#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
#define WRITE_0 16*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
-#define READ_GAP 52*8
+#define READ_GAP 15*8
// VALUES TAKEN FROM EM4x function: SendForward
// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
cmd_send(CMD_ACK,0,0,0,0,0);
}
-// Read one card block in page 0
+// Read one card block in page [page]
void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
LED_A_ON();
bool PwdMode = arg0 & 0x1;
// prepares command bits
// see EM4469 spec
//====================================================================
+//--------------------------------------------------------------------
+// VALUES TAKEN FROM EM4x function: SendForward
+// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
+// WRITE_GAP = 128; (16*8)
+// WRITE_1 = 256 32*8; (32*8)
+
+// These timings work for 4469/4269/4305 (with the 55*8 above)
+// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
+
uint8_t Prepare_Cmd( uint8_t cmd ) {
*forward_ptr++ = 0; //start bit
**/
void doT55x7Acquisition(size_t sample_size) {
- #define T55xx_READ_UPPER_THRESHOLD 128+40 // 40 grph
+ #define T55xx_READ_UPPER_THRESHOLD 128+60 // 60 grph
+ #define T55xx_READ_LOWER_THRESHOLD 128-60 // -60 grph
#define T55xx_READ_TOL 5
uint8_t *dest = BigBuf_get_addr();
uint16_t i = 0;
bool startFound = false;
bool highFound = false;
+ bool lowFound = false;
uint8_t curSample = 0;
- uint8_t firstSample = 0;
+ uint8_t lastSample = 0;
uint16_t skipCnt = 0;
while(!BUTTON_PRESS() && !usb_poll_validate_length() && skipCnt<1000) {
WDT_HIT();
// skip until the first high sample above threshold
if (!startFound && curSample > T55xx_READ_UPPER_THRESHOLD) {
- if (curSample > firstSample)
- firstSample = curSample;
+ //if (curSample > lastSample)
+ // lastSample = curSample;
highFound = true;
} else if (!highFound) {
skipCnt++;
continue;
}
+ // skip until the first Low sample below threshold
+ if (!startFound && curSample < T55xx_READ_LOWER_THRESHOLD) {
+ //if (curSample > lastSample)
+ lastSample = curSample;
+ lowFound = true;
+ } else if (!lowFound) {
+ skipCnt++;
+ continue;
+ }
+
// skip until first high samples begin to change
- if (startFound || curSample < firstSample-T55xx_READ_TOL){
+ if (startFound || curSample > T55xx_READ_LOWER_THRESHOLD+T55xx_READ_TOL){
// if just found start - recover last sample
if (!startFound) {
- dest[i++] = firstSample;
+ dest[i++] = lastSample;
startFound = true;
}
// collect samples
if (g_debugMode) PrintAndLog("Error FDXBDemod , no startmarker found :: %d",preambleIndex);
return 0;
}
+ if (size != 128) {
+ if (g_debugMode) PrintAndLog("Error incorrect data length found");
+ return 0;
+ }
setDemodBuf(BitStream, 128, preambleIndex);
//invalid carrier
return 0;
}
+ if (g_debugMode){
+ PrintAndLog("Carrier: rf/%d",carrier);
+ }
int errCnt=0;
errCnt = pskRawDemod(BitStream, &BitLen, &clk, &invert);
if (errCnt > maxErr){
uint8_t invert=0;
size_t size = DemodBufferLen;
size_t startIdx = indala26decode(DemodBuffer, &size, &invert);
- if (startIdx < 1) {
+ if (startIdx < 1 || size > 224) {
if (g_debugMode==1)
PrintAndLog("Error2: %d",ans);
return -1;
uid2=bytebits_to_byte(DemodBuffer+32,32);
if (DemodBufferLen==64){
PrintAndLog("Indala UID=%s (%x%08x)", sprint_bin(DemodBuffer,DemodBufferLen), uid1, uid2);
- } else {
+ } else {
uid3=bytebits_to_byte(DemodBuffer+64,32);
uid4=bytebits_to_byte(DemodBuffer+96,32);
uid5=bytebits_to_byte(DemodBuffer+128,32);
size_t BitLen = getFromGraphBuf(BitStream);
if (BitLen==0) return 0;
int errCnt=0;
- errCnt = nrzRawDemod(BitStream, &BitLen, &clk, &invert, maxErr);
+ errCnt = nrzRawDemod(BitStream, &BitLen, &clk, &invert);
if (errCnt > maxErr){
if (g_debugMode) PrintAndLog("Too many errors found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
return 0;
int rawbit = 0;
int worst = 0, worstPos = 0;
// PrintAndLog("Expecting a bit less than %d raw bits", GraphTraceLen / 32);
+
+ // loop through raw signal - since we know it is psk1 rf/32 fc/2 skip every other value (+=2)
for (i = 0; i < GraphTraceLen-1; i += 2) {
count += 1;
if ((GraphBuffer[i] > GraphBuffer[i + 1]) && (state != 1)) {
+ // appears redundant - marshmellow
if (state == 0) {
for (j = 0; j < count - 8; j += 16) {
rawbits[rawbit++] = 0;
state = 1;
count = 0;
} else if ((GraphBuffer[i] < GraphBuffer[i + 1]) && (state != 0)) {
+ //appears redundant
if (state == 1) {
for (j = 0; j < count - 8; j += 16) {
rawbits[rawbit++] = 1;
return 1;
}
- //add psk and indala
- ans=CmdIndalaDecode("");
- if (ans>0) {
- PrintAndLog("\nValid Indala ID Found!");
- return 1;
- }
-
ans=CmdAskEM410xDemod("");
if (ans>0) {
PrintAndLog("\nValid EM410x ID Found!");
return 1;
}
+ ans=CmdIndalaDecode("");
+ if (ans>0) {
+ PrintAndLog("\nValid Indala ID Found!");
+ return 1;
+ }
+
ans=CmdPSKNexWatch("");
if (ans>0) {
PrintAndLog("\nValid NexWatch ID Found!");
#define REGULAR_READ_MODE_BLOCK 0xFF\r
\r
// Default configuration\r
-t55xx_conf_block_t config = { .modulation = DEMOD_ASK, .inverted = FALSE, .offset = 0x00, .block0 = 0x00};\r
+t55xx_conf_block_t config = { .modulation = DEMOD_ASK, .inverted = FALSE, .offset = 0x00, .block0 = 0x00, .Q5 = FALSE };\r
\r
t55xx_conf_block_t Get_t55xx_Config(){\r
return config;\r
}\r
\r
int usage_t55xx_config(){\r
- PrintAndLog("Usage: lf t55xx config [d <demodulation>] [i 1] [o <offset>]");\r
+ PrintAndLog("Usage: lf t55xx config [d <demodulation>] [i 1] [o <offset>] [Q5]");\r
PrintAndLog("Options:");\r
PrintAndLog(" h This help");\r
PrintAndLog(" b <8|16|32|40|50|64|100|128> Set bitrate");\r
PrintAndLog(" d <FSK|FSK1|FSK1a|FSK2|FSK2a|ASK|PSK1|PSK2|NRZ|BI|BIa> Set demodulation FSK / ASK / PSK / NRZ / Biphase / Biphase A");\r
PrintAndLog(" i [1] Invert data signal, defaults to normal");\r
PrintAndLog(" o [offset] Set offset, where data should start decode in bitstream");\r
+ PrintAndLog(" Q5 Set as Q5(T5555) chip instead of T55x7");\r
PrintAndLog("");\r
PrintAndLog("Examples:");\r
PrintAndLog(" lf t55xx config d FSK - FSK demodulation");\r
\r
static int CmdHelp(const char *Cmd);\r
\r
+void printT5xxHeader(uint8_t page){\r
+ PrintAndLog("Reading Page %d:", page); \r
+ PrintAndLog("blk | hex data | binary");\r
+ PrintAndLog("----+----------+---------------------------------"); \r
+}\r
+\r
int CmdT55xxSetConfig(const char *Cmd) {\r
\r
uint8_t offset = 0;\r
- bool errors = FALSE;\r
- uint8_t cmdp = 0;\r
char modulation[5] = {0x00};\r
char tmp = 0x00;\r
uint8_t bitRate = 0;\r
uint8_t rates[9] = {8,16,32,40,50,64,100,128,0};\r
- while(param_getchar(Cmd, cmdp) != 0x00 && !errors) {\r
+ uint8_t cmdp = 0;\r
+ config.Q5 = FALSE;\r
+ bool errors = FALSE;\r
+ while(param_getchar(Cmd, cmdp) != 0x00 && !errors)\r
+ {\r
tmp = param_getchar(Cmd, cmdp);\r
switch(tmp)\r
{\r
config.offset = offset;\r
cmdp+=2;\r
break;\r
+ case 'Q':\r
+ case 'q': \r
+ config.Q5 = TRUE;\r
+ cmdp++;\r
+ break;\r
default:\r
PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));\r
errors = TRUE;\r
if (!DecodeT55xxBlock()) return 0;\r
\r
char blk[10]={0};\r
- sprintf(blk,"%d", block);\r
+ sprintf(blk,"%02d", block);\r
printT55xxBlock(blk); \r
return 1;\r
}\r
PrintAndLog("Block must be between 0 and 7");\r
return 0;\r
}\r
- PrintAndLog("Reading Page %d:", page1); \r
- PrintAndLog("blk | hex data | binary");\r
+\r
+ printT5xxHeader(page1);\r
return T55xxReadBlock(block, page1, usepwd, override, password);\r
}\r
\r
ans = FSKrawDemod(cmdStr, FALSE);\r
break;\r
case DEMOD_ASK:\r
- snprintf(cmdStr, sizeof(buf),"%d %d 0", bitRate[config.bitrate], config.inverted );\r
+ snprintf(cmdStr, sizeof(buf),"%d %d 1", bitRate[config.bitrate], config.inverted );\r
ans = ASKDemod(cmdStr, FALSE, FALSE, 1);\r
break;\r
case DEMOD_PSK1:\r
- snprintf(cmdStr, sizeof(buf),"%d %d 0", bitRate[config.bitrate], config.inverted );\r
+ // skip first 160 samples to allow antenna to settle in (psk gets inverted occasionally otherwise)\r
+ CmdLtrim("160");\r
+ snprintf(cmdStr, sizeof(buf),"%d %d 6", bitRate[config.bitrate], config.inverted );\r
ans = PSKDemod(cmdStr, FALSE);\r
break;\r
case DEMOD_PSK2: //inverted won't affect this\r
case DEMOD_PSK3: //not fully implemented\r
- snprintf(cmdStr, sizeof(buf),"%d 0 1", bitRate[config.bitrate] );\r
+ // skip first 160 samples to allow antenna to settle in (psk gets inverted occasionally otherwise)\r
+ CmdLtrim("160");\r
+ snprintf(cmdStr, sizeof(buf),"%d 0 6", bitRate[config.bitrate] );\r
ans = PSKDemod(cmdStr, FALSE);\r
psk1TOpsk2(DemodBuffer, DemodBufferLen);\r
break;\r
break;\r
case DEMOD_BI:\r
case DEMOD_BIa:\r
- snprintf(cmdStr, sizeof(buf),"0 %d %d 0", bitRate[config.bitrate], config.inverted );\r
+ snprintf(cmdStr, sizeof(buf),"0 %d %d 1", bitRate[config.bitrate], config.inverted );\r
ans = ASKbiphaseDemod(cmdStr, FALSE);\r
break;\r
default:\r
\r
int CmdT55xxDetect(const char *Cmd){\r
\r
- bool override = false;\r
+ //bool override = false;\r
//bool pwdmode = false;\r
\r
uint32_t password = 0; //default to blank Block 7\r
bool usepwd = ( strlen(Cmd) > 0); \r
if ( usepwd ){\r
password = param_get32ex(Cmd, 0, 0, 16);\r
- if (param_getchar(Cmd, 1) =='o' )\r
- override = true;\r
+ // if (param_getchar(Cmd, 1) =='o' )\r
+ // override = true;\r
}\r
\r
char cmdp = param_getchar(Cmd, 0);\r
\r
if (strlen(Cmd)==0) {\r
password = param_get32ex(Cmd, 0, 0, 16);\r
- if (param_getchar(Cmd, 1) =='o' ) override = true;\r
+ //if (param_getchar(Cmd, 1) =='o' ) override = true;\r
}\r
\r
if ( !AquireData(T55x7_PAGE0, T55x7_CONFIGURATION_BLOCK, usepwd, password) )\r
int bitRate=0;\r
uint8_t fc1 = 0, fc2 = 0, clk=0;\r
save_restoreGB(1);\r
+ \r
if (GetFskClock("", FALSE, FALSE)){ \r
fskClocks(&fc1, &fc2, &clk, FALSE);\r
- if ( FSKrawDemod("0 0", FALSE) && test(DEMOD_FSK, &tests[hits].offset, &bitRate)){\r
+ if ( FSKrawDemod("0 0", FALSE) && test(DEMOD_FSK, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)){\r
tests[hits].modulation = DEMOD_FSK;\r
if (fc1==8 && fc2 == 5)\r
tests[hits].modulation = DEMOD_FSK1a;\r
tests[hits].block0 = PackBits(tests[hits].offset, 32, DemodBuffer);\r
++hits;\r
}\r
- if ( FSKrawDemod("0 1", FALSE) && test(DEMOD_FSK, &tests[hits].offset, &bitRate)) {\r
+ if ( FSKrawDemod("0 1", FALSE) && test(DEMOD_FSK, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)) {\r
tests[hits].modulation = DEMOD_FSK;\r
if (fc1 == 8 && fc2 == 5)\r
tests[hits].modulation = DEMOD_FSK1;\r
} else {\r
clk = GetAskClock("", FALSE, FALSE);\r
if (clk>0) {\r
- if ( ASKDemod("0 0 0", FALSE, FALSE, 1) && test(DEMOD_ASK, &tests[hits].offset, &bitRate)) {\r
+ if ( ASKDemod("0 0 1", TRUE, FALSE, 1) && test(DEMOD_ASK, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)) {\r
tests[hits].modulation = DEMOD_ASK;\r
tests[hits].bitrate = bitRate;\r
tests[hits].inverted = FALSE;\r
tests[hits].block0 = PackBits(tests[hits].offset, 32, DemodBuffer);\r
++hits;\r
}\r
- if ( ASKDemod("0 1 0", FALSE, FALSE, 1) && test(DEMOD_ASK, &tests[hits].offset, &bitRate)) {\r
+ if ( ASKDemod("0 1 1", TRUE, FALSE, 1) && test(DEMOD_ASK, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)) {\r
tests[hits].modulation = DEMOD_ASK;\r
tests[hits].bitrate = bitRate;\r
tests[hits].inverted = TRUE;\r
tests[hits].block0 = PackBits(tests[hits].offset, 32, DemodBuffer);\r
++hits;\r
}\r
- if ( ASKbiphaseDemod("0 0 0 0", FALSE) && test(DEMOD_BI, &tests[hits].offset, &bitRate) ) {\r
+ if ( ASKbiphaseDemod("0 0 0 2", FALSE) && test(DEMOD_BI, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5) ) {\r
tests[hits].modulation = DEMOD_BI;\r
tests[hits].bitrate = bitRate;\r
tests[hits].inverted = FALSE;\r
tests[hits].block0 = PackBits(tests[hits].offset, 32, DemodBuffer);\r
++hits;\r
}\r
- if ( ASKbiphaseDemod("0 0 1 0", FALSE) && test(DEMOD_BIa, &tests[hits].offset, &bitRate) ) {\r
+ if ( ASKbiphaseDemod("0 0 1 2", FALSE) && test(DEMOD_BIa, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5) ) {\r
tests[hits].modulation = DEMOD_BIa;\r
tests[hits].bitrate = bitRate;\r
tests[hits].inverted = TRUE;\r
save_restoreGB(0);\r
clk = GetNrzClock("", FALSE, FALSE);\r
if (clk>0) {\r
- if ( NRZrawDemod("0 0 1", FALSE) && test(DEMOD_NRZ, &tests[hits].offset, &bitRate)) {\r
+ if ( NRZrawDemod("0 0 1", FALSE) && test(DEMOD_NRZ, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)) {\r
tests[hits].modulation = DEMOD_NRZ;\r
tests[hits].bitrate = bitRate;\r
tests[hits].inverted = FALSE;\r
++hits;\r
}\r
\r
- if ( NRZrawDemod("0 1 1", FALSE) && test(DEMOD_NRZ, &tests[hits].offset, &bitRate)) {\r
+ if ( NRZrawDemod("0 1 1", FALSE) && test(DEMOD_NRZ, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)) {\r
tests[hits].modulation = DEMOD_NRZ;\r
tests[hits].bitrate = bitRate;\r
tests[hits].inverted = TRUE;\r
\r
//undo trim from nrz\r
save_restoreGB(0);\r
+ // skip first 160 samples to allow antenna to settle in (psk gets inverted occasionally otherwise)\r
+ CmdLtrim("160");\r
clk = GetPskClock("", FALSE, FALSE);\r
if (clk>0) {\r
- if ( PSKDemod("0 0 1", FALSE) && test(DEMOD_PSK1, &tests[hits].offset, &bitRate)) {\r
+ if ( PSKDemod("0 0 6", FALSE) && test(DEMOD_PSK1, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)) {\r
tests[hits].modulation = DEMOD_PSK1;\r
tests[hits].bitrate = bitRate;\r
tests[hits].inverted = FALSE;\r
tests[hits].block0 = PackBits(tests[hits].offset, 32, DemodBuffer);\r
++hits;\r
}\r
- if ( PSKDemod("0 1 1", FALSE) && test(DEMOD_PSK1, &tests[hits].offset, &bitRate)) {\r
+ if ( PSKDemod("0 1 6", FALSE) && test(DEMOD_PSK1, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)) {\r
tests[hits].modulation = DEMOD_PSK1;\r
tests[hits].bitrate = bitRate;\r
tests[hits].inverted = TRUE;\r
++hits;\r
}\r
// PSK2 - needs a call to psk1TOpsk2.\r
- if ( PSKDemod("0 0 1", FALSE)) {\r
+ if ( PSKDemod("0 0 6", FALSE)) {\r
psk1TOpsk2(DemodBuffer, DemodBufferLen);\r
- if (test(DEMOD_PSK2, &tests[hits].offset, &bitRate)){\r
+ if (test(DEMOD_PSK2, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)){\r
tests[hits].modulation = DEMOD_PSK2;\r
tests[hits].bitrate = bitRate;\r
tests[hits].inverted = FALSE;\r
}\r
} // inverse waves does not affect this demod\r
// PSK3 - needs a call to psk1TOpsk2.\r
- if ( PSKDemod("0 0 1", FALSE)) {\r
+ if ( PSKDemod("0 0 6", FALSE)) {\r
psk1TOpsk2(DemodBuffer, DemodBufferLen);\r
- if (test(DEMOD_PSK3, &tests[hits].offset, &bitRate)){\r
+ if (test(DEMOD_PSK3, &tests[hits].offset, &bitRate, clk, &tests[hits].Q5)){\r
tests[hits].modulation = DEMOD_PSK3;\r
tests[hits].bitrate = bitRate;\r
tests[hits].inverted = FALSE;\r
} // inverse waves does not affect this demod\r
}\r
} \r
+ save_restoreGB(0); \r
if ( hits == 1) {\r
config.modulation = tests[0].modulation;\r
config.bitrate = tests[0].bitrate;\r
return FALSE;\r
}\r
\r
-bool testBitRate(uint8_t readRate, uint8_t mod){\r
- uint8_t expected[8] = {8, 16, 32, 40, 50, 64, 100, 128};\r
- uint8_t detRate = 0;\r
- switch( mod ){\r
+bool testQ5Modulation(uint8_t mode, uint8_t modread){\r
+ switch( mode ){\r
case DEMOD_FSK:\r
- case DEMOD_FSK1:\r
- case DEMOD_FSK1a:\r
- case DEMOD_FSK2:\r
- case DEMOD_FSK2a:\r
- detRate = GetFskClock("",FALSE, FALSE); \r
- if (expected[readRate] == detRate) \r
- return TRUE;\r
+ if (modread >= 4 && modread <= 5) return TRUE;\r
break;\r
case DEMOD_ASK:\r
- case DEMOD_BI:\r
- case DEMOD_BIa:\r
- detRate = GetAskClock("",FALSE, FALSE); \r
- if (expected[readRate] == detRate) \r
- return TRUE;\r
+ if (modread == 0) return TRUE;\r
break;\r
case DEMOD_PSK1:\r
+ if (modread == 1) return TRUE;\r
+ break;\r
case DEMOD_PSK2:\r
+ if (modread == 2) return TRUE;\r
+ break;\r
case DEMOD_PSK3:\r
- detRate = GetPskClock("",FALSE, FALSE); \r
- if (expected[readRate] == detRate)\r
- return TRUE;\r
+ if (modread == 3) return TRUE;\r
break;\r
case DEMOD_NRZ:\r
- detRate = GetNrzClock("",FALSE, FALSE); \r
- if (expected[readRate] == detRate)\r
- return TRUE;\r
+ if (modread == 7) return TRUE;\r
+ break;\r
+ case DEMOD_BI:\r
+ if (modread == 6) return TRUE;\r
break;\r
default:\r
return FALSE;\r
return FALSE;\r
}\r
\r
-bool test(uint8_t mode, uint8_t *offset, int *fndBitRate){\r
+bool testQ5(uint8_t mode, uint8_t *offset, int *fndBitRate, uint8_t clk){\r
+\r
+ if ( DemodBufferLen < 64 ) return FALSE;\r
+ uint8_t si = 0;\r
+ for (uint8_t idx = 28; idx < 64; idx++){\r
+ si = idx;\r
+ if ( PackBits(si, 28, DemodBuffer) == 0x00 ) continue;\r
+\r
+ uint8_t safer = PackBits(si, 4, DemodBuffer); si += 4; //master key\r
+ uint8_t resv = PackBits(si, 8, DemodBuffer); si += 8;\r
+ // 2nibble must be zeroed.\r
+ if (safer != 0x6) continue;\r
+ if ( resv > 0x00) continue;\r
+ //uint8_t pageSel = PackBits(si, 1, DemodBuffer); si += 1;\r
+ //uint8_t fastWrite = PackBits(si, 1, DemodBuffer); si += 1;\r
+ si += 1+1;\r
+ int bitRate = PackBits(si, 5, DemodBuffer)*2 + 2; si += 5; //bit rate\r
+ if (bitRate > 128 || bitRate < 8) continue;\r
+\r
+ //uint8_t AOR = PackBits(si, 1, DemodBuffer); si += 1; \r
+ //uint8_t PWD = PackBits(si, 1, DemodBuffer); si += 1; \r
+ //uint8_t pskcr = PackBits(si, 2, DemodBuffer); si += 2; //could check psk cr\r
+ //uint8_t inverse = PackBits(si, 1, DemodBuffer); si += 1;\r
+ si += 1+1+2+1;\r
+ uint8_t modread = PackBits(si, 3, DemodBuffer); si += 3;\r
+ uint8_t maxBlk = PackBits(si, 3, DemodBuffer); si += 3;\r
+ //uint8_t ST = PackBits(si, 1, DemodBuffer); si += 1;\r
+ if (maxBlk == 0) continue;\r
+ //test modulation\r
+ if (!testQ5Modulation(mode, modread)) continue;\r
+ if (bitRate != clk) continue;\r
+ *fndBitRate = bitRate;\r
+ *offset = idx;\r
+\r
+ return TRUE;\r
+ }\r
+ return FALSE;\r
+}\r
+\r
+bool testBitRate(uint8_t readRate, uint8_t clk){\r
+ uint8_t expected[] = {8, 16, 32, 40, 50, 64, 100, 128};\r
+ if (expected[readRate] == clk)\r
+ return true;\r
+\r
+ return false;\r
+}\r
+\r
+bool test(uint8_t mode, uint8_t *offset, int *fndBitRate, uint8_t clk, bool *Q5){\r
\r
if ( DemodBufferLen < 64 ) return FALSE;\r
uint8_t si = 0;\r
- for (uint8_t idx = 0; idx < 64; idx++){\r
+ for (uint8_t idx = 28; idx < 64; idx++){\r
si = idx;\r
- if ( PackBits(si, 32, DemodBuffer) == 0x00 ) continue;\r
+ if ( PackBits(si, 28, DemodBuffer) == 0x00 ) continue;\r
\r
uint8_t safer = PackBits(si, 4, DemodBuffer); si += 4; //master key\r
uint8_t resv = PackBits(si, 4, DemodBuffer); si += 4; //was 7 & +=7+3 //should be only 4 bits if extended mode\r
}\r
//test modulation\r
if (!testModulation(mode, modread)) continue;\r
- if (!testBitRate(bitRate, mode)) continue;\r
+ if (!testBitRate(bitRate, clk)) continue;\r
*fndBitRate = bitRate;\r
*offset = idx;\r
+ *Q5 = FALSE;\r
+ return TRUE;\r
+ }\r
+ if (testQ5(mode, offset, fndBitRate, clk)) {\r
+ *Q5 = TRUE;\r
return TRUE;\r
}\r
return FALSE;\r
bits[i - config.offset] = DemodBuffer[i];\r
\r
blockData = PackBits(0, 32, bits);\r
- PrintAndLog("%s | %08X | %s", blockNum, blockData, sprint_bin(bits,32));\r
+\r
+ PrintAndLog(" %s | %08X | %s", blockNum, blockData, sprint_bin(bits,32));\r
}\r
\r
int special(const char *Cmd) {\r
}\r
\r
int printConfiguration( t55xx_conf_block_t b){\r
+ PrintAndLog("Chip Type : %s", (b.Q5) ? "T5555(Q5)" : "T55x7");\r
PrintAndLog("Modulation : %s", GetSelectedModulationStr(b.modulation) );\r
PrintAndLog("Bit Rate : %s", GetBitRateStr(b.bitrate) );\r
PrintAndLog("Inverted : %s", (b.inverted) ? "Yes" : "No" );\r
else\r
year += 2010;\r
\r
+ if (config.Q5) PrintAndLog("*** Warning *** Info read off a Q5 will not work as expected");\r
if ( acl != 0xE0 ) {\r
PrintAndLog("The modulation is most likely wrong since the ACL is not 0xE0. ");\r
return 0;\r
}\r
-\r
PrintAndLog("");\r
PrintAndLog("-- T55xx Trace Information ----------------------------------");\r
PrintAndLog("-------------------------------------------------------------");\r
uint32_t fw = PackBits(si, 1, DemodBuffer); si += 1;\r
uint32_t inv = PackBits(si, 1, DemodBuffer); si += 1; \r
uint32_t por = PackBits(si, 1, DemodBuffer); si += 1;\r
- \r
+ if (config.Q5) PrintAndLog("*** Warning *** Config Info read off a Q5 will not display as expected");\r
PrintAndLog("");\r
PrintAndLog("-- T55xx Configuration & Tag Information --------------------");\r
PrintAndLog("-------------------------------------------------------------");\r
override = true;\r
}\r
\r
- PrintAndLog("Reading Page 0:"); \r
- PrintAndLog("blk | hex data | binary");\r
- for ( uint8_t i = 0; i < 8; ++i){\r
+ printT5xxHeader(0);\r
+ for ( uint8_t i = 0; i < 8; ++i)\r
T55xxReadBlock(i, 0, usepwd, override, password);\r
- }\r
- PrintAndLog("Reading Page 1:"); \r
- PrintAndLog("blk | hex data | binary");\r
- for ( uint8_t i = 0; i < 4; i++){\r
+\r
+ printT5xxHeader(1);\r
+ for ( uint8_t i = 0; i < 4; i++)\r
T55xxReadBlock(i, 1, usepwd, override, password); \r
- }\r
+\r
return 1;\r
}\r
\r
return 1;\r
}\r
\r
+int CmdT55xxWipe(const char *Cmd) {\r
+ char writeData[20] = {0};\r
+ char *ptrData = writeData;\r
+ uint8_t blk = 0;\r
+ PrintAndLog("\nBeginning Wipe of a T55xx tag (assuming the tag is not password protected)\n");\r
+ //try with the default password to reset block 0 (with a pwd should work even if pwd bit not set)\r
+ snprintf(ptrData,sizeof(writeData),"b %d d 00088040 p 0", blk);\r
+ if (!CmdT55xxWriteBlock(ptrData)){\r
+ PrintAndLog("Error writing blk %d", blk);\r
+ }\r
+ blk = 1;\r
+ for (; blk<8; blk++) {\r
+ snprintf(ptrData,sizeof(writeData),"b %d d 0", blk);\r
+ if (!CmdT55xxWriteBlock(ptrData)){\r
+ PrintAndLog("Error writing blk %d", blk);\r
+ }\r
+ }\r
+ return 0;\r
+}\r
+\r
static command_t CommandTable[] =\r
{\r
{"help", CmdHelp, 1, "This help"},\r
{"read", CmdT55xxReadBlock, 0, "b <block> p [password] [o] [1] -- Read T55xx block data. Optional [p password], [override], [page1]"},\r
{"resetread",CmdResetRead, 0, "Send Reset Cmd then lf read the stream to attempt to identify the start of it (needs a demod and/or plot after)"},\r
{"write", CmdT55xxWriteBlock,0, "b <block> d <data> p [password] [1] -- Write T55xx block data. Optional [p password], [page1]"},\r
- {"trace", CmdT55xxReadTrace, 0, "[1] Show T55xx traceability data (page 1/ blk 0-1)"},\r
- {"info", CmdT55xxInfo, 0, "[1] Show T55xx configuration data (page 0/ blk 0)"},\r
+ {"trace", CmdT55xxReadTrace, 0, "[1] Show T55x7 traceability data (page 1/ blk 0-1)"},\r
+ {"info", CmdT55xxInfo, 0, "[1] Show T55x7 configuration data (page 0/ blk 0)"},\r
{"dump", CmdT55xxDump, 0, "[password] [o] Dump T55xx card block 0-7. Optional [password], [override]"},\r
{"special", special, 0, "Show block changes with 64 different offsets"},\r
{"wakeup", CmdT55xxWakeUp, 0, "Send AOR wakeup command"},\r
+ {"wipe", CmdT55xxWipe, 0, "Wipe a T55xx tag and set defaults (will destroy any data on tag)"},\r
{NULL, NULL, 0, NULL}\r
};\r
\r
RF_100 = 0x06,\r
RF_128 = 0x07,\r
} bitrate;\r
+ bool Q5;\r
} t55xx_conf_block_t;\r
t55xx_conf_block_t Get_t55xx_Config();\r
void Set_t55xx_Config(t55xx_conf_block_t conf);\r
int CmdT55xxInfo(const char *Cmd);\r
int CmdT55xxDetect(const char *Cmd);\r
int CmdResetRead(const char *Cmd);\r
+int CmdT55xxWipe(const char *Cmd);\r
\r
char * GetBitRateStr(uint32_t id);\r
char * GetSaferStr(uint32_t id);\r
char * GetModelStrFromCID(uint32_t cid);\r
char * GetSelectedModulationStr( uint8_t id);\r
uint32_t PackBits(uint8_t start, uint8_t len, uint8_t *bitstream);\r
+void printT5xxHeader(uint8_t page);\r
void printT55xxBlock(const char *demodStr);\r
int printConfiguration( t55xx_conf_block_t b);\r
\r
bool DecodeT55xxBlock();\r
bool tryDetectModulation();\r
-bool test(uint8_t mode, uint8_t *offset, int *fndBitRate);\r
+bool test(uint8_t mode, uint8_t *offset, int *fndBitRate, uint8_t clk, bool *Q5);\r
int special(const char *Cmd);\r
int AquireData( uint8_t page, uint8_t block, bool pwdmode, uint32_t password );\r
\r
//see ASKDemod for what args are accepted
int CmdVikingDemod(const char *Cmd)
{
- CmdLFRead("s");
- getSamples("30000",false);
+ //CmdLFRead("s");
+ //getSamples("30000",false);
if (!ASKDemod(Cmd, false, false, 1)) {
if (g_debugMode) PrintAndLog("ASKDemod failed");
int ans = VikingDemod_AM(DemodBuffer, &size);
if (ans < 0) {
- if (g_debugMode) PrintAndLog("Error Viking_Demod");
+ if (g_debugMode) PrintAndLog("Error Viking_Demod %d", ans);
return 0;
}
//got a good demod
#include <stdlib.h>
#include <string.h>
#include "lfdemod.h"
+#include "common.h"
+
+/* //un_comment to allow debug print calls when used not on device
+void dummy(char *fmt, ...){}
+
+#ifndef ON_DEVICE
+#include "ui.h"
+#define prnt PrintAndLog
+#else
+
+#define prnt dummy
+#endif
+*/
+
uint8_t justNoise(uint8_t *BitStream, size_t size)
{
static const uint8_t THRESHOLD = 123;
// sync to first lo-hi transition, and threshold
// Need to threshold first sample
-
- if(dest[0] < threshold_value) dest[0] = 0;
+ // skip 160 samples to allow antenna/samples to settle
+ if(dest[160] < threshold_value) dest[0] = 0;
else dest[0] = 1;
size_t numBits = 0;
// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
- for(idx = 1; idx < size; idx++) {
+ for(idx = 161; idx < size-20; idx++) {
// threshold current value
if (dest[idx] < threshold_value) dest[idx] = 0;
preLastSample = LastSample;
LastSample = currSample;
currSample = idx-last_transition;
- if (currSample < (fclow-2)){ //0-5 = garbage noise
+ if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3)
//do nothing with extra garbage
- } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves
- if (LastSample > (fchigh-2) && preLastSample < (fchigh-1)){
- dest[numBits-1]=1; //correct last 9 wave surrounded by 8 waves
+ } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves or 3-6 = 5
+ if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1) || preLastSample == 0 )){
+ dest[numBits-1]=1; //correct previous 9 wave surrounded by 8 waves
}
dest[numBits++]=1;
- } else if (currSample > (fchigh+1) && !numBits) { //12 + and first bit = garbage
+ } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = garbage
//do nothing with beginning garbage
} else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's
dest[numBits++]=1;
//if lastval was 1, we have a 1->0 crossing
if (dest[idx-1]==1) {
- if (!numBits && n < rfLen/fclow) {
- n=0;
- lastval = dest[idx];
- continue;
- }
n = (n * fclow + rfLen/2) / rfLen;
} else {// 0->1 crossing
- //test first bitsample too small
- if (!numBits && n < rfLen/fchigh) {
- n=0;
- lastval = dest[idx];
- continue;
- }
n = (n * fchigh + rfLen/2) / rfLen;
}
if (n == 0) n = 1;
}
return numBits;
}
+
//by marshmellow (from holiman's base)
// full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
}
// by marshmellow
-// FSK Demod then try to locate an Farpointe Data (pyramid) ID
+// FSK Demod then try to locate a Farpointe Data (pyramid) ID
int PyramiddemodFSK(uint8_t *dest, size_t *size)
{
//make sure buffer has data
// to detect a wave that has heavily clipped (clean) samples
uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
{
- uint16_t allPeaks=1;
+ bool allArePeaks = true;
uint16_t cntPeaks=0;
- size_t loopEnd = 512+60;
+ size_t loopEnd = 512+160;
if (loopEnd > size) loopEnd = size;
- for (size_t i=60; i<loopEnd; i++){
+ for (size_t i=160; i<loopEnd; i++){
if (dest[i]>low && dest[i]<high)
- allPeaks=0;
+ allArePeaks = false;
else
cntPeaks++;
}
- if (allPeaks == 0){
- if (cntPeaks > 300) return 1;
+ if (!allArePeaks){
+ if (cntPeaks > 300) return true;
}
- return allPeaks;
+ return allArePeaks;
}
-
// by marshmellow
// to help detect clocks on heavily clipped samples
// based on count of low to low
{
uint8_t fndClk[] = {8,16,32,40,50,64,128};
size_t startwave;
- size_t i = 0;
+ size_t i = 100;
size_t minClk = 255;
// get to first full low to prime loop and skip incomplete first pulse
while ((dest[i] < high) && (i < size))
minClk = i - startwave;
}
// set clock
+ //prnt("minClk: %d",minClk);
for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
return fndClk[clkCnt];
uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255};
uint8_t clkEnd = 9;
uint8_t loopCnt = 255; //don't need to loop through entire array...
- if (size <= loopCnt) return -1; //not enough samples
-
+ if (size <= loopCnt+60) return -1; //not enough samples
+ size -= 60; //sometimes there is a strange end wave - filter out this....
//if we already have a valid clock
uint8_t clockFnd=0;
for (;i<clkEnd;++i)
}
//if we found no errors then we can stop here and a low clock (common clocks)
// this is correct one - return this clock
- //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
+ //prnt("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
if(errCnt==0 && clkCnt<7) {
if (!clockFnd) *clock = clk[clkCnt];
return ii;
uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
uint16_t loopCnt = 4096; //don't need to loop through entire array...
if (size == 0) return 0;
- if (size<loopCnt) loopCnt = size;
+ if (size<loopCnt) loopCnt = size-20;
//if we already have a valid clock quit
size_t i=1;
uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
fc = countFC(dest, size, 0);
if (fc!=2 && fc!=4 && fc!=8) return -1;
- //PrintAndLog("DEBUG: FC: %d",fc);
+ //prnt("DEBUG: FC: %d",fc);
//find first full wave
- for (i=0; i<loopCnt; i++){
+ for (i=160; i<loopCnt; i++){
if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
if (waveStart == 0) {
waveStart = i+1;
- //PrintAndLog("DEBUG: waveStart: %d",waveStart);
+ //prnt("DEBUG: waveStart: %d",waveStart);
} else {
waveEnd = i+1;
- //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
+ //prnt("DEBUG: waveEnd: %d",waveEnd);
waveLenCnt = waveEnd-waveStart;
if (waveLenCnt > fc){
firstFullWave = waveStart;
}
}
}
- //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
+ //prnt("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
//test each valid clock from greatest to smallest to see which lines up
for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
waveStart = 0;
errCnt=0;
peakcnt=0;
- //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
+ //prnt("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
//top edge of wave = start of new wave
waveLenCnt = waveEnd-waveStart;
if (waveLenCnt > fc){
//if this wave is a phase shift
- //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
+ //prnt("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
peakcnt++;
lastClkBit+=clk[clkCnt];
if (peaksdet[i] > peaksdet[best]) {
best = i;
}
- //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
+ //prnt("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
}
return clk[best];
}
+int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){
+ //find shortest transition from high to low
+ size_t i = 0;
+ size_t transition1 = 0;
+ int lowestTransition = 255;
+ bool lastWasHigh = false;
+
+ //find first valid beginning of a high or low wave
+ while ((dest[i] >= peak || dest[i] <= low) && (i < size))
+ ++i;
+ while ((dest[i] < peak && dest[i] > low) && (i < size))
+ ++i;
+ lastWasHigh = (dest[i] >= peak);
+
+ if (i==size) return 0;
+ transition1 = i;
+
+ for (;i < size; i++) {
+ if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) {
+ lastWasHigh = (dest[i] >= peak);
+ if (i-transition1 < lowestTransition) lowestTransition = i-transition1;
+ transition1 = i;
+ }
+ }
+ //prnt("DEBUG: LowestTrs: %d",lowestTransition);
+ if (lowestTransition == 255) lowestTransition = 0;
+ return lowestTransition;
+}
+
//by marshmellow
//detect nrz clock by reading #peaks vs no peaks(or errors)
int DetectNRZClock(uint8_t dest[], size_t size, int clock)
uint8_t clk[]={8,16,32,40,50,64,100,128,255};
size_t loopCnt = 4096; //don't need to loop through entire array...
if (size == 0) return 0;
- if (size<loopCnt) loopCnt = size;
-
+ if (size<loopCnt) loopCnt = size-20;
//if we already have a valid clock quit
for (; i < 8; ++i)
if (clk[i] == clock) return clock;
int peak, low;
if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0;
- //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
+ int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low);
size_t ii;
uint8_t clkCnt;
uint8_t tol = 0;
- uint16_t peakcnt=0;
- uint16_t peaksdet[]={0,0,0,0,0,0,0,0};
- uint16_t maxPeak=0;
+ uint16_t smplCnt = 0;
+ int16_t peakcnt = 0;
+ int16_t peaksdet[] = {0,0,0,0,0,0,0,0};
+ uint16_t maxPeak = 255;
+ bool firstpeak = false;
//test for large clipped waves
for (i=0; i<loopCnt; i++){
if (dest[i] >= peak || dest[i] <= low){
- peakcnt++;
+ if (!firstpeak) continue;
+ smplCnt++;
} else {
- if (peakcnt>0 && maxPeak < peakcnt){
- maxPeak = peakcnt;
+ firstpeak=true;
+ if (smplCnt > 6 ){
+ if (maxPeak > smplCnt){
+ maxPeak = smplCnt;
+ //prnt("maxPk: %d",maxPeak);
+ }
+ peakcnt++;
+ //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
+ smplCnt=0;
}
- peakcnt=0;
}
}
+ bool errBitHigh = 0;
+ bool bitHigh = 0;
+ uint8_t ignoreCnt = 0;
+ uint8_t ignoreWindow = 4;
+ bool lastPeakHigh = 0;
+ int lastBit = 0;
peakcnt=0;
//test each valid clock from smallest to greatest to see which lines up
for(clkCnt=0; clkCnt < 8; ++clkCnt){
- //ignore clocks smaller than largest peak
- if (clk[clkCnt]<maxPeak) continue;
-
+ //ignore clocks smaller than smallest peak
+ if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue;
//try lining up the peaks by moving starting point (try first 256)
- for (ii=0; ii< loopCnt; ++ii){
+ for (ii=20; ii < loopCnt; ++ii){
if ((dest[ii] >= peak) || (dest[ii] <= low)){
peakcnt=0;
- // now that we have the first one lined up test rest of wave array
- for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
- if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
+ bitHigh = false;
+ ignoreCnt = 0;
+ lastBit = ii-clk[clkCnt];
+ //loop through to see if this start location works
+ for (i = ii; i < size-20; ++i) {
+ //if we are at a clock bit
+ if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) {
+ //test high/low
+ if (dest[i] >= peak || dest[i] <= low) {
+ //if same peak don't count it
+ if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) {
peakcnt++;
+ }
+ lastPeakHigh = (dest[i] >= peak);
+ bitHigh = true;
+ errBitHigh = false;
+ ignoreCnt = ignoreWindow;
+ lastBit += clk[clkCnt];
+ } else if (i == lastBit + clk[clkCnt] + tol) {
+ lastBit += clk[clkCnt];
+ }
+ //else if not a clock bit and no peaks
+ } else if (dest[i] < peak && dest[i] > low){
+ if (ignoreCnt==0){
+ bitHigh=false;
+ if (errBitHigh==true) peakcnt--;
+ errBitHigh=false;
+ } else {
+ ignoreCnt--;
+ }
+ // else if not a clock bit but we have a peak
+ } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) {
+ //error bar found no clock...
+ errBitHigh=true;
}
}
if(peakcnt>peaksdet[clkCnt]) {
int iii=7;
uint8_t best=0;
for (iii=7; iii > 0; iii--){
- if (peaksdet[iii] > peaksdet[best]){
+ if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) {
+ if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) {
best = iii;
}
- //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
+ } else if (peaksdet[iii] > peaksdet[best]){
+ best = iii;
+ }
+ //prnt("DEBUG: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
}
+
return clk[best];
}
return (int) startidx;
}
-// by marshmellow - demodulate NRZ wave (both similar enough)
+// by marshmellow - demodulate NRZ wave
// peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
-// there probably is a much simpler way to do this....
-int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int maxErr)
-{
+int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){
if (justNoise(dest, *size)) return -1;
*clk = DetectNRZClock(dest, *size, *clk);
if (*clk==0) return -2;
size_t i, gLen = 4096;
- if (gLen>*size) gLen = *size;
+ if (gLen>*size) gLen = *size-20;
int high, low;
if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
- int lastBit = 0; //set first clock check
- size_t iii = 0, bitnum = 0; //bitnum counter
- uint16_t errCnt = 0, MaxBits = 1000;
- size_t bestErrCnt = maxErr+1;
- size_t bestPeakCnt = 0, bestPeakStart = 0;
- uint8_t bestFirstPeakHigh=0, firstPeakHigh=0, curBit=0, bitHigh=0, errBitHigh=0;
- uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
- uint16_t peakCnt=0;
- uint8_t ignoreWindow=4;
- uint8_t ignoreCnt=ignoreWindow; //in case of noise near peak
- //loop to find first wave that works - align to clock
- for (iii=0; iii < gLen; ++iii){
- if ((dest[iii]>=high) || (dest[iii]<=low)){
- if (dest[iii]>=high) firstPeakHigh=1;
- else firstPeakHigh=0;
- lastBit=iii-*clk;
- peakCnt=0;
- errCnt=0;
- //loop through to see if this start location works
- for (i = iii; i < *size; ++i) {
- // if we are at a clock bit
- if ((i >= lastBit + *clk - tol) && (i <= lastBit + *clk + tol)) {
- //test high/low
- if (dest[i] >= high || dest[i] <= low) {
- bitHigh = 1;
- peakCnt++;
- errBitHigh = 0;
- ignoreCnt = ignoreWindow;
- lastBit += *clk;
- } else if (i == lastBit + *clk + tol) {
- lastBit += *clk;
- }
- //else if no bars found
- } else if (dest[i] < high && dest[i] > low){
- if (ignoreCnt==0){
- bitHigh=0;
- if (errBitHigh==1) errCnt++;
- errBitHigh=0;
- } else {
- ignoreCnt--;
- }
- } else if ((dest[i]>=high || dest[i]<=low) && (bitHigh==0)) {
- //error bar found no clock...
- errBitHigh=1;
- }
- if (((i-iii) / *clk)>=MaxBits) break;
- }
- //we got more than 64 good bits and not all errors
- if (((i-iii) / *clk) > 64 && (errCnt <= (maxErr))) {
- //possible good read
- if (!errCnt || peakCnt > bestPeakCnt){
- bestFirstPeakHigh=firstPeakHigh;
- bestErrCnt = errCnt;
- bestPeakCnt = peakCnt;
- bestPeakStart = iii;
- if (!errCnt) break; //great read - finish
- }
- }
- }
+
+ uint8_t bit=0;
+ //convert wave samples to 1's and 0's
+ for(i=20; i < *size-20; i++){
+ if (dest[i] >= high) bit = 1;
+ if (dest[i] <= low) bit = 0;
+ dest[i] = bit;
}
- //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart);
- if (bestErrCnt > maxErr) return bestErrCnt;
-
- //best run is good enough set to best run and set overwrite BinStream
- lastBit = bestPeakStart - *clk;
- memset(dest, bestFirstPeakHigh^1, bestPeakStart / *clk);
- bitnum += (bestPeakStart / *clk);
- for (i = bestPeakStart; i < *size; ++i) {
- // if expecting a clock bit
- if ((i >= lastBit + *clk - tol) && (i <= lastBit + *clk + tol)) {
- // test high/low
- if (dest[i] >= high || dest[i] <= low) {
- peakCnt++;
- bitHigh = 1;
- errBitHigh = 0;
- ignoreCnt = ignoreWindow;
- curBit = *invert;
- if (dest[i] >= high) curBit ^= 1;
- dest[bitnum++] = curBit;
- lastBit += *clk;
- //else no bars found in clock area
- } else if (i == lastBit + *clk + tol) {
- dest[bitnum++] = curBit;
- lastBit += *clk;
- }
- //else if no bars found
- } else if (dest[i] < high && dest[i] > low){
- if (ignoreCnt == 0){
- bitHigh = 0;
- if (errBitHigh == 1){
- dest[bitnum++] = 7;
- errCnt++;
- }
- errBitHigh=0;
- } else {
- ignoreCnt--;
- }
- } else if ((dest[i] >= high || dest[i] <= low) && (bitHigh == 0)) {
- //error bar found no clock...
- errBitHigh=1;
+ //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
+ size_t lastBit = 0;
+ size_t numBits = 0;
+ for(i=21; i < *size-20; i++) {
+ //if transition detected or large number of same bits - store the passed bits
+ if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) {
+ memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk);
+ numBits += (i - lastBit + (*clk/4)) / *clk;
+ lastBit = i-1;
}
- if (bitnum >= MaxBits) break;
}
- *size = bitnum;
- return bestErrCnt;
+ *size = numBits;
+ return 0;
}
//by marshmellow
size_t i;
if (size == 0) return 0;
- uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
+ uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
rfLensFnd=0;
fcCounter=0;
rfCounter=0;
firstBitFnd=0;
//PrintAndLog("DEBUG: fcTol: %d",fcTol);
- // prime i to first up transition
- for (i = 1; i < size-1; i++)
+ // prime i to first peak / up transition
+ for (i = 160; i < size-20; i++)
if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
break;
- for (; i < size-1; i++){
+ for (; i < size-20; i++){
fcCounter++;
rfCounter++;
//not the same size as the last wave - start of new bit sequence
if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit
for (int ii=0; ii<15; ii++){
- if (rfLens[ii] == rfCounter){
+ if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){
rfCnts[ii]++;
rfCounter = 0;
break;
uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
for (i=0; i<15; i++){
- //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
+ //prnt("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
//get highest 2 RF values (might need to get more values to compare or compare all?)
if (rfCnts[i]>rfCnts[rfHighest]){
rfHighest3=rfHighest2;
// we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
uint8_t tol1 = fcHigh+1;
- //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
+ //prnt("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
// loop to find the highest clock that has a remainder less than the tolerance
// compare samples counted divided by
+ // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
int ii=7;
- for (; ii>=0; ii--){
+ for (; ii>=2; ii--){
if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
//mainly used for FSK field clock detection
uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
{
- uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
- uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
+ uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint8_t fcLensFnd = 0;
uint8_t lastFCcnt=0;
uint8_t fcCounter = 0;
if (size == 0) return 0;
// prime i to first up transition
- for (i = 1; i < size-1; i++)
+ for (i = 160; i < size-20; i++)
if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
break;
- for (; i < size-1; i++){
+ for (; i < size-20; i++){
if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
// new up transition
fcCounter++;
lastFCcnt = fcCounter;
}
// find which fcLens to save it to:
- for (int ii=0; ii<10; ii++){
+ for (int ii=0; ii<15; ii++){
if (fcLens[ii]==fcCounter){
fcCnts[ii]++;
fcCounter=0;
break;
}
}
- if (fcCounter>0 && fcLensFnd<10){
+ if (fcCounter>0 && fcLensFnd<15){
//add new fc length
fcCnts[fcLensFnd]++;
fcLens[fcLensFnd++]=fcCounter;
}
}
- uint8_t best1=9, best2=9, best3=9;
+ uint8_t best1=14, best2=14, best3=14;
uint16_t maxCnt1=0;
// go through fclens and find which ones are bigest 2
- for (i=0; i<10; i++){
- // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt);
+ for (i=0; i<15; i++){
+ //prnt("DEBUG: FC %d, Cnt %d",fcLens[i],fcCnts[i]);
// get the 3 best FC values
if (fcCnts[i]>maxCnt1) {
best3=best2;
best3=i;
}
}
+ if (fcLens[best1]==0) return 0;
uint8_t fcH=0, fcL=0;
if (fcLens[best1]>fcLens[best2]){
fcH=fcLens[best1];
fcH=fcLens[best2];
fcL=fcLens[best1];
}
+ //prnt("DEBUG: dd %d > %d",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
+ if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) return 0; //lots of waves not psk or fsk
// TODO: take top 3 answers and compare to known Field clocks to get top 2
uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
- // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);
+ //prnt("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);
if (fskAdj) return fcs;
return fcLens[best1];
}
uint16_t loopCnt = 4096; //don't need to loop through entire array...
if (*size<loopCnt) loopCnt = *size;
+ size_t numBits=0;
uint8_t curPhase = *invert;
size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
uint8_t fc=0, fullWaveLen=0, tol=1;
waveEnd = i+1;
//PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
waveLenCnt = waveEnd-waveStart;
- if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave
+ if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+2)){ //not first peak and is a large wave but not out of whack
lastAvgWaveVal = avgWaveVal/(waveLenCnt);
firstFullWave = waveStart;
fullWaveLen=waveLenCnt;
}
avgWaveVal += dest[i+2];
}
+ if (firstFullWave == 0) {
+ // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
+ // so skip a little to ensure we are past any Start Signal
+ firstFullWave = 160;
+ memset(dest, curPhase, firstFullWave / *clock);
+ } else {
+ memset(dest, curPhase^1, firstFullWave / *clock);
+ }
+ //advance bits
+ numBits += (firstFullWave / *clock);
+ //set start of wave as clock align
+ lastClkBit = firstFullWave;
//PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
- lastClkBit = firstFullWave; //set start of wave as clock align
//PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
waveStart = 0;
- size_t numBits=0;
- //set skipped bits
- memset(dest, curPhase^1, firstFullWave / *clock);
- numBits += (firstFullWave / *clock);
dest[numBits++] = curPhase; //set first read bit
for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
//top edge of wave = start of new wave
uint32_t manchesterEncode2Bytes(uint16_t datain);
int ManchesterEncode(uint8_t *BitStream, size_t size);
int manrawdecode(uint8_t *BitStream, size_t *size, uint8_t invert);
-int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int maxErr);
+int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert);
uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType);
uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx);
int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert);