= p_i & 1;
+ k[i] += 1;
+
+ }else // otherwise
+ {
+ k[i] |= zTilde_i & 0x7E;
+ k[i] |= (~p_i) & 1;
+ }
+ if((k[i] & 1 )== 0)
+ {
+ zerocounter ++;
+ }
+ }
- //return k;
++}
++/**
++ * @brief Performs Elite-class key diversification
++ * @param csn
++ * @param key
++ * @param div_key
++ */
++void diversifyKey(uint8_t csn[8], uint8_t key[8], uint8_t div_key[8])
++{
++
++ // Prepare the DES key
++ des_setkey_enc( &ctx_enc, key);
++
++ uint8_t crypted_csn[8] = {0};
+
-void reorder(uint8_t arr[8])
++ // Calculate DES(CSN, KEY)
++ des_crypt_ecb(&ctx_enc,csn, crypted_csn);
++
++ //Calculate HASH0(DES))
++ uint64_t crypt_csn = x_bytes_to_num(crypted_csn, 8);
++ //uint64_t crypted_csn_swapped = swapZvalues(crypt_csn);
++
++ hash0(crypt_csn,div_key);
+ }
+
- uint8_t tmp[4] = {arr[3],arr[2],arr[1], arr[0]};
- arr[0] = arr[7];
- arr[1] = arr[6];
- arr[2] = arr[5];
- arr[3] = arr[4];
- arr[4] = tmp[0];//arr[3];
- arr[5] = tmp[1];//arr[2];
- arr[6] = tmp[2];//arr[3];
- arr[7] = tmp[3];//arr[1]
++
++
++
++
++void testPermute()
+ {
-//extern void printarr(char * name, uint8_t* arr, int len);
++
++ uint64_t x = 0;
++ pushbackSixBitByte(&x,0x00,0);
++ pushbackSixBitByte(&x,0x01,1);
++ pushbackSixBitByte(&x,0x02,2);
++ pushbackSixBitByte(&x,0x03,3);
++ pushbackSixBitByte(&x,0x04,4);
++ pushbackSixBitByte(&x,0x05,5);
++ pushbackSixBitByte(&x,0x06,6);
++ pushbackSixBitByte(&x,0x07,7);
++
++ uint8_t mres[8] = { getSixBitByte(x, 0),
++ getSixBitByte(x, 1),
++ getSixBitByte(x, 2),
++ getSixBitByte(x, 3),
++ getSixBitByte(x, 4),
++ getSixBitByte(x, 5),
++ getSixBitByte(x, 6),
++ getSixBitByte(x, 7)};
++ printarr("input_perm", mres,8);
++
++ uint8_t p = ~pi[0];
++ BitstreamIn p_in = { &p, 8,0 };
++ uint8_t outbuffer[] = {0,0,0,0,0,0,0,0};
++ BitstreamOut out = {outbuffer,0,0};
++
++ permute(&p_in, x,0,4, &out);
++
++ uint64_t permuted = x_bytes_to_num(outbuffer,8);
++ //printf("zTilde 0x%"PRIX64"\n", zTilde);
++ permuted >>= 16;
++
++ uint8_t res[8] = { getSixBitByte(permuted, 0),
++ getSixBitByte(permuted, 1),
++ getSixBitByte(permuted, 2),
++ getSixBitByte(permuted, 3),
++ getSixBitByte(permuted, 4),
++ getSixBitByte(permuted, 5),
++ getSixBitByte(permuted, 6),
++ getSixBitByte(permuted, 7)};
++ printarr("permuted", res, 8);
+ }
+
- printf("parity1 fail, byte %d [%02x] was %d, should be %d\n",i,key[i],(key[i] & 0x1),parity);
++//These testcases are
++//{ UID , TEMP_KEY, DIV_KEY} using the specific key
++typedef struct
++{
++ uint8_t uid[8];
++ uint8_t t_key[8];
++ uint8_t div_key[8];
++} Testcase;
++
++
++int testDES(Testcase testcase, des_context ctx_enc, des_context ctx_dec)
++{
++ uint8_t des_encrypted_csn[8] = {0};
++ uint8_t decrypted[8] = {0};
++ uint8_t div_key[8] = {0};
++ int retval = des_crypt_ecb(&ctx_enc,testcase.uid,des_encrypted_csn);
++ retval |= des_crypt_ecb(&ctx_dec,des_encrypted_csn,decrypted);
++
++ if(memcmp(testcase.uid,decrypted,8) != 0)
++ {
++ //Decryption fail
++ prnlog("Encryption <-> Decryption FAIL");
++ printarr("Input", testcase.uid, 8);
++ printarr("Decrypted", decrypted, 8);
++ retval = 1;
++ }
++
++ if(memcmp(des_encrypted_csn,testcase.t_key,8) != 0)
++ {
++ //Encryption fail
++ prnlog("Encryption != Expected result");
++ printarr("Output", des_encrypted_csn, 8);
++ printarr("Expected", testcase.t_key, 8);
++ retval = 1;
++ }
++ uint64_t crypted_csn = x_bytes_to_num(des_encrypted_csn,8);
++ hash0(crypted_csn, div_key);
+
++ if(memcmp(div_key, testcase.div_key ,8) != 0)
++ {
++ //Key diversification fail
++ prnlog("Div key != expected result");
++ printarr(" csn ", testcase.uid,8);
++ printarr("{csn} ", des_encrypted_csn,8);
++ printarr("hash0 ", div_key, 8);
++ printarr("Expected", testcase.div_key, 8);
++ retval = 1;
++
++ }
++ return retval;
++}
+ bool des_getParityBitFromKey(uint8_t key)
+ {//The top 7 bits is used
+ bool parity = ((key & 0x80) >> 7)
+ ^ ((key & 0x40) >> 6) ^ ((key & 0x20) >> 5)
+ ^ ((key & 0x10) >> 4) ^ ((key & 0x08) >> 3)
+ ^ ((key & 0x04) >> 2) ^ ((key & 0x02) >> 1);
+ return !parity;
+ }
++
++
+ void des_checkParity(uint8_t* key)
+ {
+ int i;
+ int fails =0;
+ for(i =0 ; i < 8 ; i++)
+ {
+ bool parity = des_getParityBitFromKey(key[i]);
+ if(parity != (key[i] & 0x1))
+ {
+ fails++;
- printf("parity fails: %d\n", fails);
++ prnlog("[+] parity1 fail, byte %d [%02x] was %d, should be %d",i,key[i],(key[i] & 0x1),parity);
+ }
+ }
+ if(fails)
+ {
- printf("Key syntax is with parity bits inside each byte\n");
++ prnlog("[+] parity fails: %d", fails);
+ }else
+ {
-void printarr2(char * name, uint8_t* arr, int len)
++ prnlog("[+] Key syntax is with parity bits inside each byte");
+ }
+ }
+
- int i ;
- printf("%s :", name);
- for(i =0 ; i< len ; i++)
++Testcase testcases[] ={
++
++ {{0x8B,0xAC,0x60,0x1F,0x53,0xB8,0xED,0x11},{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x05,0x07}},
++ {{0xAE,0x51,0xE5,0x62,0xE7,0x9A,0x99,0x39},{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01},{0x04,0x02,0x06,0x08,0x01,0x03,0x05,0x07}},
++ {{0x9B,0x21,0xE4,0x31,0x6A,0x00,0x29,0x62},{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x02},{0x06,0x04,0x02,0x08,0x01,0x03,0x05,0x07}},
++ {{0x65,0x24,0x0C,0x41,0x4F,0xC2,0x21,0x93},{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x04},{0x0A,0x04,0x06,0x08,0x01,0x03,0x05,0x07}},
++ {{0x7F,0xEB,0xAE,0x93,0xE5,0x30,0x08,0xBD},{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08},{0x12,0x04,0x06,0x08,0x01,0x03,0x05,0x07}},
++ {{0x49,0x7B,0x70,0x74,0x9B,0x35,0x1B,0x83},{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x10},{0x22,0x04,0x06,0x08,0x01,0x03,0x05,0x07}},
++ {{0x02,0x3C,0x15,0x6B,0xED,0xA5,0x64,0x6C},{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20},{0x42,0x04,0x06,0x08,0x01,0x03,0x05,0x07}},
++ {{0xE8,0x37,0xE0,0xE2,0xC6,0x45,0x24,0xF3},{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x40},{0x02,0x06,0x04,0x08,0x01,0x03,0x05,0x07}},
++ {{0xAB,0xBD,0x30,0x05,0x29,0xC8,0xF7,0x12},{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80},{0x02,0x08,0x06,0x04,0x01,0x03,0x05,0x07}},
++ {{0x17,0xE8,0x97,0xF0,0x99,0xB6,0x79,0x31},{0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00},{0x02,0x0C,0x06,0x08,0x01,0x03,0x05,0x07}},
++ {{0x49,0xA4,0xF0,0x8F,0x5F,0x96,0x83,0x16},{0x00,0x00,0x00,0x00,0x00,0x00,0x02,0x00},{0x02,0x14,0x06,0x08,0x01,0x03,0x05,0x07}},
++ {{0x60,0xF5,0x7E,0x54,0xAA,0x41,0x83,0xD4},{0x00,0x00,0x00,0x00,0x00,0x00,0x04,0x00},{0x02,0x24,0x06,0x08,0x01,0x03,0x05,0x07}},
++ {{0x1D,0xF6,0x3B,0x6B,0x85,0x55,0xF0,0x4B},{0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00},{0x02,0x44,0x06,0x08,0x01,0x03,0x05,0x07}},
++ {{0x1F,0xDC,0x95,0x1A,0xEA,0x6B,0x4B,0xB4},{0x00,0x00,0x00,0x00,0x00,0x00,0x10,0x00},{0x02,0x04,0x08,0x06,0x01,0x03,0x05,0x07}},
++ {{0xEC,0x93,0x72,0xF0,0x3B,0xA9,0xF5,0x0B},{0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x00},{0x02,0x04,0x0A,0x08,0x01,0x03,0x05,0x07}},
++ {{0xDE,0x57,0x5C,0xBE,0x2D,0x55,0x03,0x12},{0x00,0x00,0x00,0x00,0x00,0x00,0x40,0x00},{0x02,0x04,0x0E,0x08,0x01,0x03,0x05,0x07}},
++ {{0x1E,0xD2,0xB5,0xCE,0x90,0xC9,0xC1,0xCC},{0x00,0x00,0x00,0x00,0x00,0x00,0x80,0x00},{0x02,0x04,0x16,0x08,0x01,0x03,0x05,0x07}},
++ {{0xD8,0x65,0x96,0x4E,0xE7,0x74,0x99,0xB8},{0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00},{0x02,0x04,0x26,0x08,0x01,0x03,0x05,0x07}},
++ {{0xE3,0x7A,0x29,0x83,0x31,0xD5,0x3A,0x54},{0x00,0x00,0x00,0x00,0x00,0x02,0x00,0x00},{0x02,0x04,0x46,0x08,0x01,0x03,0x05,0x07}},
++ {{0x3A,0xB5,0x1A,0x34,0x34,0x25,0x12,0xF0},{0x00,0x00,0x00,0x00,0x00,0x04,0x00,0x00},{0x02,0x04,0x06,0x0A,0x01,0x03,0x05,0x07}},
++ {{0xF2,0x88,0xEE,0x6F,0x70,0x6F,0xC2,0x52},{0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x00},{0x02,0x04,0x06,0x0C,0x01,0x03,0x05,0x07}},
++ {{0x76,0xEF,0xEB,0x80,0x52,0x43,0x83,0x57},{0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x00},{0x02,0x04,0x06,0x10,0x01,0x03,0x05,0x07}},
++ {{0x1C,0x09,0x8E,0x3B,0x23,0x23,0x52,0xB5},{0x00,0x00,0x00,0x00,0x00,0x20,0x00,0x00},{0x02,0x04,0x06,0x18,0x01,0x03,0x05,0x07}},
++ {{0xA9,0x13,0xA2,0xBE,0xCF,0x1A,0xC4,0x9A},{0x00,0x00,0x00,0x00,0x00,0x40,0x00,0x00},{0x02,0x04,0x06,0x28,0x01,0x03,0x05,0x07}},
++ {{0x25,0x56,0x4B,0xB0,0xC8,0x2A,0xD4,0x27},{0x00,0x00,0x00,0x00,0x00,0x80,0x00,0x00},{0x02,0x04,0x06,0x48,0x01,0x03,0x05,0x07}},
++ {{0xB1,0x04,0x57,0x3F,0xA7,0x16,0x62,0xD4},{0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x03,0x01,0x05,0x07}},
++ {{0x45,0x46,0xED,0xCC,0xE7,0xD3,0x8E,0xA3},{0x00,0x00,0x00,0x00,0x02,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x05,0x03,0x01,0x07}},
++ {{0x22,0x6D,0xB5,0x35,0xE0,0x5A,0xE0,0x90},{0x00,0x00,0x00,0x00,0x04,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x09,0x03,0x05,0x07}},
++ {{0xB8,0xF5,0xE5,0x44,0xC5,0x98,0x4A,0xBD},{0x00,0x00,0x00,0x00,0x08,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x11,0x03,0x05,0x07}},
++ {{0xAC,0x78,0x0A,0x23,0x9E,0xF6,0xBC,0xA0},{0x00,0x00,0x00,0x00,0x10,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x21,0x03,0x05,0x07}},
++ {{0x46,0x6B,0x2D,0x70,0x41,0x17,0xBF,0x3D},{0x00,0x00,0x00,0x00,0x20,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x41,0x03,0x05,0x07}},
++ {{0x64,0x44,0x24,0x71,0xA2,0x56,0xDF,0xB5},{0x00,0x00,0x00,0x00,0x40,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x05,0x03,0x07}},
++ {{0xC4,0x00,0x52,0x24,0xA2,0xD6,0x16,0x7A},{0x00,0x00,0x00,0x00,0x80,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x07,0x05,0x03}},
++ {{0xD8,0x4A,0x80,0x1E,0x95,0x5B,0x70,0xC4},{0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x0B,0x05,0x07}},
++ {{0x08,0x56,0x6E,0xB5,0x64,0xD6,0x47,0x4E},{0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x13,0x05,0x07}},
++ {{0x41,0x6F,0xBA,0xA4,0xEB,0xAE,0xA0,0x55},{0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x23,0x05,0x07}},
++ {{0x62,0x9D,0xDE,0x72,0x84,0x4A,0x53,0xD5},{0x00,0x00,0x00,0x08,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x43,0x05,0x07}},
++ {{0x39,0xD3,0x2B,0x66,0xB8,0x08,0x40,0x2E},{0x00,0x00,0x00,0x10,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x07,0x05}},
++ {{0xAF,0x67,0xA9,0x18,0x57,0x21,0xAF,0x8D},{0x00,0x00,0x00,0x20,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x09,0x07}},
++ {{0x34,0xBC,0x9D,0xBC,0xC4,0xC2,0x3B,0xC8},{0x00,0x00,0x00,0x40,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x0D,0x07}},
++ {{0xB6,0x50,0xF9,0x81,0xF6,0xBF,0x90,0x3C},{0x00,0x00,0x00,0x80,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x15,0x07}},
++ {{0x71,0x41,0x93,0xA1,0x59,0x81,0xA5,0x52},{0x00,0x00,0x01,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x25,0x07}},
++ {{0x6B,0x00,0xBD,0x74,0x1C,0x3C,0xE0,0x1A},{0x00,0x00,0x02,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x45,0x07}},
++ {{0x76,0xFD,0x0B,0xD0,0x41,0xD2,0x82,0x5D},{0x00,0x00,0x04,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x05,0x09}},
++ {{0xC6,0x3A,0x1C,0x25,0x63,0x5A,0x2F,0x0E},{0x00,0x00,0x08,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x05,0x0B}},
++ {{0xD9,0x0E,0xD7,0x30,0xE2,0xAD,0xA9,0x87},{0x00,0x00,0x10,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x05,0x0F}},
++ {{0x6B,0x81,0xC6,0xD1,0x05,0x09,0x87,0x1E},{0x00,0x00,0x20,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x05,0x17}},
++ {{0xB4,0xA7,0x1E,0x02,0x54,0x37,0x43,0x35},{0x00,0x00,0x40,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x05,0x27}},
++ {{0x45,0x14,0x7C,0x7F,0xE0,0xDE,0x09,0x65},{0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x05,0x47}},
++ {{0x78,0xB0,0xF5,0x20,0x8B,0x7D,0xF3,0xDD},{0x00,0x01,0x00,0x00,0x00,0x00,0x00,0x00},{0xFE,0x04,0x06,0x08,0x01,0x03,0x05,0x07}},
++ {{0x88,0xB3,0x3C,0xE1,0xF7,0x87,0x42,0xA1},{0x00,0x02,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0xFC,0x06,0x08,0x01,0x03,0x05,0x07}},
++ {{0x11,0x2F,0xB2,0xF7,0xE2,0xB2,0x4F,0x6E},{0x00,0x04,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0xFA,0x08,0x01,0x03,0x05,0x07}},
++ {{0x25,0x56,0x4E,0xC6,0xEB,0x2D,0x74,0x5B},{0x00,0x08,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0xF8,0x01,0x03,0x05,0x07}},
++ {{0x7E,0x98,0x37,0xF9,0x80,0x8F,0x09,0x82},{0x00,0x10,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0xFF,0x03,0x05,0x07}},
++ {{0xF9,0xB5,0x62,0x3B,0xD8,0x7B,0x3C,0x3F},{0x00,0x20,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0xFD,0x05,0x07}},
++ {{0x29,0xC5,0x2B,0xFA,0xD1,0xFC,0x5C,0xC7},{0x00,0x40,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0xFB,0x07}},
++ {{0xC1,0xA3,0x09,0x71,0xBD,0x8E,0xAF,0x2F},{0x00,0x80,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x06,0x08,0x01,0x03,0x05,0xF9}},
++ {{0xB6,0xDD,0xD1,0xAD,0xAA,0x15,0x6F,0x29},{0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00},{0x01,0x03,0x05,0x02,0x07,0x04,0x06,0x08}},
++ {{0x65,0x34,0x03,0x19,0x17,0xB3,0xA3,0x96},{0x02,0x00,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x01,0x06,0x08,0x03,0x05,0x07}},
++ {{0xF9,0x38,0x43,0x56,0x52,0xE5,0xB1,0xA9},{0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00},{0x01,0x02,0x04,0x06,0x08,0x03,0x05,0x07}},
++
++ {{0xA4,0xA0,0xAF,0xDA,0x48,0xB0,0xA1,0x10},{0x08,0x00,0x00,0x00,0x00,0x00,0x00,0x00},{0x01,0x02,0x04,0x06,0x03,0x08,0x05,0x07}},
++ {{0x55,0x15,0x8A,0x0D,0x48,0x29,0x01,0xD8},{0x10,0x00,0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x04,0x01,0x06,0x03,0x05,0x08,0x07}},
++ {{0xC4,0x81,0x96,0x7D,0xA3,0xB7,0x73,0x50},{0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00},{0x01,0x02,0x03,0x05,0x04,0x06,0x08,0x07}},
++ {{0x36,0x73,0xDF,0xC1,0x1B,0x98,0xA8,0x1D},{0x40,0x00,0x00,0x00,0x00,0x00,0x00,0x00},{0x01,0x02,0x03,0x04,0x05,0x06,0x08,0x07}},
++ {{0xCE,0xE0,0xB3,0x1B,0x41,0xEB,0x15,0x12},{0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00},{0x01,0x02,0x03,0x04,0x06,0x05,0x08,0x07}},
++ {{0},{0},{0}}
++};
++
++
++int testKeyDiversificationWithMasterkeyTestcases()
+ {
- printf("%02x",*(arr+i));
++
++ int error = 0;
++ int i;
++
++ uint8_t empty[8]={0};
++ prnlog("[+} Testing encryption/decryption");
++
++ for (i = 0; memcmp(testcases+i,empty,8) ; i++) {
++ error += testDES(testcases[i],ctx_enc, ctx_dec);
++ }
++ if(error)
+ {
- printf("\n");
++ prnlog("[+] %d errors occurred (%d testcases)", error, i);
++ }else
++ {
++ prnlog("[+] Hashing seems to work (%d testcases)", i);
+ }
++ return error;
++}
++
++
++void print64bits(char*name, uint64_t val)
++{
++ printf("%s%08x%08x\n",name,(uint32_t) (val >> 32) ,(uint32_t) (val & 0xFFFFFFFF));
++}
++
++uint64_t testCryptedCSN(uint64_t crypted_csn, uint64_t expected)
++{
++ int retval = 0;
++ uint8_t result[8] = {0};
++ if(debug_print) prnlog("debug_print %d", debug_print);
++ if(debug_print) print64bits(" {csn} ", crypted_csn );
++
++ uint64_t crypted_csn_swapped = swapZvalues(crypted_csn);
++
++ if(debug_print) print64bits(" {csn-revz} ", crypted_csn_swapped);
++
++ hash0(crypted_csn, result);
++ uint64_t resultbyte = x_bytes_to_num(result,8 );
++ if(debug_print) print64bits(" hash0 " , resultbyte );
++
++ if(resultbyte != expected )
++ {
++
++ if(debug_print) {
++ prnlog("\n[+] FAIL!");
++ print64bits(" expected " , expected );
++ }
++ retval = 1;
++
++ }else
++ {
++ if(debug_print) prnlog(" [OK]");
++ }
++ return retval;
++}
++
++int testDES2(uint64_t csn, uint64_t expected)
++{
++ uint8_t result[8] = {0};
++ uint8_t input[8] = {0};
++
++ print64bits(" csn ", csn);
++ x_num_to_bytes(csn, 8,input);
++
++ des_crypt_ecb(&ctx_enc,input, result);
++
++ uint64_t crypt_csn = x_bytes_to_num(result, 8);
++ print64bits(" {csn} ", crypt_csn );
++ print64bits(" expected ", expected );
++
++ if( expected == crypt_csn )
++ {
++ prnlog("[+] OK");
++ return 0;
++ }else
++ {
++ return 1;
++ }
++}
++
++/**
++ * These testcases come from http://www.proxmark.org/forum/viewtopic.php?pid=10977#p10977
++ * @brief doTestsWithKnownInputs
++ * @return
++ */
++int doTestsWithKnownInputs()
++{
++
++ // KSel from http://www.proxmark.org/forum/viewtopic.php?pid=10977#p10977
++ int errors = 0;
++ prnlog("[+] Testing DES encryption");
++// uint8_t key[8] = {0x6c,0x8d,0x44,0xf9,0x2a,0x2d,0x01,0xbf};
++ prnlog("[+] Testing foo");
++ uint8_t key[8] = {0x6c,0x8d,0x44,0xf9,0x2a,0x2d,0x01,0xbf};
++
++ des_setkey_enc( &ctx_enc, key);
++ testDES2(0xbbbbaaaabbbbeeee,0xd6ad3ca619659e6b);
++
++ prnlog("[+] Testing hashing algorithm");
++
++ errors += testCryptedCSN(0x0102030405060708,0x0bdd6512073c460a);
++ errors += testCryptedCSN(0x1020304050607080,0x0208211405f3381f);
++ errors += testCryptedCSN(0x1122334455667788,0x2bee256d40ac1f3a);
++ errors += testCryptedCSN(0xabcdabcdabcdabcd,0xa91c9ec66f7da592);
++ errors += testCryptedCSN(0xbcdabcdabcdabcda,0x79ca5796a474e19b);
++ errors += testCryptedCSN(0xcdabcdabcdabcdab,0xa8901b9f7ec76da4);
++ errors += testCryptedCSN(0xdabcdabcdabcdabc,0x357aa8e0979a5b8d);
++ errors += testCryptedCSN(0x21ba6565071f9299,0x34e80f88d5cf39ea);
++ errors += testCryptedCSN(0x14e2adfc5bb7e134,0x6ac90c6508bd9ea3);
++
++ if(errors)
++ {
++ prnlog("[+] %d errors occurred (9 testcases)", errors);
++ }else
++ {
++ prnlog("[+] Hashing seems to work (9 testcases)" );
++ }
++ return errors;
++}
++
++int readKeyFile(uint8_t key[8])
++{
++
++ FILE *f;
++
++ f = fopen("iclass_key.bin", "rb");
++ if (f)
++ {
++ if(fread(key, sizeof(key), 1, f) == 1) return 0;
++ }
++ return 1;
++
++}
++
++
++int doKeyTests(uint8_t debuglevel)
++{
++ debug_print = debuglevel;
++
++ prnlog("[+] Checking if the master key is present (iclass_key.bin)...");
++ uint8_t key[8] = {0};
++ if(readKeyFile(key))
++ {
++ prnlog("[+] Master key not present, will not be able to do all testcases");
++ }else
++ {
++
++ //Test if it's the right key...
++ uint8_t i;
++ uint8_t j = 0;
++ for(i =0 ; i < sizeof(key) ; i++)
++ j += key[i];
++
++ if(j != 185)
++ {
++ prnlog("[+] A key was loaded, but it does not seem to be the correct one. Aborting these tests");
++ }else
++ {
++ prnlog("[+] Key present");
++
++ prnlog("[+] Checking key parity...");
++ des_checkParity(key);
++ des_setkey_enc( &ctx_enc, key);
++ des_setkey_dec( &ctx_dec, key);
++ // Test hashing functions
++ prnlog("[+] The following tests require the correct 8-byte master key");
++ testKeyDiversificationWithMasterkeyTestcases();
++ }
++ }
++ prnlog("[+] Testing key diversification with non-sensitive keys...");
++ doTestsWithKnownInputs();
++ return 0;
+ }
++
++/**
++
++void checkParity2(uint8_t* key)
++{
++
++ uint8_t stored_parity = key[7];
++ printf("Parity byte: 0x%02x\n", stored_parity);
++ int i;
++ int byte;
++ int fails =0;
++ BitstreamIn bits = {key, 56, 0};
++
++ bool parity = 0;
++
++ for(i =0 ; i < 56; i++)
++ {
++
++ if ( i > 0 && i % 7 == 0)
++ {
++ parity = !parity;
++ bool pbit = stored_parity & (0x80 >> (byte));
++ if(parity != pbit)
++ {
++ printf("parity2 fail byte %d, should be %d, was %d\n", (i / 7), parity, pbit);
++ fails++;
++ }
++ parity =0 ;
++ byte = i / 7;
++ }
++ parity = parity ^ headBit(&bits);
++ }
++ if(fails)
++ {
++ printf("parity2 fails: %d\n", fails);
++ }else
++ {
++ printf("Key syntax is with parity bits grouped in the last byte!\n");
++ }
++}
++void modifyKey_put_parity_last(uint8_t * key, uint8_t* output)
++{
++ uint8_t paritybits = 0;
++ bool parity =0;
++ BitstreamOut out = { output, 0,0};
++ unsigned int bbyte, bbit;
++ for(bbyte=0; bbyte <8 ; bbyte++ )
++ {
++ for(bbit =0 ; bbit< 7 ; bbit++)
++ {
++ bool bit = *(key+bbyte) & (1 << (7-bbit));
++ pushBit(&out,bit);
++ parity ^= bit;
++ }
++ bool paritybit = *(key+bbyte) & 1;
++ paritybits |= paritybit << (7-bbyte);
++ parity = 0;
++
++ }
++ output[7] = paritybits;
++ printf("Parity byte: %02x\n", paritybits);
++}
++
++ * @brief Modifies a key with parity bits last, so that it is formed with parity
++ * bits inside each byte
++ * @param key
++ * @param output
++
++void modifyKey_put_parity_allover(uint8_t * key, uint8_t* output)
++{
++ bool parity =0;
++ BitstreamOut out = { output, 0,0};
++ BitstreamIn in = {key, 0,0};
++ unsigned int bbyte, bbit;
++ for(bbit =0 ; bbit < 56 ; bbit++)
++ {
++
++ if( bbit > 0 && bbit % 7 == 0)
++ {
++ pushBit(&out,!parity);
++ parity = 0;
++ }
++ bool bit = headBit(&in);
++ pushBit(&out,bit );
++ parity ^= bit;
++
++ }
++ pushBit(&out, !parity);
++
++
++ if( des_key_check_key_parity(output))
++ {
++ printf("modifyKey_put_parity_allover fail, DES key invalid parity!");
++ }
++
++}
++
++*/
++
++
--- /dev/null
-int testKeyDiversification();
-int doKeyTests();
-void hash0(uint64_t c, uint8_t *k);
-void pushbackSixBitByte(uint64_t *c, uint8_t z, int n);
-uint8_t getSixBitByte(uint64_t c, int n);
+ #ifndef IKEYS_H
+ #define IKEYS_H
++
++
++/**
++ * @brief
++ *Definition 11. Let the function hash0 : F 82 × F 82 × (F 62 ) 8 → (F 82 ) 8 be defined as
++ * hash0(x, y, z [0] . . . z [7] ) = k [0] . . . k [7] where
++ * z'[i] = (z[i] mod (63-i)) + i i = 0...3
++ * z'[i+4] = (z[i+4] mod (64-i)) + i i = 0...3
++ * ẑ = check(z');
++ * @param c
++ * @param k this is where the diversified key is put (should be 8 bytes)
++ * @return
++ */
++void hash0(uint64_t c, uint8_t k[8]);
++int doKeyTests(uint8_t debuglevel);
++/**
++ * @brief Performs Elite-class key diversification
++ * @param csn
++ * @param key
++ * @param div_key
++ */
++
++void diversifyKey(uint8_t csn[8], uint8_t key[8], uint8_t div_key[8]);
++/**
++ * @brief Permutes a key from standard NIST format to Iclass specific format
++ * @param key
++ * @param dest
++ */
++
+ #endif // IKEYS_H
--- /dev/null
--- /dev/null
++/*****************************************************************************
++ * This file is part of iClassCipher. It is a reconstructon of the cipher engine
++ * used in iClass, and RFID techology.
++ *
++ * The implementation is based on the work performed by
++ * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
++ * Milosch Meriac in the paper "Dismantling IClass".
++ *
++ * Copyright (C) 2014 Martin Holst Swende
++ *
++ * This is free software: you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * This file is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with IClassCipher. If not, see <http://www.gnu.org/licenses/>.
++ ****************************************************************************/
++
++#include <stdio.h>
++#include <cipherutils.h>
++#include <stdint.h>
++#include <stdbool.h>
++#include <string.h>
++#include <unistd.h>
++#include <ctype.h>
++#include "cipherutils.h"
++#include "cipher.h"
++#include "ikeys.h"
++#include "fileutils.h"
++#include "elite_crack.h"
++
++int unitTests()
++{
++ int errors = testCipherUtils();
++ errors += testMAC();
++ errors += doKeyTests(0);
++ errors += testElite();
++ return errors;
++}
++int showHelp()
++{
++ prnlog("Usage: iclazz [options]");
++ prnlog("Options:");
++ prnlog("-t Perform self-test");
++ prnlog("-h Show this help");
++ prnlog("-f <filename> Bruteforce iclass dumpfile");
++ prnlog(" An iclass dumpfile is assumed to consist of an arbitrary number of malicious CSNs, and their protocol responses");
++ prnlog(" The the binary format of the file is expected to be as follows: ");
++ prnlog(" <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>");
++ prnlog(" <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>");
++ prnlog(" <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>");
++ prnlog(" ... totalling N*24 bytes");
++ prnlog(" Check iclass_dump.bin for an example");
++
++ return 0;
++}
++
++int main (int argc, char **argv)
++{
++ prnlog("IClass Cipher version 1.2, Copyright (C) 2014 Martin Holst Swende\n");
++ prnlog("Comes with ABSOLUTELY NO WARRANTY");
++ prnlog("This is free software, and you are welcome to use, abuse and repackage, please keep the credits\n");
++ char *fileName = NULL;
++ int c;
++ while ((c = getopt (argc, argv, "thf:")) != -1)
++ switch (c)
++ {
++ case 't':
++ return unitTests();
++ case 'h':
++ return showHelp();
++ case 'f':
++ fileName = optarg;
++ return bruteforceFileNoKeys(fileName);
++ case '?':
++ if (optopt == 'f')
++ fprintf (stderr, "Option -%c requires an argument.\n", optopt);
++ else if (isprint (optopt))
++ fprintf (stderr, "Unknown option `-%c'.\n", optopt);
++ else
++ fprintf (stderr,
++ "Unknown option character `\\x%x'.\n",
++ optopt);
++ return 1;
++ //default:
++ //showHelp();
++ }
++ showHelp();
++ return 0;
++}
++
--- /dev/null
--- /dev/null
#define CMD_ISO_15693_COMMAND_DONE 0x0314
#define CMD_ISO_15693_FIND_AFI 0x0315
#define CMD_ISO_15693_DEBUG 0x0316
+#define CMD_LF_SNOOP_RAW_ADC_SAMPLES 0x0317
// For Hitag2 transponders
#define CMD_SNOOP_HITAG 0x0370
#define CMD_SNOOP_ICLASS 0x0392
#define CMD_SIMULATE_TAG_ICLASS 0x0393
#define CMD_READER_ICLASS 0x0394
+ #define CMD_READER_ICLASS_REPLAY 0x0395
+ #define CMD_ICLASS_ISO14443A_GETPUBLIC 0x0396
+ #define CMD_ICLASS_ISO14443A_WRITE 0x0397
// For measurements of the antenna tuning
#define CMD_MEASURE_ANTENNA_TUNING 0x0400