- latest clean up from @matrix
- the device still doesnt answer when brute_force call fails. I've been trying to get the device to init after the brute_force call.
// Computer and Communications Security, 2015
//-----------------------------------------------------------------------------
#include "cmdhfmfhard.h"
// Computer and Communications Security, 2015
//-----------------------------------------------------------------------------
#include "cmdhfmfhard.h"
#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
#define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key
#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
#define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key
-#define CRACKING_THRESHOLD 38.00f // as 2^38
+#define CRACKING_THRESHOLD 36.0f //38.50f // as 2^38.5
+#define MAX_BUCKETS 128
#define END_OF_LIST_MARKER 0xFFFFFFFF
#define END_OF_LIST_MARKER 0xFFFFFFFF
float Sum8_prob;
bool updated;
noncelistentry_t *first;
float Sum8_prob;
bool updated;
noncelistentry_t *first;
+ float score1;
+ uint_fast8_t score2;
} noncelist_t;
static size_t nonces_to_bruteforce = 0;
} noncelist_t;
static size_t nonces_to_bruteforce = 0;
+uint64_t foundkey = 0;
+size_t keys_found = 0;
+size_t bucket_count = 0;
+statelist_t* buckets[MAX_BUCKETS];
+static uint64_t total_states_tested = 0;
+size_t thread_count = 4;
+
+// these bitsliced states will hold identical states in all slices
+bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
+
+// arrays of bitsliced states with identical values in all slices
+bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
+bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
+
+#define EXACT_COUNT
+
static bool generate_candidates(uint16_t, uint16_t);
static bool brute_force(void);
static bool generate_candidates(uint16_t, uint16_t);
static bool brute_force(void);
if (p_T_is_k_when_S_is_K == 0.0) return 0.0;
double p_S_is_K = p_K[K];
if (p_T_is_k_when_S_is_K == 0.0) return 0.0;
double p_S_is_K = p_K[K];
for (uint16_t i = 0; i <= 256; i++) {
if (p_K[i] != 0.0) {
p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
for (uint16_t i = 0; i <= 256; i++) {
if (p_K[i] != 0.0) {
p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
-static void sort_best_first_bytes(void)
+static uint16_t sort_best_first_bytes(void)
{
// sort based on probability for correct guess
for (uint16_t i = 0; i < 256; i++ ) {
{
// sort based on probability for correct guess
for (uint16_t i = 0; i < 256; i++ ) {
best_first_bytes[k] = best_first_bytes[k-1];
}
}
best_first_bytes[k] = best_first_bytes[k-1];
}
}
- best_first_bytes[j] = i;
+ best_first_bytes[j] = i;
}
// determine how many are above the CONFIDENCE_THRESHOLD
}
// determine how many are above the CONFIDENCE_THRESHOLD
+ if (num_good_nonces == 0) return 0;
+
uint16_t best_first_byte = 0;
// select the best possible first byte based on number of common bits with all {b'}
uint16_t best_first_byte = 0;
// select the best possible first byte based on number of common bits with all {b'}
for (uint16_t i = 0; i < num_good_nonces; i++ ) {
uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
float bitflip_prob = 1.0;
for (uint16_t i = 0; i < num_good_nonces; i++ ) {
uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
float bitflip_prob = 1.0;
- if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
+
+ if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
- if (p_K[sum8] * bitflip_prob <= min_p_K) {
+
+ if (p_K[sum8] * bitflip_prob <= min_p_K)
min_p_K = p_K[sum8] * bitflip_prob;
min_p_K = p_K[sum8] * bitflip_prob;
}
// use number of commmon bits as a tie breaker
}
// use number of commmon bits as a tie breaker
- uint16_t max_common_bits = 0;
+ uint_fast8_t max_common_bits = 0;
for (uint16_t i = 0; i < num_good_nonces; i++) {
for (uint16_t i = 0; i < num_good_nonces; i++) {
float bitflip_prob = 1.0;
float bitflip_prob = 1.0;
- if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
+ if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
- uint16_t sum_common_bits = 0;
+ uint_fast8_t sum_common_bits = 0;
for (uint16_t j = 0; j < num_good_nonces; j++) {
sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
}
for (uint16_t j = 0; j < num_good_nonces; j++) {
sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
}
// swap best possible first byte to the pole position
if (best_first_byte != 0) {
// swap best possible first byte to the pole position
if (best_first_byte != 0) {
- uint16_t temp = best_first_bytes[0];
- best_first_bytes[0] = best_first_bytes[best_first_byte];
- best_first_bytes[best_first_byte] = temp;
+ uint16_t temp = best_first_bytes[0];
+ best_first_bytes[0] = best_first_bytes[best_first_byte];
+ best_first_bytes[best_first_byte] = temp;
+ return num_good_nonces;
}
static uint16_t estimate_second_byte_sum(void)
}
static uint16_t estimate_second_byte_sum(void)
for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
float Sum8_prob = 0.0;
uint16_t Sum8 = 0;
for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
float Sum8_prob = 0.0;
uint16_t Sum8 = 0;
nonces[first_byte].updated = false;
}
}
nonces[first_byte].updated = false;
}
}
-
- sort_best_first_bytes();
-
- uint16_t num_good_nonces = 0;
- for (uint16_t i = 0; i < 256; i++) {
- if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
- ++num_good_nonces;
- }
- }
-
- return num_good_nonces;
+ return sort_best_first_bytes();
}
static int read_nonce_file(void)
}
static int read_nonce_file(void)
}
PrintAndLog("Reading nonces from file nonces.bin...");
}
PrintAndLog("Reading nonces from file nonces.bin...");
+ memset (read_buf, 0, sizeof (read_buf));
size_t bytes_read = fread(read_buf, 1, 6, fnonces);
if ( bytes_read == 0) {
PrintAndLog("File reading error.");
size_t bytes_read = fread(read_buf, 1, 6, fnonces);
if ( bytes_read == 0) {
PrintAndLog("File reading error.");
cuid = bytes_to_num(read_buf, 4);
trgBlockNo = bytes_to_num(read_buf+4, 1);
trgKeyType = bytes_to_num(read_buf+5, 1);
cuid = bytes_to_num(read_buf, 4);
trgBlockNo = bytes_to_num(read_buf+4, 1);
trgKeyType = bytes_to_num(read_buf+5, 1);
-
- while (fread(read_buf, 1, 9, fnonces) == 9) {
+ size_t ret = 0;
+ do {
+ memset (read_buf, 0, sizeof (read_buf));
+ if ((ret = fread(read_buf, 1, 9, fnonces)) == 9) {
nt_enc1 = bytes_to_num(read_buf, 4);
nt_enc2 = bytes_to_num(read_buf+4, 4);
par_enc = bytes_to_num(read_buf+8, 1);
nt_enc1 = bytes_to_num(read_buf, 4);
nt_enc2 = bytes_to_num(read_buf+4, 4);
par_enc = bytes_to_num(read_buf+8, 1);
add_nonce(nt_enc2, par_enc & 0x0f);
total_num_nonces += 2;
}
add_nonce(nt_enc2, par_enc & 0x0f);
total_num_nonces += 2;
}
fclose(fnonces);
PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
return 0;
fclose(fnonces);
PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
return 0;
static void Check_for_FilterFlipProperties(void)
{
printf("Checking for Filter Flip Properties...\n");
static void Check_for_FilterFlipProperties(void)
{
printf("Checking for Filter Flip Properties...\n");
uint16_t num_bitflips = 0;
for (uint16_t i = 0; i < 256; i++) {
uint16_t num_bitflips = 0;
for (uint16_t i = 0; i < 256; i++) {
}
for (uint16_t i = 0; i < 256; i++) {
}
for (uint16_t i = 0; i < 256; i++) {
+ if (!nonces[i].first || !nonces[i^0x80].first || !nonces[i^0x40].first) continue;
+
uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
fprintf(fstats, "%d;", num_bitflips);
fprintf(fstats, "%d;", num_bitflips);
}
static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
}
static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
num_good_first_bytes = estimate_second_byte_sum();
if (total_num_nonces > next_fivehundred) {
next_fivehundred = (total_num_nonces/500+1) * 500;
num_good_first_bytes = estimate_second_byte_sum();
if (total_num_nonces > next_fivehundred) {
next_fivehundred = (total_num_nonces/500+1) * 500;
- printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
+ printf("Acquired %5d nonces (%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
total_num_nonces,
total_added_nonces,
CONFIDENCE_THRESHOLD * 100.0,
total_num_nonces,
total_added_nonces,
CONFIDENCE_THRESHOLD * 100.0,
uint32_t total_added_nonces = 0;
uint32_t idx = 1;
FILE *fnonces = NULL;
uint32_t total_added_nonces = 0;
uint32_t idx = 1;
FILE *fnonces = NULL;
- UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, 0}};
- memcpy(c.d.asBytes, key, 6);
+
+ UsbCommand resp;
+ UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {0,0,0} };
+ memcpy(c.d.asBytes, key, 6);
+ c.arg[0] = blockNo + (keyType * 0x100);
+ c.arg[1] = trgBlockNo + (trgKeyType * 0x100);
printf("Acquiring nonces...\n");
do {
flags = 0;
printf("Acquiring nonces...\n");
do {
flags = 0;
- flags |= initialize ? 0x0001 : 0;
+ //flags |= initialize ? 0x0001 : 0;
+ flags |= 0x0001;
flags |= slow ? 0x0002 : 0;
flags |= field_off ? 0x0004 : 0;
c.arg[2] = flags;
flags |= slow ? 0x0002 : 0;
flags |= field_off ? 0x0004 : 0;
c.arg[2] = flags;
clearCommandBuffer();
SendCommand(&c);
clearCommandBuffer();
SendCommand(&c);
if (fnonces) fclose(fnonces);
return 1;
}
if (fnonces) fclose(fnonces);
return 1;
}
if (resp.arg[0]) {
if (fnonces) fclose(fnonces);
return resp.arg[0]; // error during nested_hard
if (resp.arg[0]) {
if (fnonces) fclose(fnonces);
return resp.arg[0]; // error during nested_hard
return 3;
}
PrintAndLog("Writing acquired nonces to binary file nonces.bin");
return 3;
}
PrintAndLog("Writing acquired nonces to binary file nonces.bin");
+ memset (write_buf, 0, sizeof (write_buf));
num_to_bytes(cuid, 4, write_buf);
fwrite(write_buf, 1, 4, fnonces);
fwrite(&trgBlockNo, 1, 1, fnonces);
num_to_bytes(cuid, 4, write_buf);
fwrite(write_buf, 1, 4, fnonces);
fwrite(&trgBlockNo, 1, 1, fnonces);
uint8_t par_enc;
uint16_t num_acquired_nonces = resp.arg[2];
uint8_t *bufp = resp.d.asBytes;
uint8_t par_enc;
uint16_t num_acquired_nonces = resp.arg[2];
uint8_t *bufp = resp.d.asBytes;
- for (uint16_t i = 0; i < num_acquired_nonces; i+=2) {
+ for (uint16_t i = 0; i < num_acquired_nonces; i += 2) {
nt_enc1 = bytes_to_num(bufp, 4);
nt_enc2 = bytes_to_num(bufp+4, 4);
par_enc = bytes_to_num(bufp+8, 1);
nt_enc1 = bytes_to_num(bufp, 4);
nt_enc2 = bytes_to_num(bufp+4, 4);
par_enc = bytes_to_num(bufp+8, 1);
- //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
- //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
if (nonce_file_write && fnonces) {
total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
if (nonce_file_write && fnonces) {
if (total_num_nonces > next_fivehundred) {
next_fivehundred = (total_num_nonces/500+1) * 500;
if (total_num_nonces > next_fivehundred) {
next_fivehundred = (total_num_nonces/500+1) * 500;
- printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). #bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
+ printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
total_num_nonces,
total_added_nonces,
NONCES_THRESHOLD * idx,
CONFIDENCE_THRESHOLD * 100.0,
num_good_first_bytes);
}
total_num_nonces,
total_added_nonces,
NONCES_THRESHOLD * idx,
CONFIDENCE_THRESHOLD * 100.0,
num_good_first_bytes);
}
-
- if (total_added_nonces >= (NONCES_THRESHOLD * idx) && num_good_first_bytes > 0 ) {
- bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
- if (cracking || known_target_key != -1) {
- field_off = brute_force(); // switch off field with next SendCommand and then finish
+
+ if ( num_good_first_bytes > 0 ) {
+ //printf("GOOD BYTES: %s \n", sprint_hex(best_first_bytes, num_good_first_bytes) );
+ if ( total_added_nonces >= (NONCES_THRESHOLD * idx)) {
+
+ CmdFPGAOff("");
+
+ bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
+ if (cracking || known_target_key != -1) {
+ field_off = brute_force(); // switch off field with next SendCommand and then finish
+ if (field_off) break;
+ }
+ idx++;
} while (!finished);
if (nonce_file_write && fnonces)
} while (!finished);
if (nonce_file_write && fnonces)
// set len and add End Of List marker
statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
*p = END_OF_LIST_MARKER;
// set len and add End Of List marker
statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
*p = END_OF_LIST_MARKER;
- statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
+ //statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
}
static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
}
static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
}
count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
if (found_odd && found_even) {
}
count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
if (found_odd && found_even) {
+ if (known_target_key != -1) {
PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.",
count,
log(count)/log(2),
PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.",
count,
log(count)/log(2),
if (write_stats) {
fprintf(fstats, "1\n");
}
if (write_stats) {
fprintf(fstats, "1\n");
}
crypto1_destroy(pcs);
return true;
}
}
crypto1_destroy(pcs);
return true;
}
}
+ if (known_target_key != -1) {
printf("Key NOT found!\n");
if (write_stats) {
fprintf(fstats, "0\n");
}
printf("Key NOT found!\n");
if (write_stats) {
fprintf(fstats, "0\n");
}
crypto1_destroy(pcs);
return false;
crypto1_destroy(pcs);
return false;
maximum_states = 0;
unsigned int n = 0;
maximum_states = 0;
unsigned int n = 0;
- for (statelist_t *sl = candidates; sl != NULL && n < 128; sl = sl->next, n++) {
+ for (statelist_t *sl = candidates; sl != NULL && n < MAX_BUCKETS; sl = sl->next, n++) {
maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
}
maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
}
float kcalc = log(maximum_states)/log(2);
printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
if (write_stats) {
float kcalc = log(maximum_states)/log(2);
printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
if (write_stats) {
- if (maximum_states != 0) {
- fprintf(fstats, "%1.1f;", kcalc);
- } else {
- fprintf(fstats, "%1.1f;", 0.0);
- }
+ fprintf(fstats, "%1.1f;", (kcalc != 0) ? kcalc : 0.0);
}
if (kcalc < CRACKING_THRESHOLD) return true;
}
if (kcalc < CRACKING_THRESHOLD) return true;
-#define MAX_BUCKETS 128
-uint64_t foundkey = 0;
-size_t keys_found = 0;
-size_t bucket_count = 0;
-statelist_t* buckets[MAX_BUCKETS];
-size_t total_states_tested = 0;
-size_t thread_count = 4;
-
-// these bitsliced states will hold identical states in all slices
-bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
-
-// arrays of bitsliced states with identical values in all slices
-bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
-bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
-
-#define EXACT_COUNT
-
static const uint64_t crack_states_bitsliced(statelist_t *p){
// the idea to roll back the half-states before combining them was suggested/explained to me by bla
// first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
static const uint64_t crack_states_bitsliced(statelist_t *p){
// the idea to roll back the half-states before combining them was suggested/explained to me by bla
// first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
crypto1_bs_rewind_a0();
// set odd bits
for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
crypto1_bs_rewind_a0();
// set odd bits
for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
- if(o & 1){
- state_p[state_idx] = bs_ones;
- } else {
- state_p[state_idx] = bs_zeroes;
- }
+ state_p[state_idx] = (o & 1) ? bs_ones : bs_zeroes;
}
const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
}
const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
- bucket_states_tested += bucket_size[block_idx];
+ bucket_states_tested += (bucket_size[block_idx] > MAX_BITSLICES) ? MAX_BITSLICES : bucket_size[block_idx];
#endif
// pre-compute first keystream and feedback bit vectors
const bitslice_value_t ksb = crypto1_bs_f20(state_p);
#endif
// pre-compute first keystream and feedback bit vectors
const bitslice_value_t ksb = crypto1_bs_f20(state_p);
static void* crack_states_thread(void* x){
const size_t thread_id = (size_t)x;
size_t current_bucket = thread_id;
static void* crack_states_thread(void* x){
const size_t thread_id = (size_t)x;
size_t current_bucket = thread_id;
+ statelist_t *bucket = NULL;
+
while(current_bucket < bucket_count){
while(current_bucket < bucket_count){
- statelist_t * bucket = buckets[current_bucket];
- if(bucket){
+ if (keys_found) break;
+
+ if ((bucket = buckets[current_bucket])) {
const uint64_t key = crack_states_bitsliced(bucket);
const uint64_t key = crack_states_bitsliced(bucket);
+
+ if (keys_found) break;
+ else if(key != -1 && TestIfKeyExists(key)) {
__sync_fetch_and_add(&keys_found, 1);
__sync_fetch_and_add(&foundkey, key);
break;
__sync_fetch_and_add(&keys_found, 1);
__sync_fetch_and_add(&foundkey, key);
break;
- } else if(keys_found){
- break;
} else {
printf(".");
fflush(stdout);
}
}
} else {
printf(".");
fflush(stdout);
}
}
current_bucket += thread_count;
}
current_bucket += thread_count;
}
return NULL;
}
static bool brute_force(void) {
return NULL;
}
static bool brute_force(void) {
- if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
-
bool ret = false;
if (known_target_key != -1) {
PrintAndLog("Looking for known target key in remaining key space...");
ret = TestIfKeyExists(known_target_key);
} else {
bool ret = false;
if (known_target_key != -1) {
PrintAndLog("Looking for known target key in remaining key space...");
ret = TestIfKeyExists(known_target_key);
} else {
+ if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
+
PrintAndLog("Brute force phase starting.");
clock_t time1 = clock();
PrintAndLog("Brute force phase starting.");
clock_t time1 = clock();
foundkey = 0;
crypto1_bs_init();
foundkey = 0;
crypto1_bs_init();
+ memset (bitsliced_rollback_byte, 0, sizeof (bitsliced_rollback_byte));
+ memset (bitsliced_encrypted_nonces, 0, sizeof (bitsliced_encrypted_nonces));
+ memset (bitsliced_encrypted_parity_bits, 0, sizeof (bitsliced_encrypted_parity_bits));
PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
// count number of states to go
bucket_count = 0;
// count number of states to go
bucket_count = 0;
+ buckets[MAX_BUCKETS-1] = NULL;
for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) {
buckets[bucket_count] = p;
bucket_count++;
}
for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) {
buckets[bucket_count] = p;
bucket_count++;
}
- buckets[bucket_count] = NULL;
+ if (bucket_count < MAX_BUCKETS) buckets[bucket_count] = NULL;
#ifndef __WIN32
thread_count = sysconf(_SC_NPROCESSORS_CONF);
#ifndef __WIN32
thread_count = sysconf(_SC_NPROCESSORS_CONF);
time1 = clock() - time1;
PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1)/CLOCKS_PER_SEC);
time1 = clock() - time1;
PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1)/CLOCKS_PER_SEC);
- if (keys_found && TestIfKeyExists(foundkey)) {
PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
ret = true;
}
PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
ret = true;
}
num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
- clock_t time1 = clock();
bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
- time1 = clock() - time1;
- if (time1 > 0)
- PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
-
if (cracking || known_target_key != -1) {
brute_force();
}
if (cracking || known_target_key != -1) {
brute_force();
}