]> cvs.zerfleddert.de Git - proxmark3-svn/commitdiff
Merge branch 'master' into GenericTracing
authorMartin Holst Swende <martin@swende.se>
Fri, 6 Feb 2015 07:41:02 +0000 (08:41 +0100)
committerMartin Holst Swende <martin@swende.se>
Fri, 6 Feb 2015 07:41:02 +0000 (08:41 +0100)
Conflicts:
armsrc/iso14443.c
armsrc/iso14443a.c
client/cmdhf.c
client/cmdhf14b.c

1  2 
armsrc/appmain.c
armsrc/iso14443.c
armsrc/iso14443a.c
armsrc/util.c
armsrc/util.h
client/cmdhf.c
client/cmdhf14b.c

diff --combined armsrc/appmain.c
index bca31533de32f2c426ce2ed05e9db829c4d2f138,cb1b9f73fee185ddf706e2e6720a348bb517799d..7c50a51ec89bc183c145aacdc4ace0227ad9b31d
@@@ -23,7 -23,7 +23,7 @@@
  
  #include "legicrf.h"
  #include <hitag2.h>
+ #include "lfsampling.h"
  #ifdef WITH_LCD
   #include "LCD.h"
  #endif
@@@ -42,12 -42,6 +42,6 @@@ int ToSendMax
  static int ToSendBit;
  struct common_area common_area __attribute__((section(".commonarea")));
  
- void BufferClear(void)
- {
-       memset(BigBuf,0,sizeof(BigBuf));
-       Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
- }
  void ToSendReset(void)
  {
        ToSendMax = -1;
@@@ -246,7 -240,10 +240,10 @@@ void MeasureAntennaTuningHf(void
  
  void SimulateTagHfListen(void)
  {
-       uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
+       // ToDo: historically this used the free buffer, which was 2744 Bytes long. 
+       // There might be a better size to be defined:
+       #define HF_14B_SNOOP_BUFFER_SIZE 2744
+       uint8_t *dest = BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE);
        uint8_t v = 0;
        int i;
        int p = 0;
                                p = 0;
                                i++;
  
-                               if(i >= FREE_BUFFER_SIZE) {
+                               if(i >= HF_14B_SNOOP_BUFFER_SIZE) {
                                        break;
                                }
                        }
@@@ -629,16 -626,17 +626,17 @@@ void UsbPacketReceived(uint8_t *packet
    
        switch(c->cmd) {
  #ifdef WITH_LF
+               case CMD_SET_LF_SAMPLING_CONFIG:
+                       setSamplingConfig((sample_config *) c->d.asBytes);
+                       break;
                case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
-                       AcquireRawAdcSamples125k(c->arg[0]);
-                       cmd_send(CMD_ACK,0,0,0,0,0);
+                       cmd_send(CMD_ACK,SampleLF(),0,0,0,0);
                        break;
                case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
                        ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
                        break;
                case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
-                       SnoopLFRawAdcSamples(c->arg[0], c->arg[1]);
-                       cmd_send(CMD_ACK,0,0,0,0,0);
+                       cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
                        break;
                case CMD_HID_DEMOD_FSK:
                        CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
                case CMD_MIFAREU_READBL:
                        MifareUReadBlock(c->arg[0],c->d.asBytes);
                        break;
+               case CMD_MIFAREUC_AUTH1:
+                       MifareUC_Auth1(c->arg[0],c->d.asBytes);
+                       break;
+               case CMD_MIFAREUC_AUTH2:
+                       MifareUC_Auth2(c->arg[0],c->d.asBytes);
+                       break;
                case CMD_MIFAREU_READCARD:
                        MifareUReadCard(c->arg[0], c->arg[1], c->d.asBytes);
-                         break;
+                       break;
+               case CMD_MIFAREUC_READCARD:
+                       MifareUReadCard(c->arg[0], c->arg[1], c->d.asBytes);
+                       break;
                case CMD_MIFARE_READSC:
                        MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
                        break;
                case CMD_MIFARE_SNIFFER:
                        SniffMifare(c->arg[0]);
                        break;
  #endif
  
  #ifdef WITH_ICLASS
                        break;
  
                case CMD_BUFF_CLEAR:
-                       BufferClear();
+                       BigBuf_Clear();
                        break;
  
                case CMD_MEASURE_ANTENNA_TUNING:
                case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
  
                        LED_B_ON();
+                       uint8_t *BigBuf = BigBuf_get_addr();
                        for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
                                size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
-                               cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,0,((byte_t*)BigBuf)+c->arg[0]+i,len);
+                               cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,traceLen,BigBuf+c->arg[0]+i,len);
                        }
                        // Trigger a finish downloading signal with an ACK frame
-                       cmd_send(CMD_ACK,0,0,0,0,0);
+                       cmd_send(CMD_ACK,1,0,traceLen,getSamplingConfig(),sizeof(sample_config));
                        LED_B_OFF();
                        break;
  
                case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
-                       uint8_t *b = (uint8_t *)BigBuf;
+                       uint8_t *b = BigBuf_get_addr();
                        memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
                        cmd_send(CMD_ACK,0,0,0,0,0);
                        break;
  void  __attribute__((noreturn)) AppMain(void)
  {
        SpinDelay(100);
 -
 +      clear_trace();
        if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
                /* Initialize common area */
                memset(&common_area, 0, sizeof(common_area));
diff --combined armsrc/iso14443.c
index 1191c5bf5996f89ff9d9495438b282b688b11009,6a2e4d6a41b90e3a11d4392b42b4a15ed43211b0..92d0578207bb3ff57a56f7aa646145bac4696a2f
  
  //static void GetSamplesFor14443(int weTx, int n);
  
 -#define DEMOD_TRACE_SIZE 4096
 +/*#define DEMOD_TRACE_SIZE 4096
  #define READER_TAG_BUFFER_SIZE 2048
  #define TAG_READER_BUFFER_SIZE 2048
  #define DEMOD_DMA_BUFFER_SIZE 1024
 -
 +*/
  //=============================================================================
  // An ISO 14443 Type B tag. We listen for commands from the reader, using
  // a UART kind of thing that's implemented in software. When we get a
  //-----------------------------------------------------------------------------
  static void CodeIso14443bAsTag(const uint8_t *cmd, int len)
  {
--    int i;
--
--    ToSendReset();
--
--    // Transmit a burst of ones, as the initial thing that lets the
--    // reader get phase sync. This (TR1) must be > 80/fs, per spec,
--    // but tag that I've tried (a Paypass) exceeds that by a fair bit,
--    // so I will too.
--    for(i = 0; i < 20; i++) {
--        ToSendStuffBit(1);
--        ToSendStuffBit(1);
--        ToSendStuffBit(1);
--        ToSendStuffBit(1);
--    }
--
--    // Send SOF.
--    for(i = 0; i < 10; i++) {
--        ToSendStuffBit(0);
--        ToSendStuffBit(0);
--        ToSendStuffBit(0);
--        ToSendStuffBit(0);
--    }
--    for(i = 0; i < 2; i++) {
--        ToSendStuffBit(1);
--        ToSendStuffBit(1);
--        ToSendStuffBit(1);
--        ToSendStuffBit(1);
--    }
--
--    for(i = 0; i < len; i++) {
--        int j;
--        uint8_t b = cmd[i];
--
--        // Start bit
--        ToSendStuffBit(0);
--        ToSendStuffBit(0);
--        ToSendStuffBit(0);
--        ToSendStuffBit(0);
--
--        // Data bits
--        for(j = 0; j < 8; j++) {
--            if(b & 1) {
--                ToSendStuffBit(1);
--                ToSendStuffBit(1);
--                ToSendStuffBit(1);
--                ToSendStuffBit(1);
--            } else {
--                ToSendStuffBit(0);
--                ToSendStuffBit(0);
--                ToSendStuffBit(0);
--                ToSendStuffBit(0);
--            }
--            b >>= 1;
--        }
--
--        // Stop bit
--        ToSendStuffBit(1);
--        ToSendStuffBit(1);
--        ToSendStuffBit(1);
--        ToSendStuffBit(1);
--    }
--
--    // Send SOF.
--    for(i = 0; i < 10; i++) {
--        ToSendStuffBit(0);
--        ToSendStuffBit(0);
--        ToSendStuffBit(0);
--        ToSendStuffBit(0);
--    }
--    for(i = 0; i < 10; i++) {
--        ToSendStuffBit(1);
--        ToSendStuffBit(1);
--        ToSendStuffBit(1);
--        ToSendStuffBit(1);
--    }
--
--    // Convert from last byte pos to length
--    ToSendMax++;
--
--    // Add a few more for slop
--    ToSendMax += 2;
++      int i;
++
++      ToSendReset();
++
++      // Transmit a burst of ones, as the initial thing that lets the
++      // reader get phase sync. This (TR1) must be > 80/fs, per spec,
++      // but tag that I've tried (a Paypass) exceeds that by a fair bit,
++      // so I will too.
++      for(i = 0; i < 20; i++) {
++              ToSendStuffBit(1);
++              ToSendStuffBit(1);
++              ToSendStuffBit(1);
++              ToSendStuffBit(1);
++      }
++
++      // Send SOF.
++      for(i = 0; i < 10; i++) {
++              ToSendStuffBit(0);
++              ToSendStuffBit(0);
++              ToSendStuffBit(0);
++              ToSendStuffBit(0);
++      }
++      for(i = 0; i < 2; i++) {
++              ToSendStuffBit(1);
++              ToSendStuffBit(1);
++              ToSendStuffBit(1);
++              ToSendStuffBit(1);
++      }
++
++      for(i = 0; i < len; i++) {
++              int j;
++              uint8_t b = cmd[i];
++
++              // Start bit
++              ToSendStuffBit(0);
++              ToSendStuffBit(0);
++              ToSendStuffBit(0);
++              ToSendStuffBit(0);
++
++              // Data bits
++              for(j = 0; j < 8; j++) {
++                      if(b & 1) {
++                              ToSendStuffBit(1);
++                              ToSendStuffBit(1);
++                              ToSendStuffBit(1);
++                              ToSendStuffBit(1);
++                      } else {
++                              ToSendStuffBit(0);
++                              ToSendStuffBit(0);
++                              ToSendStuffBit(0);
++                              ToSendStuffBit(0);
++                      }
++                      b >>= 1;
++              }
++
++              // Stop bit
++              ToSendStuffBit(1);
++              ToSendStuffBit(1);
++              ToSendStuffBit(1);
++              ToSendStuffBit(1);
++      }
++
++      // Send SOF.
++      for(i = 0; i < 10; i++) {
++              ToSendStuffBit(0);
++              ToSendStuffBit(0);
++              ToSendStuffBit(0);
++              ToSendStuffBit(0);
++      }
++      for(i = 0; i < 10; i++) {
++              ToSendStuffBit(1);
++              ToSendStuffBit(1);
++              ToSendStuffBit(1);
++              ToSendStuffBit(1);
++      }
++
++      // Convert from last byte pos to length
++      ToSendMax++;
++
++      // Add a few more for slop
++      ToSendMax += 2;
  }
  
  //-----------------------------------------------------------------------------
  // variables.
  //-----------------------------------------------------------------------------
  static struct {
--    enum {
--        STATE_UNSYNCD,
--        STATE_GOT_FALLING_EDGE_OF_SOF,
--        STATE_AWAITING_START_BIT,
--        STATE_RECEIVING_DATA,
--        STATE_ERROR_WAIT
--    }       state;
--    uint16_t    shiftReg;
--    int     bitCnt;
--    int     byteCnt;
--    int     byteCntMax;
--    int     posCnt;
--    uint8_t   *output;
++      enum {
++              STATE_UNSYNCD,
++              STATE_GOT_FALLING_EDGE_OF_SOF,
++              STATE_AWAITING_START_BIT,
++              STATE_RECEIVING_DATA,
++              STATE_ERROR_WAIT
++      }       state;
++      uint16_t    shiftReg;
++      int     bitCnt;
++      int     byteCnt;
++      int     byteCntMax;
++      int     posCnt;
++      uint8_t   *output;
  } Uart;
  
  /* Receive & handle a bit coming from the reader.
   */
  static int Handle14443UartBit(int bit)
  {
--    switch(Uart.state) {
 -        case STATE_UNSYNCD:
 -              LED_A_OFF();
 -            if(!bit) {
 -                // we went low, so this could be the beginning
 -                // of an SOF
 -                Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
 -                Uart.posCnt = 0;
 -                Uart.bitCnt = 0;
 -            }
 -            break;
 -
 -        case STATE_GOT_FALLING_EDGE_OF_SOF:
 -            Uart.posCnt++;
 -            if(Uart.posCnt == 2) {
 -                if(bit) {
 -                    if(Uart.bitCnt >= 10) {
 -                        // we've seen enough consecutive
 -                        // zeros that it's a valid SOF
 -                        Uart.posCnt = 0;
 -                        Uart.byteCnt = 0;
 -                        Uart.state = STATE_AWAITING_START_BIT;
 -                        LED_A_ON(); // Indicate we got a valid SOF
 -                    } else {
 -                        // didn't stay down long enough
 -                        // before going high, error
 -                        Uart.state = STATE_ERROR_WAIT;
 -                    }
 -                } else {
 -                    // do nothing, keep waiting
 -                }
 -                Uart.bitCnt++;
 -            }
 -            if(Uart.posCnt >= 4) Uart.posCnt = 0;
 -            if(Uart.bitCnt > 14) {
 -                // Give up if we see too many zeros without
 -                // a one, too.
 -                Uart.state = STATE_ERROR_WAIT;
 -            }
 -            break;
 -
 -        case STATE_AWAITING_START_BIT:
 -            Uart.posCnt++;
 -            if(bit) {
 -                if(Uart.posCnt > 25) {
 -                    // stayed high for too long between
 -                    // characters, error
 -                    Uart.state = STATE_ERROR_WAIT;
 -                }
 -            } else {
 -                // falling edge, this starts the data byte
 -                Uart.posCnt = 0;
 -                Uart.bitCnt = 0;
 -                Uart.shiftReg = 0;
 -                Uart.state = STATE_RECEIVING_DATA;
 -                LED_A_ON(); // Indicate we're receiving
 -            }
 -            break;
 -
 -        case STATE_RECEIVING_DATA:
 -            Uart.posCnt++;
 -            if(Uart.posCnt == 2) {
 -                // time to sample a bit
 -                Uart.shiftReg >>= 1;
 -                if(bit) {
 -                    Uart.shiftReg |= 0x200;
 -                }
 -                Uart.bitCnt++;
 -            }
 -            if(Uart.posCnt >= 4) {
 -                Uart.posCnt = 0;
 -            }
 -            if(Uart.bitCnt == 10) {
 -                if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
 -                {
 -                    // this is a data byte, with correct
 -                    // start and stop bits
 -                    Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
 -                    Uart.byteCnt++;
 -
 -                    if(Uart.byteCnt >= Uart.byteCntMax) {
 -                        // Buffer overflowed, give up
 -                        Uart.posCnt = 0;
 -                        Uart.state = STATE_ERROR_WAIT;
 -                    } else {
 -                        // so get the next byte now
 -                        Uart.posCnt = 0;
 -                        Uart.state = STATE_AWAITING_START_BIT;
 -                    }
 -                } else if(Uart.shiftReg == 0x000) {
 -                    // this is an EOF byte
 -                      LED_A_OFF(); // Finished receiving
 -                    return TRUE;
 -                } else {
 -                    // this is an error
 -                    Uart.posCnt = 0;
 -                    Uart.state = STATE_ERROR_WAIT;
 -                }
 -            }
 -            break;
 -
 -        case STATE_ERROR_WAIT:
 -            // We're all screwed up, so wait a little while
 -            // for whatever went wrong to finish, and then
 -            // start over.
 -            Uart.posCnt++;
 -            if(Uart.posCnt > 10) {
 -                Uart.state = STATE_UNSYNCD;
 -            }
 -            break;
 -
 -        default:
 -            Uart.state = STATE_UNSYNCD;
 -            break;
 -    }
 -
 -    // This row make the error blew circular buffer in hf 14b snoop
 -    //if (Uart.state == STATE_ERROR_WAIT) LED_A_OFF(); // Error
 -
 -    return FALSE;
++      switch(Uart.state) {
 +              case STATE_UNSYNCD:
-               LED_A_OFF();
-             if(!bit) {
-                 // we went low, so this could be the beginning
-                 // of an SOF
-                 Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
-                 Uart.posCnt = 0;
-                 Uart.bitCnt = 0;
-             }
-             break;
-         case STATE_GOT_FALLING_EDGE_OF_SOF:
-             Uart.posCnt++;
-             if(Uart.posCnt == 2) {
-                 if(bit) {
-                     if(Uart.bitCnt >= 10) {
-                         // we've seen enough consecutive
-                         // zeros that it's a valid SOF
-                         Uart.posCnt = 0;
-                         Uart.byteCnt = 0;
-                         Uart.state = STATE_AWAITING_START_BIT;
-                         LED_A_ON(); // Indicate we got a valid SOF
-                     } else {
-                         // didn't stay down long enough
-                         // before going high, error
-                         Uart.state = STATE_ERROR_WAIT;
-                     }
-                 } else {
-                     // do nothing, keep waiting
-                 }
-                 Uart.bitCnt++;
-             }
-             if(Uart.posCnt >= 4) Uart.posCnt = 0;
-             if(Uart.bitCnt > 14) {
-                 // Give up if we see too many zeros without
-                 // a one, too.
-                 Uart.state = STATE_ERROR_WAIT;
-             }
-             break;
-         case STATE_AWAITING_START_BIT:
-             Uart.posCnt++;
-             if(bit) {
-                 if(Uart.posCnt > 25) {
-                     // stayed high for too long between
-                     // characters, error
-                     Uart.state = STATE_ERROR_WAIT;
-                 }
-             } else {
-                 // falling edge, this starts the data byte
-                 Uart.posCnt = 0;
-                 Uart.bitCnt = 0;
-                 Uart.shiftReg = 0;
-                 Uart.state = STATE_RECEIVING_DATA;
-                 LED_A_ON(); // Indicate we're receiving
-             }
-             break;
-         case STATE_RECEIVING_DATA:
-             Uart.posCnt++;
-             if(Uart.posCnt == 2) {
-                 // time to sample a bit
-                 Uart.shiftReg >>= 1;
-                 if(bit) {
-                     Uart.shiftReg |= 0x200;
-                 }
-                 Uart.bitCnt++;
-             }
-             if(Uart.posCnt >= 4) {
-                 Uart.posCnt = 0;
-             }
-             if(Uart.bitCnt == 10) {
-                 if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
-                 {
-                     // this is a data byte, with correct
-                     // start and stop bits
-                     Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
-                     Uart.byteCnt++;
-                     if(Uart.byteCnt >= Uart.byteCntMax) {
-                         // Buffer overflowed, give up
-                         Uart.posCnt = 0;
-                         Uart.state = STATE_ERROR_WAIT;
-                     } else {
-                         // so get the next byte now
-                         Uart.posCnt = 0;
-                         Uart.state = STATE_AWAITING_START_BIT;
-                     }
-                 } else if(Uart.shiftReg == 0x000) {
-                     // this is an EOF byte
-                       LED_A_OFF(); // Finished receiving
-                     return TRUE;
-                 } else {
-                     // this is an error
-                     Uart.posCnt = 0;
-                     Uart.state = STATE_ERROR_WAIT;
-                 }
-             }
-             break;
-         case STATE_ERROR_WAIT:
-             // We're all screwed up, so wait a little while
-             // for whatever went wrong to finish, and then
-             // start over.
-             Uart.posCnt++;
-             if(Uart.posCnt > 10) {
-                 Uart.state = STATE_UNSYNCD;
-             }
-             break;
-         default:
-             Uart.state = STATE_UNSYNCD;
-             break;
-     }
-     // This row make the error blew circular buffer in hf 14b snoop
-     //if (Uart.state == STATE_ERROR_WAIT) LED_A_OFF(); // Error
-     return FALSE;
++                      LED_A_OFF();
++                      if(!bit) {
++                              // we went low, so this could be the beginning
++                              // of an SOF
++                              Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
++                              Uart.posCnt = 0;
++                              Uart.bitCnt = 0;
++                      }
++                      break;
++
++              case STATE_GOT_FALLING_EDGE_OF_SOF:
++                      Uart.posCnt++;
++                      if(Uart.posCnt == 2) {
++                              if(bit) {
++                                      if(Uart.bitCnt >= 10) {
++                                              // we've seen enough consecutive
++                                              // zeros that it's a valid SOF
++                                              Uart.posCnt = 0;
++                                              Uart.byteCnt = 0;
++                                              Uart.state = STATE_AWAITING_START_BIT;
++                                              LED_A_ON(); // Indicate we got a valid SOF
++                                      } else {
++                                              // didn't stay down long enough
++                                              // before going high, error
++                                              Uart.state = STATE_ERROR_WAIT;
++                                      }
++                              } else {
++                                      // do nothing, keep waiting
++                              }
++                              Uart.bitCnt++;
++                      }
++                      if(Uart.posCnt >= 4) Uart.posCnt = 0;
++                      if(Uart.bitCnt > 14) {
++                              // Give up if we see too many zeros without
++                              // a one, too.
++                              Uart.state = STATE_ERROR_WAIT;
++                      }
++                      break;
++
++              case STATE_AWAITING_START_BIT:
++                      Uart.posCnt++;
++                      if(bit) {
++                              if(Uart.posCnt > 25) {
++                                      // stayed high for too long between
++                                      // characters, error
++                                      Uart.state = STATE_ERROR_WAIT;
++                              }
++                      } else {
++                              // falling edge, this starts the data byte
++                              Uart.posCnt = 0;
++                              Uart.bitCnt = 0;
++                              Uart.shiftReg = 0;
++                              Uart.state = STATE_RECEIVING_DATA;
++                              LED_A_ON(); // Indicate we're receiving
++                      }
++                      break;
++
++              case STATE_RECEIVING_DATA:
++                      Uart.posCnt++;
++                      if(Uart.posCnt == 2) {
++                              // time to sample a bit
++                              Uart.shiftReg >>= 1;
++                              if(bit) {
++                                      Uart.shiftReg |= 0x200;
++                              }
++                              Uart.bitCnt++;
++                      }
++                      if(Uart.posCnt >= 4) {
++                              Uart.posCnt = 0;
++                      }
++                      if(Uart.bitCnt == 10) {
++                              if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
++                              {
++                                      // this is a data byte, with correct
++                                      // start and stop bits
++                                      Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
++                                      Uart.byteCnt++;
++
++                                      if(Uart.byteCnt >= Uart.byteCntMax) {
++                                              // Buffer overflowed, give up
++                                              Uart.posCnt = 0;
++                                              Uart.state = STATE_ERROR_WAIT;
++                                      } else {
++                                              // so get the next byte now
++                                              Uart.posCnt = 0;
++                                              Uart.state = STATE_AWAITING_START_BIT;
++                                      }
++                              } else if(Uart.shiftReg == 0x000) {
++                                      // this is an EOF byte
++                                      LED_A_OFF(); // Finished receiving
++                                      return TRUE;
++                              } else {
++                                      // this is an error
++                                      Uart.posCnt = 0;
++                                      Uart.state = STATE_ERROR_WAIT;
++                              }
++                      }
++                      break;
++
++              case STATE_ERROR_WAIT:
++                      // We're all screwed up, so wait a little while
++                      // for whatever went wrong to finish, and then
++                      // start over.
++                      Uart.posCnt++;
++                      if(Uart.posCnt > 10) {
++                              Uart.state = STATE_UNSYNCD;
++                      }
++                      break;
++
++              default:
++                      Uart.state = STATE_UNSYNCD;
++                      break;
++      }
++
++      // This row make the error blew circular buffer in hf 14b snoop
++      //if (Uart.state == STATE_ERROR_WAIT) LED_A_OFF(); // Error
++
++      return FALSE;
  }
  
  //-----------------------------------------------------------------------------
  //-----------------------------------------------------------------------------
  static int GetIso14443CommandFromReader(uint8_t *received, int *len, int maxLen)
  {
--    uint8_t mask;
--    int i, bit;
--
--    // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
--    // only, since we are receiving, not transmitting).
--    // Signal field is off with the appropriate LED
--    LED_D_OFF();
--    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
--
--
--    // Now run a `software UART' on the stream of incoming samples.
--    Uart.output = received;
--    Uart.byteCntMax = maxLen;
--    Uart.state = STATE_UNSYNCD;
--
--    for(;;) {
--        WDT_HIT();
--
--        if(BUTTON_PRESS()) return FALSE;
--
--        if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
--            AT91C_BASE_SSC->SSC_THR = 0x00;
--        }
--        if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
--            uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
--
--            mask = 0x80;
--            for(i = 0; i < 8; i++, mask >>= 1) {
--                bit = (b & mask);
--                if(Handle14443UartBit(bit)) {
--                    *len = Uart.byteCnt;
--                    return TRUE;
--                }
--            }
--        }
--    }
++      uint8_t mask;
++      int i, bit;
++
++      // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
++      // only, since we are receiving, not transmitting).
++      // Signal field is off with the appropriate LED
++      LED_D_OFF();
++      FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
++
++
++      // Now run a `software UART' on the stream of incoming samples.
++      Uart.output = received;
++      Uart.byteCntMax = maxLen;
++      Uart.state = STATE_UNSYNCD;
++
++      for(;;) {
++              WDT_HIT();
++
++              if(BUTTON_PRESS()) return FALSE;
++
++              if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
++                      AT91C_BASE_SSC->SSC_THR = 0x00;
++              }
++              if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
++                      uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
++
++                      mask = 0x80;
++                      for(i = 0; i < 8; i++, mask >>= 1) {
++                              bit = (b & mask);
++                              if(Handle14443UartBit(bit)) {
++                                      *len = Uart.byteCnt;
++                                      return TRUE;
++                              }
++                      }
++              }
++      }
  }
  
  //-----------------------------------------------------------------------------
  //-----------------------------------------------------------------------------
  void SimulateIso14443Tag(void)
  {
--    static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
--    static const uint8_t response1[] = {
--        0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
--        0x00, 0x21, 0x85, 0x5e, 0xd7
--    };
++      static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
++      static const uint8_t response1[] = {
++              0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
++              0x00, 0x21, 0x85, 0x5e, 0xd7
++      };
  
--    uint8_t *resp;
--    int respLen;
++      uint8_t *resp;
++      int respLen;
  
-     uint8_t *resp1 = (((uint8_t *)BigBuf) + 800);
 -    uint8_t *resp1 = BigBuf_get_addr() + 800;
--    int resp1Len;
++      uint8_t *resp1 = BigBuf_get_addr() + 800;
++      int resp1Len;
  
-     uint8_t *receivedCmd = (uint8_t *)BigBuf;
 -    uint8_t *receivedCmd = BigBuf_get_addr();
--    int len;
++      uint8_t *receivedCmd = BigBuf_get_addr();
++      int len;
  
--    int i;
++      int i;
  
--    int cmdsRecvd = 0;
++      int cmdsRecvd = 0;
  
--    FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
--    memset(receivedCmd, 0x44, 400);
++      FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
++      memset(receivedCmd, 0x44, 400);
  
--    CodeIso14443bAsTag(response1, sizeof(response1));
--    memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
++      CodeIso14443bAsTag(response1, sizeof(response1));
++      memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
  
--    // We need to listen to the high-frequency, peak-detected path.
--    SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
--    FpgaSetupSsc();
++      // We need to listen to the high-frequency, peak-detected path.
++      SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
++      FpgaSetupSsc();
  
--    cmdsRecvd = 0;
++      cmdsRecvd = 0;
  
--    for(;;) {
--        uint8_t b1, b2;
++      for(;;) {
++              uint8_t b1, b2;
  
--        if(!GetIso14443CommandFromReader(receivedCmd, &len, 100)) {
++              if(!GetIso14443CommandFromReader(receivedCmd, &len, 100)) {
                Dbprintf("button pressed, received %d commands", cmdsRecvd);
                break;
--        }
--
--        // Good, look at the command now.
--
--        if(len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len)==0) {
--            resp = resp1; respLen = resp1Len;
--        } else {
--            Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd);
--            // And print whether the CRC fails, just for good measure
--            ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2);
--            if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) {
--                // Not so good, try again.
--                DbpString("+++CRC fail");
--            } else {
--                DbpString("CRC passes");
--            }
--            break;
--        }
--
--        memset(receivedCmd, 0x44, 32);
--
--        cmdsRecvd++;
--
--        if(cmdsRecvd > 0x30) {
--            DbpString("many commands later...");
--            break;
--        }
--
--        if(respLen <= 0) continue;
--
--        // Modulate BPSK
--        // Signal field is off with the appropriate LED
--        LED_D_OFF();
--        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK);
--        AT91C_BASE_SSC->SSC_THR = 0xff;
--        FpgaSetupSsc();
--
--        // Transmit the response.
--        i = 0;
--        for(;;) {
--            if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
--                uint8_t b = resp[i];
--
--                AT91C_BASE_SSC->SSC_THR = b;
--
--                i++;
--                if(i > respLen) {
--                    break;
--                }
--            }
--            if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
--                volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
--                (void)b;
--            }
--        }
--    }
++              }
++
++              // Good, look at the command now.
++
++              if(len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len)==0) {
++                      resp = resp1; respLen = resp1Len;
++              } else {
++                      Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd);
++                      // And print whether the CRC fails, just for good measure
++                      ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2);
++                      if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) {
++                              // Not so good, try again.
++                              DbpString("+++CRC fail");
++                      } else {
++                              DbpString("CRC passes");
++                      }
++                      break;
++              }
++
++              memset(receivedCmd, 0x44, 32);
++
++              cmdsRecvd++;
++
++              if(cmdsRecvd > 0x30) {
++                      DbpString("many commands later...");
++                      break;
++              }
++
++              if(respLen <= 0) continue;
++
++              // Modulate BPSK
++              // Signal field is off with the appropriate LED
++              LED_D_OFF();
++              FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK);
++              AT91C_BASE_SSC->SSC_THR = 0xff;
++              FpgaSetupSsc();
++
++              // Transmit the response.
++              i = 0;
++              for(;;) {
++                      if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
++                              uint8_t b = resp[i];
++
++                              AT91C_BASE_SSC->SSC_THR = b;
++
++                              i++;
++                              if(i > respLen) {
++                                      break;
++                              }
++                      }
++                      if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
++                              volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
++                              (void)b;
++                      }
++              }
++      }
  }
  
  //=============================================================================
  //=============================================================================
  
  static struct {
--    enum {
--        DEMOD_UNSYNCD,
--        DEMOD_PHASE_REF_TRAINING,
--        DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
--        DEMOD_GOT_FALLING_EDGE_OF_SOF,
--        DEMOD_AWAITING_START_BIT,
--        DEMOD_RECEIVING_DATA,
--        DEMOD_ERROR_WAIT
--    }       state;
--    int     bitCount;
--    int     posCount;
--    int     thisBit;
--    int     metric;
--    int     metricN;
--    uint16_t    shiftReg;
--    uint8_t   *output;
--    int     len;
--    int     sumI;
--    int     sumQ;
++      enum {
++              DEMOD_UNSYNCD,
++              DEMOD_PHASE_REF_TRAINING,
++              DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
++              DEMOD_GOT_FALLING_EDGE_OF_SOF,
++              DEMOD_AWAITING_START_BIT,
++              DEMOD_RECEIVING_DATA,
++              DEMOD_ERROR_WAIT
++      }       state;
++      int     bitCount;
++      int     posCount;
++      int     thisBit;
++      int     metric;
++      int     metricN;
++      uint16_t    shiftReg;
++      uint8_t   *output;
++      int     len;
++      int     sumI;
++      int     sumQ;
  } Demod;
  
  /*
   */
  static RAMFUNC int Handle14443SamplesDemod(int ci, int cq)
  {
--    int v;
++      int v;
  
--    // The soft decision on the bit uses an estimate of just the
--    // quadrant of the reference angle, not the exact angle.
++      // The soft decision on the bit uses an estimate of just the
++      // quadrant of the reference angle, not the exact angle.
  #define MAKE_SOFT_DECISION() { \
--        if(Demod.sumI > 0) { \
--            v = ci; \
--        } else { \
--            v = -ci; \
--        } \
--        if(Demod.sumQ > 0) { \
--            v += cq; \
--        } else { \
--            v -= cq; \
--        } \
--    }
--
--    switch(Demod.state) {
--        case DEMOD_UNSYNCD:
--            v = ci;
--            if(v < 0) v = -v;
--            if(cq > 0) {
--                v += cq;
--            } else {
--                v -= cq;
--            }
--            if(v > 40) {
--                Demod.posCount = 0;
--                Demod.state = DEMOD_PHASE_REF_TRAINING;
--                Demod.sumI = 0;
--                Demod.sumQ = 0;
--            }
--            break;
--
--        case DEMOD_PHASE_REF_TRAINING:
--            if(Demod.posCount < 8) {
--                Demod.sumI += ci;
--                Demod.sumQ += cq;
--            } else if(Demod.posCount > 100) {
--                // error, waited too long
--                Demod.state = DEMOD_UNSYNCD;
--            } else {
--                MAKE_SOFT_DECISION();
--                if(v < 0) {
--                    Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
--                    Demod.posCount = 0;
--                }
--            }
--            Demod.posCount++;
--            break;
--
--        case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
--            MAKE_SOFT_DECISION();
--            if(v < 0) {
--                Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
--                Demod.posCount = 0;
--            } else {
--                if(Demod.posCount > 100) {
--                    Demod.state = DEMOD_UNSYNCD;
--                }
--            }
--            Demod.posCount++;
--            break;
--
--        case DEMOD_GOT_FALLING_EDGE_OF_SOF:
--            MAKE_SOFT_DECISION();
--            if(v > 0) {
--                if(Demod.posCount < 12) {
--                    Demod.state = DEMOD_UNSYNCD;
--                } else {
--                    LED_C_ON(); // Got SOF
--                    Demod.state = DEMOD_AWAITING_START_BIT;
--                    Demod.posCount = 0;
--                    Demod.len = 0;
--                    Demod.metricN = 0;
--                    Demod.metric = 0;
--                }
--            } else {
--                if(Demod.posCount > 100) {
--                    Demod.state = DEMOD_UNSYNCD;
--                }
--            }
--            Demod.posCount++;
--            break;
--
--        case DEMOD_AWAITING_START_BIT:
--            MAKE_SOFT_DECISION();
--            if(v > 0) {
--                if(Demod.posCount > 10) {
--                    Demod.state = DEMOD_UNSYNCD;
--                }
--            } else {
--                Demod.bitCount = 0;
--                Demod.posCount = 1;
--                Demod.thisBit = v;
--                Demod.shiftReg = 0;
--                Demod.state = DEMOD_RECEIVING_DATA;
--            }
--            break;
--
--        case DEMOD_RECEIVING_DATA:
--            MAKE_SOFT_DECISION();
--            if(Demod.posCount == 0) {
--                Demod.thisBit = v;
--                Demod.posCount = 1;
--            } else {
--                Demod.thisBit += v;
--
--                if(Demod.thisBit > 0) {
--                    Demod.metric += Demod.thisBit;
--                } else {
--                    Demod.metric -= Demod.thisBit;
--                }
--                (Demod.metricN)++;
--
--                Demod.shiftReg >>= 1;
--                if(Demod.thisBit > 0) {
--                    Demod.shiftReg |= 0x200;
--                }
--
--                Demod.bitCount++;
--                if(Demod.bitCount == 10) {
--                    uint16_t s = Demod.shiftReg;
--                    if((s & 0x200) && !(s & 0x001)) {
--                        uint8_t b = (s >> 1);
--                        Demod.output[Demod.len] = b;
--                        Demod.len++;
--                        Demod.state = DEMOD_AWAITING_START_BIT;
--                    } else if(s == 0x000) {
--                        // This is EOF
--                      LED_C_OFF();
--                        Demod.state = DEMOD_UNSYNCD;
--                        return TRUE;
--                    } else {
--                        Demod.state = DEMOD_UNSYNCD;
--                    }
--                }
--                Demod.posCount = 0;
--            }
--            break;
--
--        default:
--            Demod.state = DEMOD_UNSYNCD;
--            break;
--    }
--
--    if (Demod.state == DEMOD_UNSYNCD) LED_C_OFF(); // Not synchronized...
--    return FALSE;
- }
++              if(Demod.sumI > 0) { \
++                      v = ci; \
++              } else { \
++                      v = -ci; \
++              } \
++              if(Demod.sumQ > 0) { \
++                      v += cq; \
++              } else { \
++                      v -= cq; \
++              } \
++      }
 +
++      switch(Demod.state) {
++              case DEMOD_UNSYNCD:
++                      v = ci;
++                      if(v < 0) v = -v;
++                      if(cq > 0) {
++                              v += cq;
++                      } else {
++                              v -= cq;
++                      }
++                      if(v > 40) {
++                              Demod.posCount = 0;
++                              Demod.state = DEMOD_PHASE_REF_TRAINING;
++                              Demod.sumI = 0;
++                              Demod.sumQ = 0;
++                      }
++                      break;
++
++              case DEMOD_PHASE_REF_TRAINING:
++                      if(Demod.posCount < 8) {
++                              Demod.sumI += ci;
++                              Demod.sumQ += cq;
++                      } else if(Demod.posCount > 100) {
++                              // error, waited too long
++                              Demod.state = DEMOD_UNSYNCD;
++                      } else {
++                              MAKE_SOFT_DECISION();
++                              if(v < 0) {
++                                      Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
++                                      Demod.posCount = 0;
++                              }
++                      }
++                      Demod.posCount++;
++                      break;
++
++              case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
++                      MAKE_SOFT_DECISION();
++                      if(v < 0) {
++                              Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
++                              Demod.posCount = 0;
++                      } else {
++                              if(Demod.posCount > 100) {
++                                      Demod.state = DEMOD_UNSYNCD;
++                              }
++                      }
++                      Demod.posCount++;
++                      break;
++
++              case DEMOD_GOT_FALLING_EDGE_OF_SOF:
++                      MAKE_SOFT_DECISION();
++                      if(v > 0) {
++                              if(Demod.posCount < 12) {
++                                      Demod.state = DEMOD_UNSYNCD;
++                              } else {
++                                      LED_C_ON(); // Got SOF
++                                      Demod.state = DEMOD_AWAITING_START_BIT;
++                                      Demod.posCount = 0;
++                                      Demod.len = 0;
++                                      Demod.metricN = 0;
++                                      Demod.metric = 0;
++                              }
++                      } else {
++                              if(Demod.posCount > 100) {
++                                      Demod.state = DEMOD_UNSYNCD;
++                              }
++                      }
++                      Demod.posCount++;
++                      break;
++
++              case DEMOD_AWAITING_START_BIT:
++                      MAKE_SOFT_DECISION();
++                      if(v > 0) {
++                              if(Demod.posCount > 10) {
++                                      Demod.state = DEMOD_UNSYNCD;
++                              }
++                      } else {
++                              Demod.bitCount = 0;
++                              Demod.posCount = 1;
++                              Demod.thisBit = v;
++                              Demod.shiftReg = 0;
++                              Demod.state = DEMOD_RECEIVING_DATA;
++                      }
++                      break;
++
++              case DEMOD_RECEIVING_DATA:
++                      MAKE_SOFT_DECISION();
++                      if(Demod.posCount == 0) {
++                              Demod.thisBit = v;
++                              Demod.posCount = 1;
++                      } else {
++                              Demod.thisBit += v;
++
++                              if(Demod.thisBit > 0) {
++                                      Demod.metric += Demod.thisBit;
++                              } else {
++                                      Demod.metric -= Demod.thisBit;
++                              }
++                              (Demod.metricN)++;
++
++                              Demod.shiftReg >>= 1;
++                              if(Demod.thisBit > 0) {
++                                      Demod.shiftReg |= 0x200;
++                              }
++
++                              Demod.bitCount++;
++                              if(Demod.bitCount == 10) {
++                                      uint16_t s = Demod.shiftReg;
++                                      if((s & 0x200) && !(s & 0x001)) {
++                                              uint8_t b = (s >> 1);
++                                              Demod.output[Demod.len] = b;
++                                              Demod.len++;
++                                              Demod.state = DEMOD_AWAITING_START_BIT;
++                                      } else if(s == 0x000) {
++                                              // This is EOF
++                                              LED_C_OFF();
++                                              Demod.state = DEMOD_UNSYNCD;
++                                              return TRUE;
++                                      } else {
++                                              Demod.state = DEMOD_UNSYNCD;
++                                      }
++                              }
++                              Demod.posCount = 0;
++                      }
++                      break;
++
++              default:
++                      Demod.state = DEMOD_UNSYNCD;
++                      break;
++      }
++
++      if (Demod.state == DEMOD_UNSYNCD) LED_C_OFF(); // Not synchronized...
++      return FALSE;
++}
 +static void DemodReset()
 +{
 +      // Clear out the state of the "UART" that receives from the tag.
-       Demod.output = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
 +      Demod.len = 0;
 +      Demod.state = DEMOD_UNSYNCD;
 +      memset(Demod.output, 0x00, MAX_FRAME_SIZE);
++}
++static void DemodInit(uint8_t *data)
++{
++      Demod.output = data;
++      DemodReset();
 +}
 +
 +static void UartReset()
 +{
-       // And the UART that receives from the reader
-       Uart.output = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
 +      Uart.byteCntMax = MAX_FRAME_SIZE;
 +      Uart.state = STATE_UNSYNCD;
 +      Uart.byteCnt = 0;
 +      Uart.bitCnt = 0;
 +}
++static void UartInit(uint8_t *data)
++{
++      Uart.output = data;
++      UartReset();
+ }
  
  /*
 - *  Demodulate the samples we received from the tag
 + *  Demodulate the samples we received from the tag, also log to tracebuffer
   *  weTx: set to 'TRUE' if we behave like a reader
   *        set to 'FALSE' if we behave like a snooper
   *  quiet: set to 'TRUE' to disable debug output
   */
  static void GetSamplesFor14443Demod(int weTx, int n, int quiet)
  {
--    int max = 0;
--    int gotFrame = FALSE;
 -
 -//#   define DMA_BUFFER_SIZE 8
 -    uint8_t *dmaBuf;
--
--    int lastRxCounter;
 -    uint8_t *upTo;
--
--    int ci, cq;
 -
 -    int samples = 0;
 -
 -    // Clear out the state of the "UART" that receives from the tag.
 -      uint8_t *BigBuf = BigBuf_get_addr();
 -    memset(BigBuf, 0x00, 400);
 -    Demod.output = BigBuf;
 -    Demod.len = 0;
 -    Demod.state = DEMOD_UNSYNCD;
 -
 -    // And the UART that receives from the reader
 -    Uart.output = BigBuf + 1024;
 -    Uart.byteCntMax = 100;
 -    Uart.state = STATE_UNSYNCD;
 -
 -    // Setup for the DMA.
 -    dmaBuf = BigBuf + 32;
 -    upTo = dmaBuf;
 -    lastRxCounter = DEMOD_DMA_BUFFER_SIZE;
 -    FpgaSetupSscDma(dmaBuf, DEMOD_DMA_BUFFER_SIZE);
 -
 -    // Signal field is ON with the appropriate LED:
 -    if (weTx) LED_D_ON(); else LED_D_OFF();
 -    // And put the FPGA in the appropriate mode
 -    FpgaWriteConfWord(
 -      FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
 -      (weTx ? 0 : FPGA_HF_READER_RX_XCORR_SNOOP));
 -
 -    for(;;) {
 -        int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
 -        if(behindBy > max) max = behindBy;
 -
 -        while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (DEMOD_DMA_BUFFER_SIZE-1))
 -                    > 2)
 -        {
 -            ci = upTo[0];
 -            cq = upTo[1];
 -            upTo += 2;
 -            if(upTo - dmaBuf > DEMOD_DMA_BUFFER_SIZE) {
 -                upTo -= DEMOD_DMA_BUFFER_SIZE;
 -                AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
 -                AT91C_BASE_PDC_SSC->PDC_RNCR = DEMOD_DMA_BUFFER_SIZE;
 -            }
 -            lastRxCounter -= 2;
 -            if(lastRxCounter <= 0) {
 -                lastRxCounter += DEMOD_DMA_BUFFER_SIZE;
 -            }
 -
 -            samples += 2;
 -
 -            Handle14443UartBit(1);
 -            Handle14443UartBit(1);
 -
 -            if(Handle14443SamplesDemod(ci, cq)) {
 -                gotFrame = 1;
 -            }
 -        }
 -
 -        if(samples > 2000) {
 -            break;
 -        }
 -    }
 -    AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
 -    if (!quiet) Dbprintf("%x %x %x", max, gotFrame, Demod.len);
++      int max = 0;
++      int gotFrame = FALSE;
++      int lastRxCounter, ci, cq, samples = 0;
++
++      // Allocate memory from BigBuf for some buffers
++      // free all previous allocations first
++      BigBuf_free();
++      
++      // The command (reader -> tag) that we're receiving.
++      uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
++      
++      // The response (tag -> reader) that we're receiving.
++      uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
++      
++      // The DMA buffer, used to stream samples from the FPGA
++      uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
 +
-     int samples = 0;
++      // Set up the demodulator for tag -> reader responses.
++      DemodInit(receivedResponse);
++      // Set up the demodulator for the reader -> tag commands
++      UartInit(receivedCmd);
 +
-       DemodReset();
-       UartReset();
++      // Setup and start DMA.
++      FpgaSetupSscDma(dmaBuf, DMA_BUFFER_SIZE);
 +
-       // The DMA buffer, used to stream samples from the FPGA
-       int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
-       int8_t *upTo= dmaBuf;
++      uint8_t *upTo= dmaBuf;
 +      lastRxCounter = DMA_BUFFER_SIZE;
-       FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
 +
-     // Signal field is ON with the appropriate LED:
-     if (weTx) LED_D_ON(); else LED_D_OFF();
-     // And put the FPGA in the appropriate mode
-     FpgaWriteConfWord(
-       FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
-       (weTx ? 0 : FPGA_HF_READER_RX_XCORR_SNOOP));
++      // Signal field is ON with the appropriate LED:
++      if (weTx) LED_D_ON(); else LED_D_OFF();
++      // And put the FPGA in the appropriate mode
++      FpgaWriteConfWord(
++              FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
++              (weTx ? 0 : FPGA_HF_READER_RX_XCORR_SNOOP));
 +
-     for(;;) {
-         int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
-         if(behindBy > max) max = behindBy;
++      for(;;) {
++              int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
++              if(behindBy > max) max = behindBy;
 +
 +              while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1))
-                     > 2)
-         {
-             ci = upTo[0];
-             cq = upTo[1];
-             upTo += 2;
++                                      > 2)
++              {
++                      ci = upTo[0];
++                      cq = upTo[1];
++                      upTo += 2;
 +                      if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
 +                              upTo -= DMA_BUFFER_SIZE;
-                 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
++                              AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
 +                              AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
-             }
-             lastRxCounter -= 2;
-             if(lastRxCounter <= 0) {
++                      }
++                      lastRxCounter -= 2;
++                      if(lastRxCounter <= 0) {
 +                              lastRxCounter += DMA_BUFFER_SIZE;
-             }
++                      }
 +
-             samples += 2;
++                      samples += 2;
 +
-             Handle14443UartBit(1);
-             Handle14443UartBit(1);
++                      Handle14443UartBit(1);
++                      Handle14443UartBit(1);
 +
-             if(Handle14443SamplesDemod(ci, cq)) {
-                 gotFrame = 1;
-             }
-         }
++                      if(Handle14443SamplesDemod(ci, cq)) {
++                              gotFrame = 1;
++                      }
++              }
 +
-         if(samples > 2000) {
-             break;
-         }
-     }
-     AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
-     if (!quiet) Dbprintf("%x %x %x", max, gotFrame, Demod.len);
++              if(samples > 2000) {
++                      break;
++              }
++      }
++      AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
++      if (!quiet) Dbprintf("%x %x %x", max, gotFrame, Demod.len);
 +      //Tracing
 +      if (tracing && Demod.len > 0) {
 +              uint8_t parity[MAX_PARITY_SIZE];
 +              GetParity(Demod.output , Demod.len, parity);
 +              LogTrace(Demod.output,Demod.len, 0, 0, parity, FALSE);
 +      }
  }
  
  //-----------------------------------------------------------------------------
  //-----------------------------------------------------------------------------
  /*static void GetSamplesFor14443(int weTx, int n)
  {
--    uint8_t *dest = (uint8_t *)BigBuf;
--    int c;
--
--    FpgaWriteConfWord(
--      FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
--      (weTx ? 0 : FPGA_HF_READER_RX_XCORR_SNOOP));
--
--    c = 0;
--    for(;;) {
--        if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
--            AT91C_BASE_SSC->SSC_THR = 0x43;
--        }
--        if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
--            int8_t b;
--            b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
--
--            dest[c++] = (uint8_t)b;
--
--            if(c >= n) {
--                break;
--            }
--        }
--    }
++      uint8_t *dest = (uint8_t *)BigBuf;
++      int c;
++
++      FpgaWriteConfWord(
++              FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
++              (weTx ? 0 : FPGA_HF_READER_RX_XCORR_SNOOP));
++
++      c = 0;
++      for(;;) {
++              if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
++                      AT91C_BASE_SSC->SSC_THR = 0x43;
++              }
++              if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
++                      int8_t b;
++                      b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
++
++                      dest[c++] = (uint8_t)b;
++
++                      if(c >= n) {
++                              break;
++                      }
++              }
++      }
  }*/
  
  //-----------------------------------------------------------------------------
  //-----------------------------------------------------------------------------
  static void TransmitFor14443(void)
  {
--    int c;
++      int c;
  
--    FpgaSetupSsc();
++      FpgaSetupSsc();
  
--    while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
--        AT91C_BASE_SSC->SSC_THR = 0xff;
--    }
++      while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
++              AT91C_BASE_SSC->SSC_THR = 0xff;
++      }
  
--    // Signal field is ON with the appropriate Red LED
++      // Signal field is ON with the appropriate Red LED
        LED_D_ON();
        // Signal we are transmitting with the Green LED
        LED_B_ON();
        FpgaWriteConfWord(
--      FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
--
--    for(c = 0; c < 10;) {
--        if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
--            AT91C_BASE_SSC->SSC_THR = 0xff;
--            c++;
--        }
--        if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
--            volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
--            (void)r;
--        }
--        WDT_HIT();
--    }
--
--    c = 0;
--    for(;;) {
--        if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
--            AT91C_BASE_SSC->SSC_THR = ToSend[c];
--            c++;
--            if(c >= ToSendMax) {
--                break;
--            }
--        }
--        if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
--            volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
--            (void)r;
--        }
--        WDT_HIT();
--    }
--    LED_B_OFF(); // Finished sending
++              FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
++
++      for(c = 0; c < 10;) {
++              if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
++                      AT91C_BASE_SSC->SSC_THR = 0xff;
++                      c++;
++              }
++              if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
++                      volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
++                      (void)r;
++              }
++              WDT_HIT();
++      }
++
++      c = 0;
++      for(;;) {
++              if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
++                      AT91C_BASE_SSC->SSC_THR = ToSend[c];
++                      c++;
++                      if(c >= ToSendMax) {
++                              break;
++                      }
++              }
++              if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
++                      volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
++                      (void)r;
++              }
++              WDT_HIT();
++      }
++      LED_B_OFF(); // Finished sending
  }
  
  //-----------------------------------------------------------------------------
  //-----------------------------------------------------------------------------
  static void CodeIso14443bAsReader(const uint8_t *cmd, int len)
  {
--    int i, j;
--    uint8_t b;
--
--    ToSendReset();
--
--    // Establish initial reference level
--    for(i = 0; i < 40; i++) {
--        ToSendStuffBit(1);
--    }
--    // Send SOF
--    for(i = 0; i < 10; i++) {
--        ToSendStuffBit(0);
--    }
--
--    for(i = 0; i < len; i++) {
--        // Stop bits/EGT
--        ToSendStuffBit(1);
--        ToSendStuffBit(1);
--        // Start bit
--        ToSendStuffBit(0);
--        // Data bits
--        b = cmd[i];
--        for(j = 0; j < 8; j++) {
--            if(b & 1) {
--                ToSendStuffBit(1);
--            } else {
--                ToSendStuffBit(0);
--            }
--            b >>= 1;
--        }
--    }
--    // Send EOF
--    ToSendStuffBit(1);
--    for(i = 0; i < 10; i++) {
--        ToSendStuffBit(0);
--    }
--    for(i = 0; i < 8; i++) {
--        ToSendStuffBit(1);
--    }
--
--    // And then a little more, to make sure that the last character makes
--    // it out before we switch to rx mode.
--    for(i = 0; i < 24; i++) {
--        ToSendStuffBit(1);
--    }
--
--    // Convert from last character reference to length
--    ToSendMax++;
++      int i, j;
++      uint8_t b;
++
++      ToSendReset();
++
++      // Establish initial reference level
++      for(i = 0; i < 40; i++) {
++              ToSendStuffBit(1);
++      }
++      // Send SOF
++      for(i = 0; i < 10; i++) {
++              ToSendStuffBit(0);
++      }
++
++      for(i = 0; i < len; i++) {
++              // Stop bits/EGT
++              ToSendStuffBit(1);
++              ToSendStuffBit(1);
++              // Start bit
++              ToSendStuffBit(0);
++              // Data bits
++              b = cmd[i];
++              for(j = 0; j < 8; j++) {
++                      if(b & 1) {
++                              ToSendStuffBit(1);
++                      } else {
++                              ToSendStuffBit(0);
++                      }
++                      b >>= 1;
++              }
++      }
++      // Send EOF
++      ToSendStuffBit(1);
++      for(i = 0; i < 10; i++) {
++              ToSendStuffBit(0);
++      }
++      for(i = 0; i < 8; i++) {
++              ToSendStuffBit(1);
++      }
++
++      // And then a little more, to make sure that the last character makes
++      // it out before we switch to rx mode.
++      for(i = 0; i < 24; i++) {
++              ToSendStuffBit(1);
++      }
++
++      // Convert from last character reference to length
++      ToSendMax++;
  }
  
  //-----------------------------------------------------------------------------
  //-----------------------------------------------------------------------------
  void AcquireRawAdcSamplesIso14443(uint32_t parameter)
  {
--    uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
++      uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
  
--    SendRawCommand14443B(sizeof(cmd1),1,1,cmd1);
++      SendRawCommand14443B(sizeof(cmd1),1,1,cmd1);
 +}
 +
 +/**
 +  Convenience function to encode, transmit and trace iso 14443b comms
 +  **/
 +static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len)
 +{
 +      CodeIso14443bAsReader(cmd, len);
 +      TransmitFor14443();
 +      if (tracing) {
 +              uint8_t parity[MAX_PARITY_SIZE];
 +              GetParity(cmd, len, parity);
 +              LogTrace(cmd,len, 0, 0, parity, TRUE);
 +      }
  }
  
  //-----------------------------------------------------------------------------
  //-----------------------------------------------------------------------------
  void ReadSTMemoryIso14443(uint32_t dwLast)
  {
 -    uint8_t i = 0x00;
 -
 -    FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
 -    // Make sure that we start from off, since the tags are stateful;
 -    // confusing things will happen if we don't reset them between reads.
 -    LED_D_OFF();
 -    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 -    SpinDelay(200);
 -
 -    SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
 -    FpgaSetupSsc();
 -
 -    // Now give it time to spin up.
 -    // Signal field is on with the appropriate LED
 -    LED_D_ON();
 -    FpgaWriteConfWord(
 -      FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
 -    SpinDelay(200);
 -
 -    // First command: wake up the tag using the INITIATE command
 -    uint8_t cmd1[] = { 0x06, 0x00, 0x97, 0x5b};
 -    CodeIso14443bAsReader(cmd1, sizeof(cmd1));
 -    TransmitFor14443();
 +      clear_trace();
 +      set_tracing(TRUE);
 +
-     uint8_t i = 0x00;
++      uint8_t i = 0x00;
 +
-     FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
-     // Make sure that we start from off, since the tags are stateful;
-     // confusing things will happen if we don't reset them between reads.
-     LED_D_OFF();
-     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-     SpinDelay(200);
++      FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
++      // Make sure that we start from off, since the tags are stateful;
++      // confusing things will happen if we don't reset them between reads.
++      LED_D_OFF();
++      FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
++      SpinDelay(200);
 +
-     SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-     FpgaSetupSsc();
++      SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
++      FpgaSetupSsc();
 +
-     // Now give it time to spin up.
-     // Signal field is on with the appropriate LED
-     LED_D_ON();
-     FpgaWriteConfWord(
-       FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
-     SpinDelay(200);
++      // Now give it time to spin up.
++      // Signal field is on with the appropriate LED
++      LED_D_ON();
++      FpgaWriteConfWord(
++              FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
++      SpinDelay(200);
 +
-     // First command: wake up the tag using the INITIATE command
-     uint8_t cmd1[] = { 0x06, 0x00, 0x97, 0x5b};
++      // First command: wake up the tag using the INITIATE command
++      uint8_t cmd1[] = { 0x06, 0x00, 0x97, 0x5b};
 +
 +      CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
  //    LED_A_ON();
--    GetSamplesFor14443Demod(TRUE, 2000,TRUE);
++      GetSamplesFor14443Demod(TRUE, 2000,TRUE);
  //    LED_A_OFF();
  
--    if (Demod.len == 0) {
++      if (Demod.len == 0) {
        DbpString("No response from tag");
        return;
--    } else {
++      } else {
        Dbprintf("Randomly generated UID from tag (+ 2 byte CRC): %x %x %x",
                Demod.output[0], Demod.output[1],Demod.output[2]);
--    }
--    // There is a response, SELECT the uid
--    DbpString("Now SELECT tag:");
--    cmd1[0] = 0x0E; // 0x0E is SELECT
--    cmd1[1] = Demod.output[0];
--    ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
 -    CodeIso14443bAsReader(cmd1, sizeof(cmd1));
 -    TransmitFor14443();
++      }
++      // There is a response, SELECT the uid
++      DbpString("Now SELECT tag:");
++      cmd1[0] = 0x0E; // 0x0E is SELECT
++      cmd1[1] = Demod.output[0];
++      ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
 +      CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
 +
  //    LED_A_ON();
--    GetSamplesFor14443Demod(TRUE, 2000,TRUE);
++      GetSamplesFor14443Demod(TRUE, 2000,TRUE);
  //    LED_A_OFF();
--    if (Demod.len != 3) {
++      if (Demod.len != 3) {
        Dbprintf("Expected 3 bytes from tag, got %d", Demod.len);
        return;
--    }
--    // Check the CRC of the answer:
--    ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]);
--    if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) {
++      }
++      // Check the CRC of the answer:
++      ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]);
++      if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) {
        DbpString("CRC Error reading select response.");
        return;
--    }
--    // Check response from the tag: should be the same UID as the command we just sent:
--    if (cmd1[1] != Demod.output[0]) {
++      }
++      // Check response from the tag: should be the same UID as the command we just sent:
++      if (cmd1[1] != Demod.output[0]) {
        Dbprintf("Bad response to SELECT from Tag, aborting: %x %x", cmd1[1], Demod.output[0]);
        return;
--    }
--    // Tag is now selected,
--    // First get the tag's UID:
--    cmd1[0] = 0x0B;
--    ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]);
 -    CodeIso14443bAsReader(cmd1, 3); // Only first three bytes for this one
 -    TransmitFor14443();
++      }
++      // Tag is now selected,
++      // First get the tag's UID:
++      cmd1[0] = 0x0B;
++      ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]);
 +      CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one
 +
  //    LED_A_ON();
--    GetSamplesFor14443Demod(TRUE, 2000,TRUE);
++      GetSamplesFor14443Demod(TRUE, 2000,TRUE);
  //    LED_A_OFF();
--    if (Demod.len != 10) {
++      if (Demod.len != 10) {
        Dbprintf("Expected 10 bytes from tag, got %d", Demod.len);
        return;
--    }
--    // The check the CRC of the answer (use cmd1 as temporary variable):
--    ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]);
--           if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) {
++      }
++      // The check the CRC of the answer (use cmd1 as temporary variable):
++      ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]);
++                 if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) {
        Dbprintf("CRC Error reading block! - Below: expected, got %x %x",
                (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]);
        // Do not return;, let's go on... (we should retry, maybe ?)
--    }
--    Dbprintf("Tag UID (64 bits): %08x %08x",
++      }
++      Dbprintf("Tag UID (64 bits): %08x %08x",
        (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4],
        (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]);
  
--    // Now loop to read all 16 blocks, address from 0 to last block
--    Dbprintf("Tag memory dump, block 0 to %d",dwLast);
--    cmd1[0] = 0x08;
--    i = 0x00;
--    dwLast++;
--    for (;;) {
--           if (i == dwLast) {
--                  DbpString("System area block (0xff):");
--                  i = 0xff;
--          }
--          cmd1[1] = i;
--          ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
 -          CodeIso14443bAsReader(cmd1, sizeof(cmd1));
 -          TransmitFor14443();
++      // Now loop to read all 16 blocks, address from 0 to last block
++      Dbprintf("Tag memory dump, block 0 to %d",dwLast);
++      cmd1[0] = 0x08;
++      i = 0x00;
++      dwLast++;
++      for (;;) {
++                 if (i == dwLast) {
++                      DbpString("System area block (0xff):");
++                      i = 0xff;
++              }
++              cmd1[1] = i;
++              ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
 +              CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
 +
  //        LED_A_ON();
--          GetSamplesFor14443Demod(TRUE, 2000,TRUE);
++              GetSamplesFor14443Demod(TRUE, 2000,TRUE);
  //        LED_A_OFF();
--          if (Demod.len != 6) { // Check if we got an answer from the tag
++              if (Demod.len != 6) { // Check if we got an answer from the tag
                DbpString("Expected 6 bytes from tag, got less...");
                return;
--          }
--          // The check the CRC of the answer (use cmd1 as temporary variable):
--          ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]);
--            if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) {
++              }
++              // The check the CRC of the answer (use cmd1 as temporary variable):
++              ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]);
++                      if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) {
                Dbprintf("CRC Error reading block! - Below: expected, got %x %x",
                        (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]);
                // Do not return;, let's go on... (we should retry, maybe ?)
--          }
--          // Now print out the memory location:
--          Dbprintf("Address=%x, Contents=%x, CRC=%x", i,
++              }
++              // Now print out the memory location:
++              Dbprintf("Address=%x, Contents=%x, CRC=%x", i,
                (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0],
                (Demod.output[4]<<8)+Demod.output[5]);
--          if (i == 0xff) {
++              if (i == 0xff) {
                break;
--          }
--          i++;
--    }
++              }
++              i++;
++      }
  }
  
  
   */
  void RAMFUNC SnoopIso14443(void)
  {
--    // We won't start recording the frames that we acquire until we trigger;
--    // a good trigger condition to get started is probably when we see a
--    // response from the tag.
--    int triggered = TRUE;
++      // We won't start recording the frames that we acquire until we trigger;
++      // a good trigger condition to get started is probably when we see a
++      // response from the tag.
++      int triggered = TRUE;
  
--    FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
++      FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+       BigBuf_free();
 -    // The command (reader -> tag) that we're working on receiving.
 -    uint8_t *receivedCmd = BigBuf_malloc(READER_TAG_BUFFER_SIZE);
 -    // The response (tag -> reader) that we're working on receiving.
 -    uint8_t *receivedResponse = BigBuf_malloc(TAG_READER_BUFFER_SIZE);
 -
 -    // As we receive stuff, we copy it from receivedCmd or receivedResponse
 -    // into trace, along with its length and other annotations.
 -    uint8_t *trace = BigBuf_get_addr();
 -    traceLen = 0;
 -
 -    // The DMA buffer, used to stream samples from the FPGA.
 -    uint8_t *dmaBuf = BigBuf_malloc(DEMOD_DMA_BUFFER_SIZE);
 -    int lastRxCounter;
 -    uint8_t *upTo;
 -    int ci, cq;
 -    int maxBehindBy = 0;
 -
 -    // Count of samples received so far, so that we can include timing
 -    // information in the trace buffer.
 -    int samples = 0;
 -
 -    // Initialize the trace buffer
 -    memset(trace, 0x44, BigBuf_max_traceLen());
 -
 -    // Set up the demodulator for tag -> reader responses.
 -    Demod.output = receivedResponse;
 -    Demod.len = 0;
 -    Demod.state = DEMOD_UNSYNCD;
 -
 -    // And the reader -> tag commands
 -    memset(&Uart, 0, sizeof(Uart));
 -    Uart.output = receivedCmd;
 -    Uart.byteCntMax = 100;
 -    Uart.state = STATE_UNSYNCD;
 -
 -    // Print some debug information about the buffer sizes
 -    Dbprintf("Snooping buffers initialized:");
 -    Dbprintf("  Trace: %i bytes", BigBuf_max_traceLen());
 -    Dbprintf("  Reader -> tag: %i bytes", READER_TAG_BUFFER_SIZE);
 -    Dbprintf("  tag -> Reader: %i bytes", TAG_READER_BUFFER_SIZE);
 -    Dbprintf("  DMA: %i bytes", DEMOD_DMA_BUFFER_SIZE);
 -
 -    // And put the FPGA in the appropriate mode
 -    // Signal field is off with the appropriate LED
 -    LED_D_OFF();
 -    FpgaWriteConfWord(
 -      FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
 -      FPGA_HF_READER_RX_XCORR_SNOOP);
 -    SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
 -
 -    // Setup for the DMA.
 -    FpgaSetupSsc();
 -    upTo = dmaBuf;
 -    lastRxCounter = DEMOD_DMA_BUFFER_SIZE;
 -    FpgaSetupSscDma((uint8_t *)dmaBuf, DEMOD_DMA_BUFFER_SIZE);
 -              
 -    LED_A_ON();
 -              
 -    // And now we loop, receiving samples.
 -    for(;;) {
 -      int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
 -                                (DEMOD_DMA_BUFFER_SIZE-1);
 -        if(behindBy > maxBehindBy) {
 -            maxBehindBy = behindBy;
 -            if(behindBy > (9*DEMOD_DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not?
 -                Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
 -                goto done;
 -            }
 -        }
 -        if(behindBy < 2) continue;
 -
 -        ci = upTo[0];
 -        cq = upTo[1];
 -        upTo += 2;
 -        lastRxCounter -= 2;
 -        if(upTo - dmaBuf > DEMOD_DMA_BUFFER_SIZE) {
 -            upTo -= DEMOD_DMA_BUFFER_SIZE;
 -            lastRxCounter += DEMOD_DMA_BUFFER_SIZE;
 -            AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
 -            AT91C_BASE_PDC_SSC->PDC_RNCR = DEMOD_DMA_BUFFER_SIZE;
 -        }
 -
 -        samples += 2;
 -
 -#define HANDLE_BIT_IF_BODY \
 -            if(triggered) { \
 -                trace[traceLen++] = ((samples >>  0) & 0xff); \
 -                trace[traceLen++] = ((samples >>  8) & 0xff); \
 -                trace[traceLen++] = ((samples >> 16) & 0xff); \
 -                trace[traceLen++] = ((samples >> 24) & 0xff); \
 -                trace[traceLen++] = 0; \
 -                trace[traceLen++] = 0; \
 -                trace[traceLen++] = 0; \
 -                trace[traceLen++] = 0; \
 -                trace[traceLen++] = Uart.byteCnt; \
 -                memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \
 -                traceLen += Uart.byteCnt; \
 -                if(traceLen > 1000) break; \
 -            } \
 -            /* And ready to receive another command. */ \
 -            memset(&Uart, 0, sizeof(Uart)); \
 -            Uart.output = receivedCmd; \
 -            Uart.byteCntMax = 100; \
 -            Uart.state = STATE_UNSYNCD; \
 -            /* And also reset the demod code, which might have been */ \
 -            /* false-triggered by the commands from the reader. */ \
 -            memset(&Demod, 0, sizeof(Demod)); \
 -            Demod.output = receivedResponse; \
 -            Demod.state = DEMOD_UNSYNCD; \
 -
 -        if(Handle14443UartBit(ci & 1)) {
 -            HANDLE_BIT_IF_BODY
 -        }
 -        if(Handle14443UartBit(cq & 1)) {
 -            HANDLE_BIT_IF_BODY
 -        }
 -
 -        if(Handle14443SamplesDemod(ci, cq)) {
 -            // timestamp, as a count of samples
 -            trace[traceLen++] = ((samples >>  0) & 0xff);
 -            trace[traceLen++] = ((samples >>  8) & 0xff);
 -            trace[traceLen++] = ((samples >> 16) & 0xff);
 -            trace[traceLen++] = 0x80 | ((samples >> 24) & 0xff);
 -            // correlation metric (~signal strength estimate)
 -            if(Demod.metricN != 0) {
 -                Demod.metric /= Demod.metricN;
 -            }
 -            trace[traceLen++] = ((Demod.metric >>  0) & 0xff);
 -            trace[traceLen++] = ((Demod.metric >>  8) & 0xff);
 -            trace[traceLen++] = ((Demod.metric >> 16) & 0xff);
 -            trace[traceLen++] = ((Demod.metric >> 24) & 0xff);
 -            // length
 -            trace[traceLen++] = Demod.len;
 -            memcpy(trace+traceLen, receivedResponse, Demod.len);
 -            traceLen += Demod.len;
 -            if(traceLen > BigBuf_max_traceLen()) {
 -                              DbpString("Reached trace limit");
 -                              goto done;
 -                      }
  
 -            triggered = TRUE;
 -            LED_A_OFF();
 -            LED_B_ON();
 +      clear_trace();
 +      set_tracing(TRUE);
 +
-     // The DMA buffer, used to stream samples from the FPGA.
-       int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
-     int lastRxCounter;
-     int8_t *upTo;
-     int ci, cq;
-     int maxBehindBy = 0;
-     // Count of samples received so far, so that we can include timing
-     // information in the trace buffer.
-     int samples = 0;
-       DemodReset();
-       UartReset();
-     // Print some debug information about the buffer sizes
-     Dbprintf("Snooping buffers initialized:");
-       Dbprintf("  Trace: %i bytes", TRACE_SIZE);
++      // The DMA buffer, used to stream samples from the FPGA
++      uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
++      int lastRxCounter;
++      uint8_t *upTo;
++      int ci, cq;
++      int maxBehindBy = 0;
++
++      // Count of samples received so far, so that we can include timing
++      // information in the trace buffer.
++      int samples = 0;
 -            // And ready to receive another response.
 -            memset(&Demod, 0, sizeof(Demod));
 -            Demod.output = receivedResponse;
 -            Demod.state = DEMOD_UNSYNCD;
 -        }
 -      WDT_HIT();
++      DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
++      UartInit(BigBuf_malloc(MAX_FRAME_SIZE));
 -        if(BUTTON_PRESS()) {
 -            DbpString("cancelled");
 -            goto done;
 -        }
 -    }
++      // Print some debug information about the buffer sizes
++      Dbprintf("Snooping buffers initialized:");
++      Dbprintf("  Trace: %i bytes", BigBuf_max_traceLen());
 +      Dbprintf("  Reader -> tag: %i bytes", MAX_FRAME_SIZE);
 +      Dbprintf("  tag -> Reader: %i bytes", MAX_FRAME_SIZE);
 +      Dbprintf("  DMA: %i bytes", DMA_BUFFER_SIZE);
  
 -done:
 +      // Signal field is off with the appropriate LED
 +      LED_D_OFF();
 +
 +      // And put the FPGA in the appropriate mode
-     FpgaWriteConfWord(
-       FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
-       FPGA_HF_READER_RX_XCORR_SNOOP);
-     SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-     // Setup for the DMA.
-     FpgaSetupSsc();
-     upTo = dmaBuf;
++      FpgaWriteConfWord(
++              FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
++              FPGA_HF_READER_RX_XCORR_SNOOP);
++      SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
++
++      // Setup for the DMA.
++      FpgaSetupSsc();
++      upTo = dmaBuf;
 +      lastRxCounter = DMA_BUFFER_SIZE;
 +      FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
 +      uint8_t parity[MAX_PARITY_SIZE];
-     LED_A_ON();
++      LED_A_ON();
 +              
-     // And now we loop, receiving samples.
-     for(;;) {
-       int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
++      // And now we loop, receiving samples.
++      for(;;) {
++              int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
 +                                                              (DMA_BUFFER_SIZE-1);
-         if(behindBy > maxBehindBy) {
-             maxBehindBy = behindBy;
-                       if(behindBy > (DMA_BUFFER_SIZE-2)) { // TODO: understand whether we can increase/decrease as we want or not?
-                 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
++              if(behindBy > maxBehindBy) {
++                      maxBehindBy = behindBy;
++                      if(behindBy > (9*DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not?
++                              Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
 +                              break;
-             }
-         }
-         if(behindBy < 2) continue;
-         ci = upTo[0];
-         cq = upTo[1];
-         upTo += 2;
-         lastRxCounter -= 2;
++                      }
++              }
++              if(behindBy < 2) continue;
++
++              ci = upTo[0];
++              cq = upTo[1];
++              upTo += 2;
++              lastRxCounter -= 2;
 +              if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
 +                      upTo -= DMA_BUFFER_SIZE;
 +                      lastRxCounter += DMA_BUFFER_SIZE;
-             AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
++                      AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
 +                      AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
-         }
++              }
 +
-         samples += 2;
++              samples += 2;
 +
 +              if(Handle14443UartBit(ci & 1)) {
 +                      if(triggered && tracing) {
 +                              GetParity(Uart.output, Uart.byteCnt, parity);
 +                              LogTrace(Uart.output,Uart.byteCnt,samples, samples,parity,TRUE);
 +                      }
 +                      if(Uart.byteCnt==0) Dbprintf("[1] Error, Uart.byteCnt==0, Uart.bitCnt=%d", Uart.bitCnt);
 +
 +                      /* And ready to receive another command. */
 +                      UartReset();
 +                      /* And also reset the demod code, which might have been */
 +                      /* false-triggered by the commands from the reader. */
 +                      DemodReset();
 +              }
-         if(Handle14443UartBit(cq & 1)) {
++              if(Handle14443UartBit(cq & 1)) {
 +                      if(triggered && tracing) {
 +                              GetParity(Uart.output, Uart.byteCnt, parity);
 +                              LogTrace(Uart.output,Uart.byteCnt,samples, samples,parity,TRUE);
 +                      }
 +                      if(Uart.byteCnt==0) Dbprintf("[2] Error, Uart.byteCnt==0, Uart.bitCnt=%d", Uart.bitCnt);
 +
 +                      /* And ready to receive another command. */
 +                      UartReset();
 +                      /* And also reset the demod code, which might have been */
 +                      /* false-triggered by the commands from the reader. */
 +                      DemodReset();
 +              }
 +
-         if(Handle14443SamplesDemod(ci, cq)) {
++              if(Handle14443SamplesDemod(ci, cq)) {
 +
 +                      //Use samples as a time measurement
 +                      if(tracing)
 +                      {
 +                              uint8_t parity[MAX_PARITY_SIZE];
 +                              GetParity(Demod.output, Demod.len, parity);
 +                              LogTrace(Demod.output,Demod.len,samples, samples,parity,FALSE);
 +                      }
-             triggered = TRUE;
-             LED_A_OFF();
-             LED_B_ON();
++                      triggered = TRUE;
++                      LED_A_OFF();
++                      LED_B_ON();
 +
-             // And ready to receive another response.
++                      // And ready to receive another response.
 +                      DemodReset();
-         }
++              }
 +              WDT_HIT();
 +
 +              if(!tracing) {
 +                      DbpString("Reached trace limit");
 +                      break;
 +              }
 +
-         if(BUTTON_PRESS()) {
-             DbpString("cancelled");
++              if(BUTTON_PRESS()) {
++                      DbpString("cancelled");
 +                      break;
-         }
-     }
++              }
++      }
 +      FpgaDisableSscDma();
        LED_A_OFF();
        LED_B_OFF();
        LED_C_OFF();
  
  void SendRawCommand14443B(uint32_t datalen, uint32_t recv,uint8_t powerfield, uint8_t data[])
  {
--    FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
--    if(!powerfield)
--    {
--        // Make sure that we start from off, since the tags are stateful;
--        // confusing things will happen if we don't reset them between reads.
--        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
--        LED_D_OFF();
--        SpinDelay(200);
--    }
--
--    if(!GETBIT(GPIO_LED_D))
--    {
--        SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
--        FpgaSetupSsc();
--
--        // Now give it time to spin up.
--        // Signal field is on with the appropriate LED
--        LED_D_ON();
--        FpgaWriteConfWord(
--            FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
--        SpinDelay(200);
 -    }
 -
 -    CodeIso14443bAsReader(data, datalen);
 -    TransmitFor14443();
 -    if(recv)
 -    {
 -        uint16_t iLen = MIN(Demod.len,USB_CMD_DATA_SIZE);
 -        GetSamplesFor14443Demod(TRUE, 2000, TRUE);
 -        cmd_send(CMD_ACK,iLen,0,0,Demod.output,iLen);
 -    }
 -    if(!powerfield)
 -    {
 -        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 -        LED_D_OFF();
--    }
++      FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
++      if(!powerfield)
++      {
++              // Make sure that we start from off, since the tags are stateful;
++              // confusing things will happen if we don't reset them between reads.
++              FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
++              LED_D_OFF();
++              SpinDelay(200);
++      }
++
++      if(!GETBIT(GPIO_LED_D))
++      {
++              SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
++              FpgaSetupSsc();
++
++              // Now give it time to spin up.
++              // Signal field is on with the appropriate LED
++              LED_D_ON();
++              FpgaWriteConfWord(
++                      FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
++              SpinDelay(200);
++      }
 +
 +      CodeAndTransmit14443bAsReader(data, datalen);
 +
-     if(recv)
-     {
-         uint16_t iLen = MIN(Demod.len,USB_CMD_DATA_SIZE);
-         GetSamplesFor14443Demod(TRUE, 2000, TRUE);
-         cmd_send(CMD_ACK,iLen,0,0,Demod.output,iLen);
-     }
-     if(!powerfield)
-     {
-         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-         LED_D_OFF();
-     }
++      if(recv)
++      {
++              uint16_t iLen = MIN(Demod.len,USB_CMD_DATA_SIZE);
++              GetSamplesFor14443Demod(TRUE, 2000, TRUE);
++              cmd_send(CMD_ACK,iLen,0,0,Demod.output,iLen);
++      }
++      if(!powerfield)
++      {
++              FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
++              LED_D_OFF();
++      }
  }
  
diff --combined armsrc/iso14443a.c
index 54c1db407d5aa76e288edfed306d00f4847d0eb1,b73495a3c024280dd48280df9707eb6b2cc31f35..336250edec61736f4976695b7852bd90c73edbaa
@@@ -23,6 -23,7 +23,6 @@@
  
  static uint32_t iso14a_timeout;
  int rsamples = 0;
 -int tracing = TRUE;
  uint8_t trigger = 0;
  // the block number for the ISO14443-4 PCB
  static uint8_t iso14_pcb_blocknum = 0;
@@@ -145,7 -146,17 +145,8 @@@ void iso14a_set_trigger(bool enable) 
        trigger = enable;
  }
  
 -void iso14a_clear_trace() {
 -      uint8_t *trace = BigBuf_get_addr();
 -      uint16_t max_traceLen = BigBuf_max_traceLen();
 -      memset(trace, 0x44, max_traceLen);
 -      traceLen = 0;
 -}
  
 -void iso14a_set_tracing(bool enable) {
 -      tracing = enable;
 -}
  void iso14a_set_timeout(uint32_t timeout) {
        iso14a_timeout = timeout;
  }
@@@ -188,7 -199,63 +189,6 @@@ void AppendCrc14443a(uint8_t* data, in
        ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
  }
  
 -// The function LogTrace() is also used by the iClass implementation in iClass.c
 -bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag)
 -{
 -      if (!tracing) return FALSE;
 -      
 -      uint8_t *trace = BigBuf_get_addr();
 -      uint16_t num_paritybytes = (iLen-1)/8 + 1;      // number of valid paritybytes in *parity
 -      uint16_t duration = timestamp_end - timestamp_start;
 -
 -      // Return when trace is full
 -      uint16_t max_traceLen = BigBuf_max_traceLen();
 -      if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= max_traceLen) {
 -              tracing = FALSE;        // don't trace any more
 -              return FALSE;
 -      }
 -      
 -      // Traceformat:
 -      // 32 bits timestamp (little endian)
 -      // 16 bits duration (little endian)
 -      // 16 bits data length (little endian, Highest Bit used as readerToTag flag)
 -      // y Bytes data
 -      // x Bytes parity (one byte per 8 bytes data)
 -      
 -      // timestamp (start)
 -      trace[traceLen++] = ((timestamp_start >> 0) & 0xff);
 -      trace[traceLen++] = ((timestamp_start >> 8) & 0xff);
 -      trace[traceLen++] = ((timestamp_start >> 16) & 0xff);
 -      trace[traceLen++] = ((timestamp_start >> 24) & 0xff);
 -      
 -      // duration
 -      trace[traceLen++] = ((duration >> 0) & 0xff);
 -      trace[traceLen++] = ((duration >> 8) & 0xff);
 -
 -      // data length
 -      trace[traceLen++] = ((iLen >> 0) & 0xff);
 -      trace[traceLen++] = ((iLen >> 8) & 0xff);
 -
 -      // readerToTag flag
 -      if (!readerToTag) {
 -              trace[traceLen - 1] |= 0x80;
 -      }
 -
 -      // data bytes
 -      if (btBytes != NULL && iLen != 0) {
 -              memcpy(trace + traceLen, btBytes, iLen);
 -      }
 -      traceLen += iLen;
 -
 -      // parity bytes
 -      if (parity != NULL && iLen != 0) {
 -              memcpy(trace + traceLen, parity, num_paritybytes);
 -      }
 -      traceLen += num_paritybytes;
 -
 -      return TRUE;
 -}
--
  //=============================================================================
  // ISO 14443 Type A - Miller decoder
  //=============================================================================
@@@ -526,9 -593,6 +526,6 @@@ void RAMFUNC SnoopIso14443a(uint8_t par
        // bit 1 - trigger from first reader 7-bit request
        
        LEDsoff();
-       // init trace buffer
-       iso14a_clear_trace();
-       iso14a_set_tracing(TRUE);
  
        // We won't start recording the frames that we acquire until we trigger;
        // a good trigger condition to get started is probably when we see a
        // triggered == FALSE -- to wait first for card
        bool triggered = !(param & 0x03); 
        
+       // Allocate memory from BigBuf for some buffers
+       // free all previous allocations first
+       BigBuf_free();
        // The command (reader -> tag) that we're receiving.
-       // The length of a received command will in most cases be no more than 18 bytes.
-       // So 32 should be enough!
-       uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
-       uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
+       uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+       uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
        
        // The response (tag -> reader) that we're receiving.
-       uint8_t *receivedResponse = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
-       uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
-       
-       // As we receive stuff, we copy it from receivedCmd or receivedResponse
-       // into trace, along with its length and other annotations.
-       //uint8_t *trace = (uint8_t *)BigBuf;
+       uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
+       uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
        
        // The DMA buffer, used to stream samples from the FPGA
-       uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+       uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
+       // init trace buffer
+       iso14a_clear_trace();
+       iso14a_set_tracing(TRUE);
        uint8_t *data = dmaBuf;
        uint8_t previous_data = 0;
        int maxDataLen = 0;
                // test for length of buffer
                if(dataLen > maxDataLen) {
                        maxDataLen = dataLen;
-                       if(dataLen > 400) {
+                       if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
                                Dbprintf("blew circular buffer! dataLen=%d", dataLen);
                                break;
                        }
@@@ -820,7 -887,7 +820,7 @@@ int EmSendCmdPar(uint8_t *resp, uint16_
  bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
                                 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
  
- static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+ static uint8_t* free_buffer_pointer;
  
  typedef struct {
    uint8_t* response;
    uint32_t ProxToAirDuration;
  } tag_response_info_t;
  
- void reset_free_buffer() {
-   free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
- }
  bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
        // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
        // This will need the following byte array for a modulation sequence
        // ----------- +
        //    166 bytes, since every bit that needs to be send costs us a byte
        //
-   
+  
+  
    // Prepare the tag modulation bits from the message
    CodeIso14443aAsTag(response_info->response,response_info->response_n);
    
    return true;
  }
  
+ // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
+ // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) 
+ // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
+ // -> need 273 bytes buffer
+ #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
  bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
    // Retrieve and store the current buffer index
    response_info->modulation = free_buffer_pointer;
    
    // Determine the maximum size we can use from our buffer
-   size_t max_buffer_size = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + FREE_BUFFER_SIZE) - free_buffer_pointer;
+   size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
    
    // Forward the prepare tag modulation function to the inner function
-   if (prepare_tag_modulation(response_info,max_buffer_size)) {
+   if (prepare_tag_modulation(response_info, max_buffer_size)) {
      // Update the free buffer offset
      free_buffer_pointer += ToSendMax;
      return true;
  //-----------------------------------------------------------------------------
  void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
  {
-       // Enable and clear the trace
-       iso14a_clear_trace();
-       iso14a_set_tracing(TRUE);
        uint8_t sak;
  
        // The first response contains the ATQA (note: bytes are transmitted in reverse order).
        }
        
        // The second response contains the (mandatory) first 24 bits of the UID
-       uint8_t response2[5];
+       uint8_t response2[5] = {0x00};
  
        // Check if the uid uses the (optional) part
-       uint8_t response2a[5];
+       uint8_t response2a[5] = {0x00};
+       
        if (uid_2nd) {
                response2[0] = 0x88;
                num_to_bytes(uid_1st,3,response2+1);
        response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
  
        // Prepare the mandatory SAK (for 4 and 7 byte UID)
-       uint8_t response3[3];
+       uint8_t response3[3]  = {0x00};
        response3[0] = sak;
        ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
  
        // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
-       uint8_t response3a[3];
+       uint8_t response3a[3]  = {0x00};
        response3a[0] = sak & 0xFB;
        ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
  
                .modulation_n = 0
        };
    
-       // Reset the offset pointer of the free buffer
-       reset_free_buffer();
-   
+       BigBuf_free_keep_EM();
+       // allocate buffers:
+       uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+       uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
+       free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
+       // clear trace
+     iso14a_clear_trace();
+       iso14a_set_tracing(TRUE);
        // Prepare the responses of the anticollision phase
        // there will be not enough time to do this at the moment the reader sends it REQA
        for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
        // We need to listen to the high-frequency, peak-detected path.
        iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
  
-       // buffers used on software Uart:
-       uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
-       uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
        cmdsRecvd = 0;
        tag_response_info_t* p_response;
  
  
        Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
        LED_A_OFF();
+       BigBuf_free_keep_EM();
  }
  
  
@@@ -1461,7 -1534,7 +1467,7 @@@ static int EmSendCmd14443aRaw(uint8_t *
        AT91C_BASE_SSC->SSC_THR = SEC_F;
  
        // send cycle
-       for(; i <= respLen; ) {
+       for(; i < respLen; ) {
                if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
                        AT91C_BASE_SSC->SSC_THR = resp[i++];
                        FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
@@@ -1661,8 -1734,8 +1667,8 @@@ int iso14443a_select_card(byte_t *uid_p
        uint8_t sel_all[]    = { 0x93,0x20 };
        uint8_t sel_uid[]    = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
        uint8_t rats[]       = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
-       uint8_t *resp = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
-       uint8_t *resp_par = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
+       uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
+       uint8_t resp_par[MAX_PARITY_SIZE];
        byte_t uid_resp[4];
        size_t uid_resp_len;
  
@@@ -1954,9 -2027,12 +1960,12 @@@ void ReaderMifare(bool first_try
        uint8_t mf_nr_ar[]   = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
        static uint8_t mf_nr_ar3;
  
-       uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
-       uint8_t* receivedAnswerPar = (((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET);
+       uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
+       uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
  
+       // free eventually allocated BigBuf memory. We want all for tracing.
+       BigBuf_free();
+       
        iso14a_clear_trace();
        iso14a_set_tracing(TRUE);
  
@@@ -2166,10 -2242,10 +2175,10 @@@ void Mifare1ksim(uint8_t flags, uint8_
        struct Crypto1State *pcs;
        pcs = &mpcs;
        uint32_t numReads = 0;//Counts numer of times reader read a block
-       uint8_t* receivedCmd = get_bigbufptr_recvcmdbuf();
-       uint8_t* receivedCmd_par = receivedCmd + MAX_FRAME_SIZE;
-       uint8_t* response = get_bigbufptr_recvrespbuf();
-       uint8_t* response_par = response + MAX_FRAME_SIZE;
+       uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
+       uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
+       uint8_t response[MAX_MIFARE_FRAME_SIZE];
+       uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
        
        uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
        uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
        uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
        uint8_t ar_nr_collected = 0;
  
+       // free eventually allocated BigBuf memory but keep Emulator Memory
+       BigBuf_free_keep_EM();
        // clear trace
      iso14a_clear_trace();
        iso14a_set_tracing(TRUE);
@@@ -2656,18 -2734,20 +2667,20 @@@ void RAMFUNC SniffMifare(uint8_t param
        // The command (reader -> tag) that we're receiving.
        // The length of a received command will in most cases be no more than 18 bytes.
        // So 32 should be enough!
-       uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
-       uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
+       uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
+       uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
        // The response (tag -> reader) that we're receiving.
-       uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
-       uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
+       uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
+       uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
  
        // As we receive stuff, we copy it from receivedCmd or receivedResponse
        // into trace, along with its length and other annotations.
        //uint8_t *trace = (uint8_t *)BigBuf;
        
-       // The DMA buffer, used to stream samples from the FPGA
-       uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+       // free eventually allocated BigBuf memory
+       BigBuf_free();
+       // allocate the DMA buffer, used to stream samples from the FPGA
+       uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
        uint8_t *data = dmaBuf;
        uint8_t previous_data = 0;
        int maxDataLen = 0;
                // test for length of buffer
                if(dataLen > maxDataLen) {                                      // we are more behind than ever...
                        maxDataLen = dataLen;                                   
-                       if(dataLen > 400) {
+                       if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
                                Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
                                break;
                        }
diff --combined armsrc/util.c
index 38f417507f5dbfeede74d9ae1c772b399e9b7d55,674f1b91f5ef76d129fa3b200eeb0605ef49b364..4948fce8f8a19146436d220f8aa5475335736f6c
  #include "util.h"
  #include "string.h"
  #include "apps.h"
++#include "BigBuf.h"
  
- uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
- int traceLen = 0;
 +int tracing = TRUE;
  
  
  void print_result(char *name, uint8_t *buf, size_t len) {
@@@ -430,85 -427,5 +429,91 @@@ uint32_t RAMFUNC GetCountSspClk()
                return tmp_count;
        }
  }
-       memset(trace, 0x44, TRACE_SIZE);
 +void iso14a_clear_trace() {
 +      clear_trace();
 +}
 +
 +void iso14a_set_tracing(bool enable) {
 +      set_tracing(enable);
 +}
 +
 +void clear_trace() {
++      uint8_t *trace = BigBuf_get_addr();
++      uint16_t max_traceLen = BigBuf_max_traceLen();
++      memset(trace, 0x44, max_traceLen);
 +      traceLen = 0;
 +}
 +
 +void set_tracing(bool enable) {
 +      tracing = enable;
 +}
 +
 +/**
 +  This is a function to store traces. All protocols can use this generic tracer-function.
 +  The traces produced by calling this function can be fetched on the client-side
 +  by 'hf list raw', alternatively 'hf list <proto>' for protocol-specific
 +  annotation of commands/responses.
 +
 +**/
 +bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag)
 +{
 +      if (!tracing) return FALSE;
 +
++      uint8_t *trace = BigBuf_get_addr();
++
 +      uint16_t num_paritybytes = (iLen-1)/8 + 1;      // number of valid paritybytes in *parity
 +      uint16_t duration = timestamp_end - timestamp_start;
  
-       if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= TRACE_SIZE) {
 +      // Return when trace is full
-       if(traceLen +4 < TRACE_SIZE)
++      uint16_t max_traceLen = BigBuf_max_traceLen();
++
++      if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= max_traceLen) {
 +              tracing = FALSE;        // don't trace any more
 +              return FALSE;
 +      }
 +      // Traceformat:
 +      // 32 bits timestamp (little endian)
 +      // 16 bits duration (little endian)
 +      // 16 bits data length (little endian, Highest Bit used as readerToTag flag)
 +      // y Bytes data
 +      // x Bytes parity (one byte per 8 bytes data)
 +
 +      // timestamp (start)
 +      trace[traceLen++] = ((timestamp_start >> 0) & 0xff);
 +      trace[traceLen++] = ((timestamp_start >> 8) & 0xff);
 +      trace[traceLen++] = ((timestamp_start >> 16) & 0xff);
 +      trace[traceLen++] = ((timestamp_start >> 24) & 0xff);
 +
 +      // duration
 +      trace[traceLen++] = ((duration >> 0) & 0xff);
 +      trace[traceLen++] = ((duration >> 8) & 0xff);
 +
 +      // data length
 +      trace[traceLen++] = ((iLen >> 0) & 0xff);
 +      trace[traceLen++] = ((iLen >> 8) & 0xff);
 +
 +      // readerToTag flag
 +      if (!readerToTag) {
 +              trace[traceLen - 1] |= 0x80;
 +      }
 +
 +      // data bytes
 +      if (btBytes != NULL && iLen != 0) {
 +              memcpy(trace + traceLen, btBytes, iLen);
 +      }
 +      traceLen += iLen;
 +
 +      // parity bytes
 +      if (parity != NULL && iLen != 0) {
 +              memcpy(trace + traceLen, parity, num_paritybytes);
 +      }
 +      traceLen += num_paritybytes;
 +
++      if(traceLen +4 < max_traceLen)
 +      {       //If it hadn't been cleared, for whatever reason..
 +              memset(trace+traceLen,0x44, 4);
 +      }
 +
 +      return TRUE;
 +}
  
diff --combined armsrc/util.h
index 141d74b9d3c81cd0075106707bfc8f2d44c15d86,bf5d0cc81fc01477ea2526379948a71b5ce470dd..e00663028ef680c44ab7d9d1e7e6558da6147010
@@@ -13,7 -13,7 +13,7 @@@
  
  #include <stddef.h>
  #include <stdint.h>
- #include <common.h>
+ #include "common.h"
  
  #define BYTEx(x, n) (((x) >> (n * 8)) & 0xff )
  
@@@ -43,15 -43,6 +43,15 @@@ void LEDsoff()
  int BUTTON_CLICKED(int ms);
  int BUTTON_HELD(int ms);
  void FormatVersionInformation(char *dst, int len, const char *prefix, void *version_information);
 +// @deprecated
 +void iso14a_clear_trace();
 +// @deprecated
 +void iso14a_set_tracing(bool enable);
 +void clear_trace();
 +void set_tracing(bool enable);
 +
 +// The function LogTrace() is also used by the iClass implementation in iclass.c and both iso14443a, iso14443b and mifare
 +bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag);
  
  void StartTickCount();
  uint32_t RAMFUNC GetTickCount();
diff --combined client/cmdhf.c
index 0f31da4d66228550ab02890224206e735139882a,a55c41b2bbe2d209eec7a8d468488cebd1f29e78..07a4aa4951b15235873e171dbf107e1a763f1665
@@@ -22,6 -22,7 +22,7 @@@
  #include "cmdhflegic.h"
  #include "cmdhficlass.h"
  #include "cmdhfmf.h"
+ #include "cmdhfmfu.h"
  
  static int CmdHelp(const char *Cmd);
  
@@@ -31,8 -32,6 +32,6 @@@ int CmdHFTune(const char *Cmd
    SendCommand(&c);
    return 0;
  }
- // for the time being. Need better Bigbuf handling.
- #define TRACE_SIZE 3000
  
  //The following data is taken from http://www.proxmark.org/forum/viewtopic.php?pid=13501#p13501
  /*
@@@ -158,28 -157,9 +157,28 @@@ NXP/Philips CUSTOM COMMAND
  #define MIFARE_ULC_AUTH_1       0x1A
  #define MIFARE_ULC_AUTH_2        0xAF
  
 +/**
 +06 00 = INITIATE
 +0E xx = SELECT ID (xx = Chip-ID)
 +0B = Get UID
 +08 yy = Read Block (yy = block number)
 +09 yy dd dd dd dd = Write Block (yy = block number; dd dd dd dd = data to be written)
 +0C = Reset to Inventory
 +0F = Completion
 +0A 11 22 33 44 55 66 = Authenticate (11 22 33 44 55 66 = data to authenticate)
 +**/
 +
  #define ISO14443B_REQB         0x05
  #define ISO14443B_ATTRIB       0x1D
  #define ISO14443B_HALT         0x50
 +#define ISO14443B_INITIATE     0x06
 +#define ISO14443B_SELECT       0x0E
 +#define ISO14443B_GET_UID      0x0B
 +#define ISO14443B_READ_BLK     0x08
 +#define ISO14443B_WRITE_BLK    0x09
 +#define ISO14443B_RESET        0x0C
 +#define ISO14443B_COMPLETION   0x0F
 +#define ISO14443B_AUTHENTICATE 0x0A
  
  //First byte is 26
  #define ISO15693_INVENTORY     0x01
@@@ -212,7 -192,7 +211,7 @@@ void annotateIso14443a(char *exp, size_
        case ISO14443A_CMD_ANTICOLL_OR_SELECT:{
                // 93 20 = Anticollision (usage: 9320 - answer: 4bytes UID+1byte UID-bytes-xor)
                // 93 70 = Select (usage: 9370+5bytes 9320 answer - answer: 1byte SAK)
-               if(cmd[2] == 0x70)
+               if(cmd[1] == 0x70)
                {
                        snprintf(exp,size,"SELECT_UID"); break;
                }else
        case MIFARE_CMD_DEC:          snprintf(exp,size,"DEC(%d)",cmd[1]); break;
        case MIFARE_CMD_RESTORE:      snprintf(exp,size,"RESTORE(%d)",cmd[1]); break;
        case MIFARE_CMD_TRANSFER:     snprintf(exp,size,"TRANSFER(%d)",cmd[1]); break;
-       case MIFARE_AUTH_KEYA:        snprintf(exp,size,"AUTH-A"); break;
-       case MIFARE_AUTH_KEYB:        snprintf(exp,size,"AUTH-B"); break;
+       case MIFARE_AUTH_KEYA:        snprintf(exp,size,"AUTH-A(%d)",cmd[1]); break;
+       case MIFARE_AUTH_KEYB:        snprintf(exp,size,"AUTH-B(%d)",cmd[1]); break;
        case MIFARE_MAGICMODE:        snprintf(exp,size,"MAGIC"); break;
        default:                      snprintf(exp,size,"?"); break;
        }
@@@ -307,33 -287,13 +306,33 @@@ void annotateIso15693(char *exp, size_
                }
        }
  }
 +
 +/**
 +06 00 = INITIATE
 +0E xx = SELECT ID (xx = Chip-ID)
 +0B = Get UID
 +08 yy = Read Block (yy = block number)
 +09 yy dd dd dd dd = Write Block (yy = block number; dd dd dd dd = data to be written)
 +0C = Reset to Inventory
 +0F = Completion
 +0A 11 22 33 44 55 66 = Authenticate (11 22 33 44 55 66 = data to authenticate)
 +**/
 +
  void annotateIso14443b(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize)
  {
        switch(cmd[0]){
        case ISO14443B_REQB   : snprintf(exp,size,"REQB");break;
        case ISO14443B_ATTRIB : snprintf(exp,size,"ATTRIB");break;
        case ISO14443B_HALT   : snprintf(exp,size,"HALT");break;
 -      default:                snprintf(exp,size ,"?");break;
 +      case ISO14443B_INITIATE     : snprintf(exp,size,"INITIATE");break;
 +      case ISO14443B_SELECT       : snprintf(exp,size,"SELECT(%d)",cmd[1]);break;
 +      case ISO14443B_GET_UID      : snprintf(exp,size,"GET UID");break;
 +      case ISO14443B_READ_BLK     : snprintf(exp,size,"READ_BLK(%d)", cmd[1]);break;
 +      case ISO14443B_WRITE_BLK    : snprintf(exp,size,"WRITE_BLK(%d)",cmd[1]);break;
 +      case ISO14443B_RESET        : snprintf(exp,size,"RESET");break;
 +      case ISO14443B_COMPLETION   : snprintf(exp,size,"COMPLETION");break;
 +      case ISO14443B_AUTHENTICATE : snprintf(exp,size,"AUTHENTICATE");break;
 +      default                     : snprintf(exp,size ,"?");break;
        }
  
  }
@@@ -422,18 -382,18 +421,18 @@@ uint8_t iclass_CRC_check(bool isRespons
        }
  }
  
- uint16_t printTraceLine(uint16_t tracepos, uint8_t* trace, uint8_t protocol, bool showWaitCycles)
+ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, uint8_t protocol, bool showWaitCycles)
  {
        bool isResponse;
-       uint16_t duration, data_len,parity_len;
+       uint16_t duration, data_len, parity_len;
  
        uint32_t timestamp, first_timestamp, EndOfTransmissionTimestamp;
        char explanation[30] = {0};
  
+       if (tracepos + sizeof(uint32_t) + sizeof(uint16_t) + sizeof(uint16_t) > traceLen) return traceLen;
+       
        first_timestamp = *((uint32_t *)(trace));
        timestamp = *((uint32_t *)(trace + tracepos));
-       // Break and stick with current result if buffer was not completely full
-       if (timestamp == 0x44444444) return TRACE_SIZE;
  
        tracepos += 4;
        duration = *((uint16_t *)(trace + tracepos));
        }
        parity_len = (data_len-1)/8 + 1;
  
-       if (tracepos + data_len + parity_len >= TRACE_SIZE) {
-               return TRACE_SIZE;
+       if (tracepos + data_len + parity_len > traceLen) {
+               return traceLen;
        }
 -
        uint8_t *frame = trace + tracepos;
        tracepos += data_len;
        uint8_t *parityBytes = trace + tracepos;
        tracepos += parity_len;
  
 +
        //--- Draw the data column
 +      //char line[16][110];
        char line[16][110];
 -      for (int j = 0; j < data_len; j++) {
 +
 +      for (int j = 0; j < data_len && j/16 < 16; j++) {
 +
                int oddparity = 0x01;
                int k;
  
                }
  
                uint8_t parityBits = parityBytes[j>>3];
 -
                if (isResponse && (oddparity != ((parityBits >> (7-(j&0x0007))) & 0x01))) {
 -                      sprintf(line[j/16]+((j%16)*4), "%02x! ", frame[j]);
 +                      snprintf(line[j/16]+(( j % 16) * 4),110, "%02x! ", frame[j]);
 +
                } else {
 -                      sprintf(line[j/16]+((j%16)*4), "%02x  ", frame[j]);
 +                      snprintf(line[j/16]+(( j % 16) * 4),110, "%02x! ", frame[j]);
 +              }
 +      }
 +      if(data_len == 0)
 +      {
 +              if(data_len == 0){
 +                      sprintf(line[0],"<empty trace - possible error>");
                }
        }
        //--- Draw the CRC column
                        annotateIso14443b(explanation,sizeof(explanation),frame,data_len);
        }
  
 -      int num_lines = (data_len - 1)/16 + 1;
 -      for (int j = 0; j < num_lines; j++) {
 +      int num_lines = MIN((data_len - 1)/16 + 1, 16);
 +      for (int j = 0; j < num_lines ; j++) {
                if (j == 0) {
                        PrintAndLog(" %9d | %9d | %s | %-64s| %s| %s",
                                (timestamp - first_timestamp),
                }
        }
  
+       if (tracepos + sizeof(uint32_t) + sizeof(uint16_t) + sizeof(uint16_t) > traceLen) return traceLen;
+       
        bool next_isResponse = *((uint16_t *)(trace + tracepos + 6)) & 0x8000;
  
        if (showWaitCycles && !isResponse && next_isResponse) {
                                (next_timestamp - EndOfTransmissionTimestamp));
                }
        }
        return tracepos;
  }
  
  int CmdHFList(const char *Cmd)
  {
        bool showWaitCycles = false;
  
        if (errors) {
                PrintAndLog("List protocol data in trace buffer.");
-               PrintAndLog("Usage:  hf list [14a|14b|iclass] [f]");
+               PrintAndLog("Usage:  hf list <protocol> [f]");
+               PrintAndLog("    f      - show frame delay times as well");
+               PrintAndLog("Supported <protocol> values:");
+               PrintAndLog("    raw    - just show raw data without annotations");
                PrintAndLog("    14a    - interpret data as iso14443a communications");
                PrintAndLog("    14b    - interpret data as iso14443b communications");
                PrintAndLog("    iclass - interpret data as iclass communications");
-               PrintAndLog("    raw    - just show raw data");
-               PrintAndLog("    f      - show frame delay times as well");
                PrintAndLog("");
                PrintAndLog("example: hf list 14a f");
                PrintAndLog("example: hf list iclass");
        }
  
  
-       uint8_t trace[TRACE_SIZE];
+       uint8_t *trace;
        uint16_t tracepos = 0;
-       GetFromBigBuf(trace, TRACE_SIZE, 0);
-       WaitForResponse(CMD_ACK, NULL);
-       PrintAndLog("Recorded Activity");
+       trace = malloc(USB_CMD_DATA_SIZE);
+       // Query for the size of the trace
+       UsbCommand response;
+       GetFromBigBuf(trace, USB_CMD_DATA_SIZE, 0);
+       WaitForResponse(CMD_ACK, &response);
+       uint16_t traceLen = response.arg[2];
+       if (traceLen > USB_CMD_DATA_SIZE) {
+               uint8_t *p = realloc(trace, traceLen);
+               if (p == NULL) {
+                       PrintAndLog("Cannot allocate memory for trace");
+                       free(trace);
+                       return 2;
+               }
+               trace = p;
+               GetFromBigBuf(trace, traceLen, 0);
+               WaitForResponse(CMD_ACK, NULL);
+       }
+       
+       PrintAndLog("Recorded Activity (TraceLen = %d bytes)", traceLen);
        PrintAndLog("");
        PrintAndLog("Start = Start of Start Bit, End = End of last modulation. Src = Source of Transfer");
        PrintAndLog("iso14443a - All times are in carrier periods (1/13.56Mhz)");
        PrintAndLog("     Start |       End | Src | Data (! denotes parity error)                                   | CRC | Annotation         |");
        PrintAndLog("-----------|-----------|-----|-----------------------------------------------------------------|-----|--------------------|");
  
-       while(tracepos < TRACE_SIZE)
+       while(tracepos < traceLen)
        {
-               tracepos = printTraceLine(tracepos, trace, protocol, showWaitCycles);
+               tracepos = printTraceLine(tracepos, traceLen, trace, protocol, showWaitCycles);
        }
+       free(trace);
        return 0;
  }
  
@@@ -648,6 -623,7 +671,7 @@@ static command_t CommandTable[] 
    {"legic",       CmdHFLegic,       0, "{ LEGIC RFIDs... }"},
    {"iclass",      CmdHFiClass,      1, "{ ICLASS RFIDs... }"},
    {"mf",                      CmdHFMF,                1, "{ MIFARE RFIDs... }"},
+   {"mfu",                     CmdHFMFUltra,           1, "{ MIFARE Ultralight RFIDs... }"},
    {"tune",        CmdHFTune,        0, "Continuously measure HF antenna tuning"},
    {"list",       CmdHFList,         1, "List protocol data in trace buffer"},
        {NULL, NULL, 0, NULL}
diff --combined client/cmdhf14b.c
index 3aaf45fa874bbce82b8104790d70adc9053066d9,cf8658750c8eb48b76705726feecf202156081f7..525ffcc63d1d62a79c14c1845ff8099fe3390b06
@@@ -145,9 -145,97 +145,10 @@@ demodError
  
  int CmdHF14BList(const char *Cmd)
  {
 -      uint8_t *got = malloc(USB_CMD_DATA_SIZE);
 -
 -      // Query for the actual size of the trace
 -      UsbCommand response;
 -      GetFromBigBuf(got, USB_CMD_DATA_SIZE, 0);
 -      WaitForResponse(CMD_ACK, &response);
 -      uint16_t traceLen = response.arg[2];
 -      if (traceLen > USB_CMD_DATA_SIZE) {
 -              uint8_t *p = realloc(got, traceLen);
 -              if (p == NULL) {
 -                      PrintAndLog("Cannot allocate memory for trace");
 -                      free(got);
 -                      return 2;
 -              }
 -              got = p;
 -              GetFromBigBuf(got, traceLen, 0);
 -              WaitForResponse(CMD_ACK,NULL);
 -      }
 -  PrintAndLog("recorded activity: (TraceLen = %d bytes)", traceLen);
 -  PrintAndLog(" time  :rssi: who bytes");
 -  PrintAndLog("---------+----+----+-----------");
 -
 -  int i = 0;
 -  int prev = -1;
 -
 -  for(;;) {
 -    
 -      if(i >= traceLen) { break; }
 -
 -    bool isResponse;
 -    int timestamp = *((uint32_t *)(got+i));
 -    if(timestamp & 0x80000000) {
 -      timestamp &= 0x7fffffff;
 -      isResponse = 1;
 -    } else {
 -      isResponse = 0;
 -    }
 -    int metric = *((uint32_t *)(got+i+4));
 -
 -    int len = got[i+8];
 +      PrintAndLog("Deprecated command, use 'hf list 14b' instead");
 -    if(len > 100) {
 -      break;
 -    }
 -    if(i + len >= traceLen) {
 -      break;
 -    }
 -
 -    uint8_t *frame = (got+i+9);
 -
 -      // Break and stick with current result if buffer was not completely full
 -      if (frame[0] == 0x44 && frame[1] == 0x44 && frame[2] == 0x44 && frame[3] == 0x44) break; 
 -      
 -    char line[1000] = "";
 -    int j;
 -    for(j = 0; j < len; j++) {
 -      sprintf(line+(j*3), "%02x  ", frame[j]);
 -    }
 -
 -    char *crc;
 -    if(len > 2) {
 -      uint8_t b1, b2;
 -      ComputeCrc14443(CRC_14443_B, frame, len-2, &b1, &b2);
 -      if(b1 != frame[len-2] || b2 != frame[len-1]) {
 -        crc = "**FAIL CRC**";
 -      } else {
 -        crc = "";
 -      }
 -    } else {
 -      crc = "(SHORT)";
 -    }
 -
 -    char metricString[100];
 -    if(isResponse) {
 -      sprintf(metricString, "%3d", metric);
 -    } else {
 -      strcpy(metricString, "   ");
 -    }
 -
 -    PrintAndLog(" +%7d: %s: %s %s %s",
 -      (prev < 0 ? 0 : timestamp - prev),
 -      metricString,
 -      (isResponse ? "TAG" : "   "), line, crc);
 -
 -    prev = timestamp;
 -    i += (len + 9);
 -  }
 -  free(got);
 -  return 0;
 +      return 0;
  }
 -
  int CmdHF14BRead(const char *Cmd)
  {
    UsbCommand c = {CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443, {strtol(Cmd, NULL, 0), 0, 0}};
@@@ -207,7 -295,7 +208,7 @@@ int CmdHF14BCmdRaw (const char *cmd) 
      uint8_t power=0;
      char buf[5]="";
      int i=0;
-     uint8_t data[100];
+     uint8_t data[100] = {0x00};
      unsigned int datalen=0, temp;
      char *hexout;
      
              continue;
          }
          PrintAndLog("Invalid char on input");
-         return 0;
+         return 1;
      }
      if (datalen == 0)
      {
@@@ -375,7 -463,7 +376,7 @@@ int CmdHF14BWrite( const char *Cmd)
        else
                PrintAndLog("[%s] Write block %02X [ %s ]", (isSrix4k)?"SRIX4K":"SRI512", blockno,  sprint_hex(data,4) );
   
-       sprintf(str, "-c -p 09 %02x %02x%02x%02x%02x", blockno, data[0], data[1], data[2], data[3]);
+       sprintf(str, "-c 09 %02x %02x%02x%02x%02x", blockno, data[0], data[1], data[2], data[3]);
  
        CmdHF14BCmdRaw(str);
        return 0;
@@@ -385,7 -473,7 +386,7 @@@ static command_t CommandTable[] 
  {
    {"help",        CmdHelp,        1, "This help"},
    {"demod",       CmdHF14BDemod,  1, "Demodulate ISO14443 Type B from tag"},
 -  {"list",        CmdHF14BList,   0, "List ISO 14443 history"},
 +  {"list",        CmdHF14BList,   0, "[Deprecated] List ISO 14443b history"},
    {"read",        CmdHF14BRead,   0, "Read HF tag (ISO 14443)"},
    {"sim",         CmdHF14Sim,     0, "Fake ISO 14443 tag"},
    {"simlisten",   CmdHFSimlisten, 0, "Get HF samples as fake tag"},
Impressum, Datenschutz