]> cvs.zerfleddert.de Git - proxmark3-svn/commitdiff
CHG: "hf mf hardnested"
authoriceman1001 <iceman@iuse.se>
Tue, 15 Nov 2016 11:49:13 +0000 (12:49 +0100)
committericeman1001 <iceman@iuse.se>
Tue, 15 Nov 2016 11:49:13 +0000 (12:49 +0100)
 - latest clean up from @matrix
 - the device still doesnt answer when brute_force call fails. I've been trying to get the device to init after the brute_force call.

client/cmdhfmfhard.c

index 1f739dc46c3babf9af6d603659b017360745efcc..ba524c5ca7aecdfbdbb82ee85810be453a496ac1 100644 (file)
 //   Computer and Communications Security, 2015
 //-----------------------------------------------------------------------------
 #include "cmdhfmfhard.h"
 //   Computer and Communications Security, 2015
 //-----------------------------------------------------------------------------
 #include "cmdhfmfhard.h"
+#include "cmdhw.h"
 
 #define CONFIDENCE_THRESHOLD   0.95            // Collect nonces until we are certain enough that the following brute force is successfull
 #define GOOD_BYTES_REQUIRED    13              // default 28, could be smaller == faster
 #define NONCES_THRESHOLD       5000            // every N nonces check if we can crack the key
 
 #define CONFIDENCE_THRESHOLD   0.95            // Collect nonces until we are certain enough that the following brute force is successfull
 #define GOOD_BYTES_REQUIRED    13              // default 28, could be smaller == faster
 #define NONCES_THRESHOLD       5000            // every N nonces check if we can crack the key
-#define CRACKING_THRESHOLD     38.00f          // as 2^38
+#define CRACKING_THRESHOLD     36.0f //38.50f          // as 2^38.5
+#define MAX_BUCKETS            128
 
 #define END_OF_LIST_MARKER             0xFFFFFFFF
 
 
 #define END_OF_LIST_MARKER             0xFFFFFFFF
 
@@ -72,7 +74,8 @@ typedef struct noncelist {
        float Sum8_prob;
        bool updated;
        noncelistentry_t *first;
        float Sum8_prob;
        bool updated;
        noncelistentry_t *first;
-       float score1, score2;
+       float score1;
+       uint_fast8_t score2;
 } noncelist_t;
 
 static size_t nonces_to_bruteforce = 0;
 } noncelist_t;
 
 static size_t nonces_to_bruteforce = 0;
@@ -116,6 +119,22 @@ static statelist_t *candidates = NULL;
 
 bool field_off = false;
 
 
 bool field_off = false;
 
+uint64_t foundkey = 0;
+size_t keys_found = 0;
+size_t bucket_count = 0;
+statelist_t* buckets[MAX_BUCKETS];
+static uint64_t total_states_tested = 0;
+size_t thread_count = 4;
+
+// these bitsliced states will hold identical states in all slices
+bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
+
+// arrays of bitsliced states with identical values in all slices
+bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
+bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
+
+#define EXACT_COUNT
+
 static bool generate_candidates(uint16_t, uint16_t);
 static bool brute_force(void);
 
 static bool generate_candidates(uint16_t, uint16_t);
 static bool brute_force(void);
 
@@ -283,7 +302,7 @@ static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
        if (p_T_is_k_when_S_is_K == 0.0) return 0.0;
 
        double p_S_is_K = p_K[K];
        if (p_T_is_k_when_S_is_K == 0.0) return 0.0;
 
        double p_S_is_K = p_K[K];
-       double p_T_is_k = 0;
+       double p_T_is_k = 0.0;
        for (uint16_t i = 0; i <= 256; i++) {
                if (p_K[i] != 0.0) {
                        p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
        for (uint16_t i = 0; i <= 256; i++) {
                if (p_K[i] != 0.0) {
                        p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
@@ -478,7 +497,7 @@ static void Tests()
 
 }
 
 
 }
 
-static void sort_best_first_bytes(void)
+static uint16_t sort_best_first_bytes(void)
 {
        // sort based on probability for correct guess  
        for (uint16_t i = 0; i < 256; i++ ) {
 {
        // sort based on probability for correct guess  
        for (uint16_t i = 0; i < 256; i++ ) {
@@ -493,7 +512,7 @@ static void sort_best_first_bytes(void)
                                best_first_bytes[k] = best_first_bytes[k-1];
                        }
                }
                                best_first_bytes[k] = best_first_bytes[k-1];
                        }
                }
-                       best_first_bytes[j] = i;
+               best_first_bytes[j] = i;
        }
 
        // determine how many are above the CONFIDENCE_THRESHOLD
        }
 
        // determine how many are above the CONFIDENCE_THRESHOLD
@@ -504,6 +523,8 @@ static void sort_best_first_bytes(void)
                }
        }
        
                }
        }
        
+       if (num_good_nonces == 0) return 0;
+
        uint16_t best_first_byte = 0;
 
        // select the best possible first byte based on number of common bits with all {b'}
        uint16_t best_first_byte = 0;
 
        // select the best possible first byte based on number of common bits with all {b'}
@@ -526,25 +547,28 @@ static void sort_best_first_bytes(void)
        for (uint16_t i = 0; i < num_good_nonces; i++ ) {
                uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
                float bitflip_prob = 1.0;
        for (uint16_t i = 0; i < num_good_nonces; i++ ) {
                uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
                float bitflip_prob = 1.0;
-               if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
+               
+               if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
                        bitflip_prob = 0.09375;
                        bitflip_prob = 0.09375;
-               }
+               
                nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
                nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
-               if (p_K[sum8] * bitflip_prob <= min_p_K) {
+               
+               if (p_K[sum8] * bitflip_prob <= min_p_K)
                        min_p_K = p_K[sum8] * bitflip_prob;
                        min_p_K = p_K[sum8] * bitflip_prob;
-               }
+               
        }
 
 
        // use number of commmon bits as a tie breaker
        }
 
 
        // use number of commmon bits as a tie breaker
-       uint16_t max_common_bits = 0;
+       uint_fast8_t max_common_bits = 0;
        for (uint16_t i = 0; i < num_good_nonces; i++) {
        for (uint16_t i = 0; i < num_good_nonces; i++) {
+
                float bitflip_prob = 1.0;
                float bitflip_prob = 1.0;
-               if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
+               if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
                        bitflip_prob = 0.09375;
                        bitflip_prob = 0.09375;
-               }
+               
                if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
                if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
-                       uint16_t sum_common_bits = 0;
+                       uint_fast8_t sum_common_bits = 0;
                        for (uint16_t j = 0; j < num_good_nonces; j++) {
                                sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
                        }
                        for (uint16_t j = 0; j < num_good_nonces; j++) {
                                sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
                        }
@@ -558,16 +582,16 @@ static void sort_best_first_bytes(void)
 
        // swap best possible first byte to the pole position
        if (best_first_byte != 0) {
 
        // swap best possible first byte to the pole position
        if (best_first_byte != 0) {
-       uint16_t temp = best_first_bytes[0];
-       best_first_bytes[0] = best_first_bytes[best_first_byte];
-       best_first_bytes[best_first_byte] = temp;
+               uint16_t temp = best_first_bytes[0];
+               best_first_bytes[0] = best_first_bytes[best_first_byte];
+               best_first_bytes[best_first_byte] = temp;
        }
        
        }
        
+       return num_good_nonces;
 }
 
 static uint16_t estimate_second_byte_sum(void) 
 }
 
 static uint16_t estimate_second_byte_sum(void) 
-{
-       
+{      
        for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
                float Sum8_prob = 0.0;
                uint16_t Sum8 = 0;
        for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
                float Sum8_prob = 0.0;
                uint16_t Sum8 = 0;
@@ -584,17 +608,7 @@ static uint16_t estimate_second_byte_sum(void)
                        nonces[first_byte].updated = false;
                }
        }
                        nonces[first_byte].updated = false;
                }
        }
-       
-       sort_best_first_bytes();
-
-       uint16_t num_good_nonces = 0;
-       for (uint16_t i = 0; i < 256; i++) {
-               if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
-                       ++num_good_nonces;
-               }
-       }
-       
-       return num_good_nonces;
+       return sort_best_first_bytes();
 }      
 
 static int read_nonce_file(void)
 }      
 
 static int read_nonce_file(void)
@@ -613,6 +627,7 @@ static int read_nonce_file(void)
        }
 
        PrintAndLog("Reading nonces from file nonces.bin...");
        }
 
        PrintAndLog("Reading nonces from file nonces.bin...");
+       memset (read_buf, 0, sizeof (read_buf));
        size_t bytes_read = fread(read_buf, 1, 6, fnonces);
        if ( bytes_read == 0) {
                PrintAndLog("File reading error.");
        size_t bytes_read = fread(read_buf, 1, 6, fnonces);
        if ( bytes_read == 0) {
                PrintAndLog("File reading error.");
@@ -622,8 +637,10 @@ static int read_nonce_file(void)
        cuid = bytes_to_num(read_buf, 4);
        trgBlockNo = bytes_to_num(read_buf+4, 1);
        trgKeyType = bytes_to_num(read_buf+5, 1);
        cuid = bytes_to_num(read_buf, 4);
        trgBlockNo = bytes_to_num(read_buf+4, 1);
        trgKeyType = bytes_to_num(read_buf+5, 1);
-
-       while (fread(read_buf, 1, 9, fnonces) == 9) {
+       size_t ret = 0;
+       do {
+               memset (read_buf, 0, sizeof (read_buf));
+               if ((ret = fread(read_buf, 1, 9, fnonces)) == 9) {
                nt_enc1 = bytes_to_num(read_buf, 4);
                nt_enc2 = bytes_to_num(read_buf+4, 4);
                par_enc = bytes_to_num(read_buf+8, 1);
                nt_enc1 = bytes_to_num(read_buf, 4);
                nt_enc2 = bytes_to_num(read_buf+4, 4);
                par_enc = bytes_to_num(read_buf+8, 1);
@@ -633,6 +650,8 @@ static int read_nonce_file(void)
                add_nonce(nt_enc2, par_enc & 0x0f);
                total_num_nonces += 2;
        }
                add_nonce(nt_enc2, par_enc & 0x0f);
                total_num_nonces += 2;
        }
+       } while (ret == 9);
+
        fclose(fnonces);
        PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
        return 0;
        fclose(fnonces);
        PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
        return 0;
@@ -641,7 +660,6 @@ static int read_nonce_file(void)
 static void Check_for_FilterFlipProperties(void)
 {
        printf("Checking for Filter Flip Properties...\n");
 static void Check_for_FilterFlipProperties(void)
 {
        printf("Checking for Filter Flip Properties...\n");
-
        uint16_t num_bitflips = 0;
        
        for (uint16_t i = 0; i < 256; i++) {
        uint16_t num_bitflips = 0;
        
        for (uint16_t i = 0; i < 256; i++) {
@@ -650,6 +668,8 @@ static void Check_for_FilterFlipProperties(void)
        }
        
        for (uint16_t i = 0; i < 256; i++) {
        }
        
        for (uint16_t i = 0; i < 256; i++) {
+               if (!nonces[i].first || !nonces[i^0x80].first || !nonces[i^0x40].first) continue;
+
                uint8_t parity1 = (nonces[i].first->par_enc) >> 3;                              // parity of first byte
                uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3;     // XOR 0x80 = last bit flipped
                uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3;    // XOR 0x40 = second last bit flipped
                uint8_t parity1 = (nonces[i].first->par_enc) >> 3;                              // parity of first byte
                uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3;     // XOR 0x80 = last bit flipped
                uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3;    // XOR 0x40 = second last bit flipped
@@ -663,9 +683,8 @@ static void Check_for_FilterFlipProperties(void)
                }
        }
        
                }
        }
        
-       if (write_stats) {
+       if (write_stats)
                fprintf(fstats, "%d;", num_bitflips);
                fprintf(fstats, "%d;", num_bitflips);
-       }
 }
 
 static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
 }
 
 static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
@@ -722,7 +741,7 @@ static void simulate_acquire_nonces()
                        num_good_first_bytes = estimate_second_byte_sum();
                        if (total_num_nonces > next_fivehundred) {
                                next_fivehundred = (total_num_nonces/500+1) * 500;
                        num_good_first_bytes = estimate_second_byte_sum();
                        if (total_num_nonces > next_fivehundred) {
                                next_fivehundred = (total_num_nonces/500+1) * 500;
-                               printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
+                               printf("Acquired %5d nonces (%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
                                        total_num_nonces,
                                        total_added_nonces,
                                        CONFIDENCE_THRESHOLD * 100.0,
                                        total_num_nonces,
                                        total_added_nonces,
                                        CONFIDENCE_THRESHOLD * 100.0,
@@ -756,18 +775,23 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
        uint32_t total_added_nonces = 0;
        uint32_t idx = 1;
        FILE *fnonces = NULL;
        uint32_t total_added_nonces = 0;
        uint32_t idx = 1;
        FILE *fnonces = NULL;
-       UsbCommand resp;
        field_off = false;
        field_off = false;
-       UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, 0}};
-       memcpy(c.d.asBytes, key, 6);
+
+       UsbCommand resp;
+       UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {0,0,0} };
+       memcpy(c.d.asBytes, key, 6);    
+       c.arg[0] = blockNo + (keyType * 0x100);
+       c.arg[1] = trgBlockNo + (trgKeyType * 0x100);
        
        printf("Acquiring nonces...\n");
        do {
                flags = 0;
        
        printf("Acquiring nonces...\n");
        do {
                flags = 0;
-               flags |= initialize ? 0x0001 : 0;
+               //flags |= initialize ? 0x0001 : 0;
+               flags |= 0x0001;
                flags |= slow ? 0x0002 : 0;
                flags |= field_off ? 0x0004 : 0;
                c.arg[2] = flags;
                flags |= slow ? 0x0002 : 0;
                flags |= field_off ? 0x0004 : 0;
                c.arg[2] = flags;
+
                clearCommandBuffer();
                SendCommand(&c);
                
                clearCommandBuffer();
                SendCommand(&c);
                
@@ -777,6 +801,7 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
                        if (fnonces) fclose(fnonces);
                        return 1;
                }
                        if (fnonces) fclose(fnonces);
                        return 1;
                }
+
                if (resp.arg[0]) {
                        if (fnonces) fclose(fnonces);
                        return resp.arg[0];  // error during nested_hard
                if (resp.arg[0]) {
                        if (fnonces) fclose(fnonces);
                        return resp.arg[0];  // error during nested_hard
@@ -791,6 +816,7 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
                                        return 3;
                                }
                                PrintAndLog("Writing acquired nonces to binary file nonces.bin");
                                        return 3;
                                }
                                PrintAndLog("Writing acquired nonces to binary file nonces.bin");
+                               memset (write_buf, 0, sizeof (write_buf));
                                num_to_bytes(cuid, 4, write_buf);
                                fwrite(write_buf, 1, 4, fnonces);
                                fwrite(&trgBlockNo, 1, 1, fnonces);
                                num_to_bytes(cuid, 4, write_buf);
                                fwrite(write_buf, 1, 4, fnonces);
                                fwrite(&trgBlockNo, 1, 1, fnonces);
@@ -804,14 +830,12 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
                uint8_t par_enc;
                uint16_t num_acquired_nonces = resp.arg[2];
                uint8_t *bufp = resp.d.asBytes;
                uint8_t par_enc;
                uint16_t num_acquired_nonces = resp.arg[2];
                uint8_t *bufp = resp.d.asBytes;
-               for (uint16_t i = 0; i < num_acquired_nonces; i+=2) {
+               for (uint16_t i = 0; i < num_acquired_nonces; i += 2) {
                        nt_enc1 = bytes_to_num(bufp, 4);
                        nt_enc2 = bytes_to_num(bufp+4, 4);
                        par_enc = bytes_to_num(bufp+8, 1);
                        
                        nt_enc1 = bytes_to_num(bufp, 4);
                        nt_enc2 = bytes_to_num(bufp+4, 4);
                        par_enc = bytes_to_num(bufp+8, 1);
                        
-                       //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
                        total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
                        total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
-                       //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
                        total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
                        
                        if (nonce_file_write && fnonces) {
                        total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
                        
                        if (nonce_file_write && fnonces) {
@@ -833,23 +857,29 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
 
                        if (total_num_nonces > next_fivehundred) {
                                next_fivehundred = (total_num_nonces/500+1) * 500;
 
                        if (total_num_nonces > next_fivehundred) {
                                next_fivehundred = (total_num_nonces/500+1) * 500;
-                               printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). #bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
+                               printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
                                        total_num_nonces,
                                        total_added_nonces,
                                        NONCES_THRESHOLD * idx,
                                        CONFIDENCE_THRESHOLD * 100.0,
                                        num_good_first_bytes);
                        }
                                        total_num_nonces,
                                        total_added_nonces,
                                        NONCES_THRESHOLD * idx,
                                        CONFIDENCE_THRESHOLD * 100.0,
                                        num_good_first_bytes);
                        }
-
-                       if (total_added_nonces >= (NONCES_THRESHOLD * idx) && num_good_first_bytes > 0 ) {
-                               bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
-                               if (cracking || known_target_key != -1) {
-                                       field_off = brute_force(); // switch off field with next SendCommand and then finish
+                       
+                       if ( num_good_first_bytes > 0 ) {
+                               //printf("GOOD BYTES: %s \n", sprint_hex(best_first_bytes, num_good_first_bytes) );
+                               if ( total_added_nonces >= (NONCES_THRESHOLD * idx)) {                                  
+
+                                       CmdFPGAOff("");
+                                               
+                                       bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
+                                       if (cracking || known_target_key != -1) {
+                                               field_off = brute_force(); // switch off field with next SendCommand and then finish                                    
+                                               if (field_off) break;
+                                       }
+                                       idx++;
                                }
                                }
-                               idx++;
                        }
                }
                        }
                }
-
        } while (!finished);
 
        if (nonce_file_write && fnonces)
        } while (!finished);
 
        if (nonce_file_write && fnonces)
@@ -937,7 +967,7 @@ static void init_BitFlip_statelist(void)
        // set len and add End Of List marker
        statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
        *p = END_OF_LIST_MARKER;
        // set len and add End Of List marker
        statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
        *p = END_OF_LIST_MARKER;
-       statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
+       //statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
 }
                
 static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
 }
                
 static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
@@ -1237,6 +1267,7 @@ static bool TestIfKeyExists(uint64_t key)
                }
                count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
                if (found_odd && found_even) {
                }
                count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
                if (found_odd && found_even) {
+                       if (known_target_key != -1) {
                        PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.", 
                                count,
                                log(count)/log(2), 
                        PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.", 
                                count,
                                log(count)/log(2), 
@@ -1246,15 +1277,18 @@ static bool TestIfKeyExists(uint64_t key)
                        if (write_stats) {
                                fprintf(fstats, "1\n");
                        }
                        if (write_stats) {
                                fprintf(fstats, "1\n");
                        }
+                       }
                        crypto1_destroy(pcs);
                        return true;
                }
        }
 
                        crypto1_destroy(pcs);
                        return true;
                }
        }
 
+       if (known_target_key != -1) {
        printf("Key NOT found!\n");
        if (write_stats) {
                fprintf(fstats, "0\n");
        }
        printf("Key NOT found!\n");
        if (write_stats) {
                fprintf(fstats, "0\n");
        }
+       }
        crypto1_destroy(pcs);
 
        return false;
        crypto1_destroy(pcs);
 
        return false;
@@ -1325,7 +1359,7 @@ static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
 
        maximum_states = 0;
        unsigned int n = 0;
 
        maximum_states = 0;
        unsigned int n = 0;
-       for (statelist_t *sl = candidates; sl != NULL && n < 128; sl = sl->next, n++) {
+       for (statelist_t *sl = candidates; sl != NULL && n < MAX_BUCKETS; sl = sl->next, n++) {
                maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
        }
 
                maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
        }
 
@@ -1334,11 +1368,7 @@ static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
        float kcalc = log(maximum_states)/log(2);
        printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
        if (write_stats) {
        float kcalc = log(maximum_states)/log(2);
        printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
        if (write_stats) {
-               if (maximum_states != 0) {
-                       fprintf(fstats, "%1.1f;", kcalc);
-               } else {
-                       fprintf(fstats, "%1.1f;", 0.0);
-               }
+               fprintf(fstats, "%1.1f;", (kcalc != 0) ? kcalc : 0.0);
        }
        if (kcalc < CRACKING_THRESHOLD) return true;
 
        }
        if (kcalc < CRACKING_THRESHOLD) return true;
 
@@ -1366,23 +1396,6 @@ static void free_statelist_cache(void)
        }               
 }
 
        }               
 }
 
-#define MAX_BUCKETS 128
-uint64_t foundkey = 0;
-size_t keys_found = 0;
-size_t bucket_count = 0;
-statelist_t* buckets[MAX_BUCKETS];
-size_t total_states_tested = 0;
-size_t thread_count = 4;
-
-// these bitsliced states will hold identical states in all slices
-bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
-
-// arrays of bitsliced states with identical values in all slices
-bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
-bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
-
-#define EXACT_COUNT
-
 static const uint64_t crack_states_bitsliced(statelist_t *p){
     // the idea to roll back the half-states before combining them was suggested/explained to me by bla
     // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
 static const uint64_t crack_states_bitsliced(statelist_t *p){
     // the idea to roll back the half-states before combining them was suggested/explained to me by bla
     // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
@@ -1471,11 +1484,7 @@ static const uint64_t crack_states_bitsliced(statelist_t *p){
         crypto1_bs_rewind_a0();
         // set odd bits
         for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
         crypto1_bs_rewind_a0();
         // set odd bits
         for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
-            if(o & 1){
-                state_p[state_idx] = bs_ones;
-            } else {
-                state_p[state_idx] = bs_zeroes;
-            }
+            state_p[state_idx] = (o & 1) ? bs_ones : bs_zeroes;
         }
         const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
 
         }
         const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
 
@@ -1505,7 +1514,7 @@ static const uint64_t crack_states_bitsliced(statelist_t *p){
             }
 
 #ifdef EXACT_COUNT
             }
 
 #ifdef EXACT_COUNT
-            bucket_states_tested += bucket_size[block_idx];
+            bucket_states_tested += (bucket_size[block_idx] > MAX_BITSLICES) ? MAX_BITSLICES : bucket_size[block_idx];
 #endif
             // pre-compute first keystream and feedback bit vectors
             const bitslice_value_t ksb = crypto1_bs_f20(state_p);
 #endif
             // pre-compute first keystream and feedback bit vectors
             const bitslice_value_t ksb = crypto1_bs_f20(state_p);
@@ -1616,34 +1625,39 @@ out:
 static void* crack_states_thread(void* x){
     const size_t thread_id = (size_t)x;
     size_t current_bucket = thread_id;
 static void* crack_states_thread(void* x){
     const size_t thread_id = (size_t)x;
     size_t current_bucket = thread_id;
+       statelist_t *bucket = NULL;
+
     while(current_bucket < bucket_count){
     while(current_bucket < bucket_count){
-        statelist_t * bucket = buckets[current_bucket];
-               if(bucket){
+               if (keys_found) break;
+
+               if ((bucket = buckets[current_bucket])) {
             const uint64_t key = crack_states_bitsliced(bucket);
             const uint64_t key = crack_states_bitsliced(bucket);
-            if(key != -1){
+
+                       if (keys_found) break;
+                       else if(key != -1 && TestIfKeyExists(key)) {
                 __sync_fetch_and_add(&keys_found, 1);
                                __sync_fetch_and_add(&foundkey, key);
                 break;
                 __sync_fetch_and_add(&keys_found, 1);
                                __sync_fetch_and_add(&foundkey, key);
                 break;
-            } else if(keys_found){
-                break;
             } else {                           
                 printf(".");
                                fflush(stdout);
             }
         }
             } else {                           
                 printf(".");
                                fflush(stdout);
             }
         }
+
         current_bucket += thread_count;
     }
         current_bucket += thread_count;
     }
+
     return NULL;
 }
 
 static bool brute_force(void) {
     return NULL;
 }
 
 static bool brute_force(void) {
-       if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
-               
        bool ret = false;
        if (known_target_key != -1) {
                PrintAndLog("Looking for known target key in remaining key space...");
                ret = TestIfKeyExists(known_target_key);
        } else {
        bool ret = false;
        if (known_target_key != -1) {
                PrintAndLog("Looking for known target key in remaining key space...");
                ret = TestIfKeyExists(known_target_key);
        } else {
+               if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
+
                PrintAndLog("Brute force phase starting.");
 
                clock_t time1 = clock();                
                PrintAndLog("Brute force phase starting.");
 
                clock_t time1 = clock();                
@@ -1651,6 +1665,9 @@ static bool brute_force(void) {
                foundkey = 0;
 
                crypto1_bs_init();
                foundkey = 0;
 
                crypto1_bs_init();
+               memset (bitsliced_rollback_byte, 0, sizeof (bitsliced_rollback_byte));
+               memset (bitsliced_encrypted_nonces, 0, sizeof (bitsliced_encrypted_nonces));
+               memset (bitsliced_encrypted_parity_bits, 0, sizeof (bitsliced_encrypted_parity_bits));
 
                PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
                PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
 
                PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
                PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
@@ -1670,11 +1687,12 @@ static bool brute_force(void) {
 
                // count number of states to go
                bucket_count = 0;
 
                // count number of states to go
                bucket_count = 0;
+               buckets[MAX_BUCKETS-1] = NULL;
                for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) {
                        buckets[bucket_count] = p;
                        bucket_count++;
                }
                for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) {
                        buckets[bucket_count] = p;
                        bucket_count++;
                }
-               buckets[bucket_count] = NULL;
+               if (bucket_count < MAX_BUCKETS) buckets[bucket_count] = NULL;
 
 #ifndef __WIN32
                thread_count = sysconf(_SC_NPROCESSORS_CONF);
 
 #ifndef __WIN32
                thread_count = sysconf(_SC_NPROCESSORS_CONF);
@@ -1697,7 +1715,7 @@ static bool brute_force(void) {
                time1 = clock() - time1;
                PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1)/CLOCKS_PER_SEC);              
                
                time1 = clock() - time1;
                PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1)/CLOCKS_PER_SEC);              
                
-               if (keys_found && TestIfKeyExists(foundkey)) {
+               if (keys_found) {
                        PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
                        ret = true;
                } 
                        PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
                        ret = true;
                } 
@@ -1756,12 +1774,7 @@ int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBloc
                        num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
                        PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
 
                        num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
                        PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
 
-                       clock_t time1 = clock();
                        bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
                        bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
-                       time1 = clock() - time1;
-                       if (time1 > 0)
-                               PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
-
                        if (cracking || known_target_key != -1) {
                                brute_force();
                        }
                        if (cracking || known_target_key != -1) {
                                brute_force();
                        }
Impressum, Datenschutz