// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
-// Routines to support ISO 14443. This includes both the reader software and
-// the `fake tag' modes. At the moment only the Type B modulation is
-// supported.
+// Routines to support ISO 14443B. This includes both the reader software and
+// the `fake tag' modes.
//-----------------------------------------------------------------------------
#include "proxmark3.h"
#include "iso14443crc.h"
-//static void GetSamplesFor14443(int weTx, int n);
-
-/*#define DEMOD_TRACE_SIZE 4096
-#define READER_TAG_BUFFER_SIZE 2048
-#define TAG_READER_BUFFER_SIZE 2048
-#define DEMOD_DMA_BUFFER_SIZE 1024
-*/
-
#define RECEIVE_SAMPLES_TIMEOUT 2000
+#define ISO14443B_DMA_BUFFER_SIZE 512
//=============================================================================
// An ISO 14443 Type B tag. We listen for commands from the reader, using
ToSendStuffBit(1);
}
- // Send SOF.
+ // Send EOF.
for(i = 0; i < 10; i++) {
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
}
- for(i = 0; i < 10; i++) {
+ for(i = 0; i < 2; i++) {
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
// Convert from last byte pos to length
ToSendMax++;
-
- // Add a few more for slop
- ToSendMax += 2;
}
//-----------------------------------------------------------------------------
} Uart;
/* Receive & handle a bit coming from the reader.
+ *
+ * This function is called 4 times per bit (every 2 subcarrier cycles).
+ * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
*
* LED handling:
* LED A -> ON once we have received the SOF and are expecting the rest.
* Returns: true if we received a EOF
* false if we are still waiting for some more
*/
-static int Handle14443UartBit(int bit)
+static int Handle14443bUartBit(int bit)
{
switch(Uart.state) {
case STATE_UNSYNCD:
case STATE_GOT_FALLING_EDGE_OF_SOF:
Uart.posCnt++;
- if(Uart.posCnt == 2) {
+ if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
if(bit) {
- if(Uart.bitCnt >= 10) {
+ if(Uart.bitCnt > 9) {
// we've seen enough consecutive
// zeros that it's a valid SOF
Uart.posCnt = 0;
Uart.bitCnt++;
}
if(Uart.posCnt >= 4) Uart.posCnt = 0;
- if(Uart.bitCnt > 14) {
+ if(Uart.bitCnt > 12) {
// Give up if we see too many zeros without
// a one, too.
Uart.state = STATE_ERROR_WAIT;
case STATE_AWAITING_START_BIT:
Uart.posCnt++;
if(bit) {
- if(Uart.posCnt > 25) {
+ if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
// stayed high for too long between
// characters, error
Uart.state = STATE_ERROR_WAIT;
// Assume that we're called with the SSC (to the FPGA) and ADC path set
// correctly.
//-----------------------------------------------------------------------------
-static int GetIso14443CommandFromReader(uint8_t *received, int *len, int maxLen)
+static int GetIso14443bCommandFromReader(uint8_t *received, int *len, int maxLen)
{
uint8_t mask;
int i, bit;
- // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
+ // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
// only, since we are receiving, not transmitting).
// Signal field is off with the appropriate LED
LED_D_OFF();
mask = 0x80;
for(i = 0; i < 8; i++, mask >>= 1) {
bit = (b & mask);
- if(Handle14443UartBit(bit)) {
+ if(Handle14443bUartBit(bit)) {
*len = Uart.byteCnt;
return TRUE;
}
// Main loop of simulated tag: receive commands from reader, decide what
// response to send, and send it.
//-----------------------------------------------------------------------------
-void SimulateIso14443Tag(void)
+void SimulateIso14443bTag(void)
{
+ // the only command we understand is REQB, AFI=0, Select All, N=0:
static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
+ // ... and we respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
+ // supports only 106kBit/s in both directions, max frame size = 32Bytes,
+ // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
static const uint8_t response1[] = {
0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
0x00, 0x21, 0x85, 0x5e, 0xd7
uint8_t *resp;
int respLen;
- uint8_t *resp1 = BigBuf_get_addr() + 800;
- int resp1Len;
-
- uint8_t *receivedCmd = BigBuf_get_addr();
+ // allocate command receive buffer
+ BigBuf_free();
+ uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
int len;
int i;
int cmdsRecvd = 0;
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- memset(receivedCmd, 0x44, 400);
+ // prepare the (only one) tag answer:
CodeIso14443bAsTag(response1, sizeof(response1));
- memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
+ uint8_t *resp1 = BigBuf_malloc(ToSendMax);
+ memcpy(resp1, ToSend, ToSendMax);
+ uint16_t resp1Len = ToSendMax;
// We need to listen to the high-frequency, peak-detected path.
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
for(;;) {
uint8_t b1, b2;
- if(!GetIso14443CommandFromReader(receivedCmd, &len, 100)) {
+ if(!GetIso14443bCommandFromReader(receivedCmd, &len, 100)) {
Dbprintf("button pressed, received %d commands", cmdsRecvd);
break;
}
break;
}
- memset(receivedCmd, 0x44, 32);
-
cmdsRecvd++;
if(cmdsRecvd > 0x30) {
int bitCount;
int posCount;
int thisBit;
+/* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
int metric;
int metricN;
+*/
uint16_t shiftReg;
uint8_t *output;
int len;
/*
* Handles reception of a bit from the tag
*
+ * This function is called 2 times per bit (every 4 subcarrier cycles).
+ * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
+ *
* LED handling:
* LED C -> ON once we have received the SOF and are expecting the rest.
* LED C -> OFF once we have received EOF or are unsynced
* false if we are still waiting for some more
*
*/
-static RAMFUNC int Handle14443SamplesDemod(int ci, int cq)
+static RAMFUNC int Handle14443bSamplesDemod(int ci, int cq)
{
int v;
} \
}
+#define SUBCARRIER_DETECT_THRESHOLD 8
+
+// Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq)
+/* #define CHECK_FOR_SUBCARRIER() { \
+ v = ci; \
+ if(v < 0) v = -v; \
+ if(cq > 0) { \
+ v += cq; \
+ } else { \
+ v -= cq; \
+ } \
+ }
+ */
+// Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
+#define CHECK_FOR_SUBCARRIER() { \
+ if(ci < 0) { \
+ if(cq < 0) { /* ci < 0, cq < 0 */ \
+ if (cq < ci) { \
+ v = -cq - (ci >> 1); \
+ } else { \
+ v = -ci - (cq >> 1); \
+ } \
+ } else { /* ci < 0, cq >= 0 */ \
+ if (cq < -ci) { \
+ v = -ci + (cq >> 1); \
+ } else { \
+ v = cq - (ci >> 1); \
+ } \
+ } \
+ } else { \
+ if(cq < 0) { /* ci >= 0, cq < 0 */ \
+ if (-cq < ci) { \
+ v = ci - (cq >> 1); \
+ } else { \
+ v = -cq + (ci >> 1); \
+ } \
+ } else { /* ci >= 0, cq >= 0 */ \
+ if (cq < ci) { \
+ v = ci + (cq >> 1); \
+ } else { \
+ v = cq + (ci >> 1); \
+ } \
+ } \
+ } \
+ }
+
switch(Demod.state) {
case DEMOD_UNSYNCD:
- v = ci;
- if(v < 0) v = -v;
- if(cq > 0) {
- v += cq;
- } else {
- v -= cq;
- }
- if(v > 40) {
- Demod.posCount = 0;
+ CHECK_FOR_SUBCARRIER();
+ if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
Demod.state = DEMOD_PHASE_REF_TRAINING;
- Demod.sumI = 0;
- Demod.sumQ = 0;
+ Demod.sumI = ci;
+ Demod.sumQ = cq;
+ Demod.posCount = 1;
}
break;
case DEMOD_PHASE_REF_TRAINING:
if(Demod.posCount < 8) {
+ CHECK_FOR_SUBCARRIER();
+ if (v > SUBCARRIER_DETECT_THRESHOLD) {
+ // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
+ // note: synchronization time > 80 1/fs
Demod.sumI += ci;
Demod.sumQ += cq;
- } else if(Demod.posCount > 100) {
- // error, waited too long
+ Demod.posCount++;
+ } else { // subcarrier lost
Demod.state = DEMOD_UNSYNCD;
+ }
} else {
- MAKE_SOFT_DECISION();
- if(v < 0) {
Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
- Demod.posCount = 0;
- }
}
- Demod.posCount++;
break;
case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
MAKE_SOFT_DECISION();
- if(v < 0) {
+ if(v < 0) { // logic '0' detected
Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
- Demod.posCount = 0;
+ Demod.posCount = 0; // start of SOF sequence
} else {
- if(Demod.posCount > 100) {
+ if(Demod.posCount > 200/4) { // maximum length of TR1 = 200 1/fs
Demod.state = DEMOD_UNSYNCD;
}
}
break;
case DEMOD_GOT_FALLING_EDGE_OF_SOF:
+ Demod.posCount++;
MAKE_SOFT_DECISION();
if(v > 0) {
- if(Demod.posCount < 12) {
+ if(Demod.posCount < 9*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
Demod.state = DEMOD_UNSYNCD;
} else {
LED_C_ON(); // Got SOF
Demod.state = DEMOD_AWAITING_START_BIT;
Demod.posCount = 0;
Demod.len = 0;
+/* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
Demod.metricN = 0;
Demod.metric = 0;
+*/
}
} else {
- if(Demod.posCount > 100) {
+ if(Demod.posCount > 12*2) { // low phase of SOF too long (> 12 etu)
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
}
}
- Demod.posCount++;
break;
case DEMOD_AWAITING_START_BIT:
+ Demod.posCount++;
MAKE_SOFT_DECISION();
if(v > 0) {
- if(Demod.posCount > 10) {
+ if(Demod.posCount > 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
}
- } else {
+ } else { // start bit detected
Demod.bitCount = 0;
- Demod.posCount = 1;
+ Demod.posCount = 1; // this was the first half
Demod.thisBit = v;
Demod.shiftReg = 0;
Demod.state = DEMOD_RECEIVING_DATA;
case DEMOD_RECEIVING_DATA:
MAKE_SOFT_DECISION();
- if(Demod.posCount == 0) {
+ if(Demod.posCount == 0) { // first half of bit
Demod.thisBit = v;
Demod.posCount = 1;
- } else {
+ } else { // second half of bit
Demod.thisBit += v;
+/* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
if(Demod.thisBit > 0) {
Demod.metric += Demod.thisBit;
} else {
Demod.metric -= Demod.thisBit;
}
(Demod.metricN)++;
+*/
Demod.shiftReg >>= 1;
- if(Demod.thisBit > 0) {
+ if(Demod.thisBit > 0) { // logic '1'
Demod.shiftReg |= 0x200;
}
Demod.bitCount++;
if(Demod.bitCount == 10) {
uint16_t s = Demod.shiftReg;
- if((s & 0x200) && !(s & 0x001)) {
+ if((s & 0x200) && !(s & 0x001)) { // stop bit == '1', start bit == '0'
uint8_t b = (s >> 1);
Demod.output[Demod.len] = b;
Demod.len++;
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
if(s == 0x000) {
- // This is EOF
+ // This is EOF (start, stop and all data bits == '0'
return TRUE;
}
}
// Clear out the state of the "UART" that receives from the tag.
Demod.len = 0;
Demod.state = DEMOD_UNSYNCD;
+ Demod.posCount = 0;
memset(Demod.output, 0x00, MAX_FRAME_SIZE);
}
/*
* Demodulate the samples we received from the tag, also log to tracebuffer
- * weTx: set to 'TRUE' if we behave like a reader
- * set to 'FALSE' if we behave like a snooper
* quiet: set to 'TRUE' to disable debug output
*/
-static void GetSamplesFor14443Demod(int weTx, int n, int quiet)
+static void GetSamplesFor14443bDemod(int n, bool quiet)
{
int max = 0;
- int gotFrame = FALSE;
+ bool gotFrame = FALSE;
int lastRxCounter, ci, cq, samples = 0;
// Allocate memory from BigBuf for some buffers
uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
// The DMA buffer, used to stream samples from the FPGA
- int8_t *dmaBuf = (int8_t*) BigBuf_malloc(DMA_BUFFER_SIZE);
+ int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
// Set up the demodulator for tag -> reader responses.
DemodInit(receivedResponse);
// Setup and start DMA.
- FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE);
+ FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
int8_t *upTo = dmaBuf;
- lastRxCounter = DMA_BUFFER_SIZE;
+ lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
// Signal field is ON with the appropriate LED:
- if (weTx) LED_D_ON(); else LED_D_OFF();
+ LED_D_ON();
// And put the FPGA in the appropriate mode
- FpgaWriteConfWord(
- FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
- (weTx ? 0 : FPGA_HF_READER_RX_XCORR_SNOOP));
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
for(;;) {
int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
if(behindBy > max) max = behindBy;
- while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1))
- > 2)
- {
+ while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1)) > 2) {
ci = upTo[0];
cq = upTo[1];
upTo += 2;
- if(upTo >= dmaBuf + DMA_BUFFER_SIZE) {
+ if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
upTo = dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
- AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+ AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
}
lastRxCounter -= 2;
if(lastRxCounter <= 0) {
- lastRxCounter += DMA_BUFFER_SIZE;
+ lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
}
samples += 2;
- if(Handle14443SamplesDemod(ci, cq)) {
- gotFrame = 1;
- }
+ if(Handle14443bSamplesDemod(ci, cq)) {
+ gotFrame = TRUE;
+ break;
}
+ }
- if(samples > n) {
+ if(samples > n || gotFrame) {
break;
}
}
+
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
- if (!quiet) Dbprintf("%x %x %x", max, gotFrame, Demod.len);
+
+ if (!quiet) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", max, samples, gotFrame, Demod.len, Demod.sumI, Demod.sumQ);
//Tracing
if (tracing && Demod.len > 0) {
uint8_t parity[MAX_PARITY_SIZE];
}
-//-----------------------------------------------------------------------------
-// Read the tag's response. We just receive a stream of slightly-processed
-// samples from the FPGA, which we will later do some signal processing on,
-// to get the bits.
-//-----------------------------------------------------------------------------
-/*static void GetSamplesFor14443(int weTx, int n)
-{
- uint8_t *dest = (uint8_t *)BigBuf;
- int c;
-
- FpgaWriteConfWord(
- FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
- (weTx ? 0 : FPGA_HF_READER_RX_XCORR_SNOOP));
-
- c = 0;
- for(;;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- int8_t b;
- b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
-
- dest[c++] = (uint8_t)b;
-
- if(c >= n) {
- break;
- }
- }
- }
-}*/
-
-
//-----------------------------------------------------------------------------
// Transmit the command (to the tag) that was placed in ToSend[].
//-----------------------------------------------------------------------------
-static void TransmitFor14443(void)
+static void TransmitFor14443b(void)
{
int c;
LED_D_ON();
// Signal we are transmitting with the Green LED
LED_B_ON();
- FpgaWriteConfWord(
- FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
for(c = 0; c < 10;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
//-----------------------------------------------------------------------------
// Code a layer 2 command (string of octets, including CRC) into ToSend[],
-// so that it is ready to transmit to the tag using TransmitFor14443().
+// so that it is ready to transmit to the tag using TransmitFor14443b().
//-----------------------------------------------------------------------------
static void CodeIso14443bAsReader(const uint8_t *cmd, int len)
{
//-----------------------------------------------------------------------------
-// Read an ISO 14443 tag. We send it some set of commands, and record the
+// Read an ISO 14443B tag. We send it some set of commands, and record the
// responses.
// The command name is misleading, it actually decodes the reponse in HEX
// into the output buffer (read the result using hexsamples, not hisamples)
//
// obsolete function only for test
//-----------------------------------------------------------------------------
-void AcquireRawAdcSamplesIso14443(uint32_t parameter)
+void AcquireRawAdcSamplesIso14443b(uint32_t parameter)
{
- uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
+ uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; // REQB with AFI=0, Request All, N=0
SendRawCommand14443B(sizeof(cmd1),1,1,cmd1);
}
static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len)
{
CodeIso14443bAsReader(cmd, len);
- TransmitFor14443();
+ TransmitFor14443b();
if (tracing) {
uint8_t parity[MAX_PARITY_SIZE];
GetParity(cmd, len, parity);
//-----------------------------------------------------------------------------
-// Read a SRI512 ISO 14443 tag.
+// Read a SRI512 ISO 14443B tag.
//
// SRI512 tags are just simple memory tags, here we're looking at making a dump
// of the contents of the memory. No anticollision algorithm is done, we assume
//
// I tried to be systematic and check every answer of the tag, every CRC, etc...
//-----------------------------------------------------------------------------
-void ReadSTMemoryIso14443(uint32_t dwLast)
+void ReadSTMemoryIso14443b(uint32_t dwLast)
{
clear_trace();
set_tracing(TRUE);
CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
// LED_A_ON();
- GetSamplesFor14443Demod(TRUE, RECEIVE_SAMPLES_TIMEOUT, TRUE);
+ GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
// LED_A_OFF();
if (Demod.len == 0) {
CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
// LED_A_ON();
- GetSamplesFor14443Demod(TRUE, RECEIVE_SAMPLES_TIMEOUT, TRUE);
+ GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
// LED_A_OFF();
if (Demod.len != 3) {
Dbprintf("Expected 3 bytes from tag, got %d", Demod.len);
CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one
// LED_A_ON();
- GetSamplesFor14443Demod(TRUE, RECEIVE_SAMPLES_TIMEOUT, TRUE);
+ GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
// LED_A_OFF();
if (Demod.len != 10) {
Dbprintf("Expected 10 bytes from tag, got %d", Demod.len);
CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
// LED_A_ON();
- GetSamplesFor14443Demod(TRUE, RECEIVE_SAMPLES_TIMEOUT, TRUE);
+ GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
// LED_A_OFF();
if (Demod.len != 6) { // Check if we got an answer from the tag
DbpString("Expected 6 bytes from tag, got less...");
* Memory usage for this function, (within BigBuf)
* Last Received command (reader->tag) - MAX_FRAME_SIZE
* Last Received command (tag->reader) - MAX_FRAME_SIZE
- * DMA Buffer, 1024 bytes (samples) - DMA_BUFFER_SIZE
+ * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
* Demodulated samples received - all the rest
*/
-void RAMFUNC SnoopIso14443(void)
+void RAMFUNC SnoopIso14443b(void)
{
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
set_tracing(TRUE);
// The DMA buffer, used to stream samples from the FPGA
- int8_t *dmaBuf = (int8_t*) BigBuf_malloc(DMA_BUFFER_SIZE);
+ int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
int lastRxCounter;
int8_t *upTo;
int ci, cq;
Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE);
Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE);
- Dbprintf(" DMA: %i bytes", DMA_BUFFER_SIZE);
+ Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE);
- // Signal field is off with the appropriate LED
- LED_D_OFF();
+ // Signal field is off, no reader signal, no tag signal
+ LEDsoff();
// And put the FPGA in the appropriate mode
FpgaWriteConfWord(
// Setup for the DMA.
FpgaSetupSsc();
upTo = dmaBuf;
- lastRxCounter = DMA_BUFFER_SIZE;
- FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE);
+ lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
+ FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
uint8_t parity[MAX_PARITY_SIZE];
- LED_A_ON();
bool TagIsActive = FALSE;
bool ReaderIsActive = FALSE;
// And now we loop, receiving samples.
for(;;) {
int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
- (DMA_BUFFER_SIZE-1);
+ (ISO14443B_DMA_BUFFER_SIZE-1);
if(behindBy > maxBehindBy) {
maxBehindBy = behindBy;
- if(behindBy > (9*DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not?
- Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
- break;
- }
}
+
if(behindBy < 2) continue;
ci = upTo[0];
cq = upTo[1];
upTo += 2;
lastRxCounter -= 2;
- if(upTo >= dmaBuf + DMA_BUFFER_SIZE) {
+ if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
upTo = dmaBuf;
- lastRxCounter += DMA_BUFFER_SIZE;
+ lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
- AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+ AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
+ WDT_HIT();
+ if(behindBy > (9*ISO14443B_DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not?
+ Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
+ break;
+ }
+ if(!tracing) {
+ DbpString("Reached trace limit");
+ break;
+ }
+ if(BUTTON_PRESS()) {
+ DbpString("cancelled");
+ break;
+ }
}
samples += 2;
if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
- if(Handle14443UartBit(ci & 0x01)) {
+ if(Handle14443bUartBit(ci & 0x01)) {
if(triggered && tracing) {
GetParity(Uart.output, Uart.byteCnt, parity);
LogTrace(Uart.output,Uart.byteCnt,samples, samples,parity,TRUE);
}
- if(Uart.byteCnt==0) Dbprintf("[1] Error, Uart.byteCnt==0, Uart.bitCnt=%d", Uart.bitCnt);
-
/* And ready to receive another command. */
UartReset();
/* And also reset the demod code, which might have been */
/* false-triggered by the commands from the reader. */
DemodReset();
}
- if(Handle14443UartBit(cq & 0x01)) {
+ if(Handle14443bUartBit(cq & 0x01)) {
if(triggered && tracing) {
GetParity(Uart.output, Uart.byteCnt, parity);
LogTrace(Uart.output,Uart.byteCnt,samples, samples, parity, TRUE);
}
- if(Uart.byteCnt==0) Dbprintf("[2] Error, Uart.byteCnt==0, Uart.bitCnt=%d", Uart.bitCnt);
-
/* And ready to receive another command. */
UartReset();
/* And also reset the demod code, which might have been */
}
if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
- if(Handle14443SamplesDemod(ci & 0xFE, cq & 0xFE)) {
+ if(Handle14443bSamplesDemod(ci & 0xFE, cq & 0xFE)) {
//Use samples as a time measurement
if(tracing)
LogTrace(Demod.output, Demod.len,samples, samples, parity, FALSE);
}
triggered = TRUE;
- LED_A_OFF();
- LED_B_ON();
// And ready to receive another response.
DemodReset();
}
- TagIsActive = (Demod.state != DEMOD_UNSYNCD);
+ TagIsActive = (Demod.state > DEMOD_PHASE_REF_TRAINING);
}
- WDT_HIT();
-
- if(!tracing) {
- DbpString("Reached trace limit");
- break;
- }
-
- if(BUTTON_PRESS()) {
- DbpString("cancelled");
- break;
- }
}
+
FpgaDisableSscDma();
- LED_A_OFF();
- LED_B_OFF();
- LED_C_OFF();
+ LEDsoff();
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
DbpString("Snoop statistics:");
Dbprintf(" Max behind by: %i", maxBehindBy);
* none
*
*/
-void SendRawCommand14443B(uint32_t datalen, uint32_t recv, uint8_t powerfield_trace, uint8_t data[])
+void SendRawCommand14443B(uint32_t datalen, uint32_t recv, uint8_t powerfield, uint8_t data[])
{
- uint8_t powerfield = powerfield_trace & 1;
- uint8_t trace = powerfield_trace & 2;
- if (trace){
- clear_trace();
- set_tracing(TRUE);
- }
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- if(!powerfield)
- {
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ FpgaSetupSsc();
+
+ set_tracing(TRUE);
+
+/* if(!powerfield) {
// Make sure that we start from off, since the tags are stateful;
// confusing things will happen if we don't reset them between reads.
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
SpinDelay(200);
}
+ */
- if(!GETBIT(GPIO_LED_D))
- {
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaSetupSsc();
-
- // Now give it time to spin up.
- // Signal field is on with the appropriate LED
- LED_D_ON();
- FpgaWriteConfWord(
- FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
- SpinDelay(200);
- }
+ // if(!GETBIT(GPIO_LED_D)) { // if field is off
+ // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ // // Signal field is on with the appropriate LED
+ // LED_D_ON();
+ // SpinDelay(200);
+ // }
CodeAndTransmit14443bAsReader(data, datalen);
- if(recv)
- {
- GetSamplesFor14443Demod(TRUE, RECEIVE_SAMPLES_TIMEOUT, TRUE);
+ if(recv) {
+ GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
uint16_t iLen = MIN(Demod.len,USB_CMD_DATA_SIZE);
cmd_send(CMD_ACK,iLen,0,0,Demod.output,iLen);
}
- if(!powerfield)
- {
+
+ if(!powerfield) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
}
#include "cmdhf14b.h"
#include "cmdmain.h"
#include "cmdhf14a.h"
-#include "sleep.h"
+//#include "sleep.h"
+#include "cmddata.h"
static int CmdHelp(const char *Cmd);
int CmdHF14Sim(const char *Cmd)
{
UsbCommand c={CMD_SIMULATE_TAG_ISO_14443};
+ clearCommandBuffer();
SendCommand(&c);
return 0;
}
int CmdHFSimlisten(const char *Cmd)
{
UsbCommand c = {CMD_SIMULATE_TAG_HF_LISTEN};
+ clearCommandBuffer();
SendCommand(&c);
return 0;
}
int CmdHF14BSnoop(const char *Cmd)
{
UsbCommand c = {CMD_SNOOP_ISO_14443};
+ clearCommandBuffer();
SendCommand(&c);
return 0;
}
int CmdSri512Read(const char *Cmd)
{
UsbCommand c = {CMD_READ_SRI512_TAG, {strtol(Cmd, NULL, 0), 0, 0}};
+ clearCommandBuffer();
SendCommand(&c);
return 0;
}
int CmdSrix4kRead(const char *Cmd)
{
UsbCommand c = {CMD_READ_SRIX4K_TAG, {strtol(Cmd, NULL, 0), 0, 0}};
+ clearCommandBuffer();
SendCommand(&c);
return 0;
}
int rawClose(void){
UsbCommand resp;
UsbCommand c = {CMD_ISO_14443B_COMMAND, {0, 0, 0}};
+ clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK,&resp,1000)) {
return 0;
int HF14BCmdRaw(bool reply, bool *crc, uint8_t power_trace, uint8_t *data, uint8_t *datalen, bool verbose){
UsbCommand resp;
- UsbCommand c = {CMD_ISO_14443B_COMMAND, {0, 0, 0}}; // len,recv,power
+ UsbCommand c = {CMD_ISO_14443B_COMMAND, {0, 0, 0}}; // len,recv,power/trace
if(*crc)
{
uint8_t first, second;
c.arg[1] = reply;
c.arg[2] = power_trace;
memcpy(c.d.asBytes,data,*datalen);
+ clearCommandBuffer();
SendCommand(&c);
if (!reply) return 1;
}
*datalen = resp.arg[0];
if (verbose) PrintAndLog("received %u octets", *datalen);
- if(!*datalen)
- return 0;
+ if(*datalen<2) return 0;
memcpy(data, resp.d.asBytes, *datalen);
if (verbose) PrintAndLog("%s", sprint_hex(data, *datalen));
data[1] = 0x00;
data[2] = 0x08;
- int ans = HF14BCmdRaw(true, &crc, 2, data, datalen, false);
+ if (HF14BCmdRaw(true, &crc, 0, data, datalen, false)==0) return 0;
- if (!ans) return 0;
- if (data[0] != 0x50 || *datalen < 14 || !crc) return 0;
+ if (data[0] != 0x50 || *datalen != 14 || !crc) return 0;
PrintAndLog ("\n14443-3b tag found:");
print_atqb_resp(data);
return 1;
}
-
-
int HF14B_ST_Read(uint8_t *data, uint8_t *datalen){
bool crc = true;
*datalen = 2;
//wake cmd
data[0] = 0x06;
data[1] = 0x00;
- //power on and reset tracing
- int ans = HF14BCmdRaw(true, &crc, 3, data, datalen, true);
- if (!ans) return rawClose();
- if (*datalen < 3 || !crc) return rawClose();
+ //leave power on
+ // verbose on for now for testing - turn off when functional
+ if (HF14BCmdRaw(true, &crc, 1, data, datalen, true)==0) return rawClose();
+
+ if (*datalen != 3 || !crc) return rawClose();
uint8_t chipID = data[0];
// select
data[0] = 0x0E;
data[1] = chipID;
*datalen = 2;
- msleep(100);
- //power on
- ans = HF14BCmdRaw(true, &crc, 1, data, datalen, true);
- if (!ans) return rawClose();
- if (*datalen < 3 || !crc) return rawClose();
+ //leave power on
+ // verbose on for now for testing - turn off when functional
+ if (HF14BCmdRaw(true, &crc, 1, data, datalen, true)==0) return rawClose();
+
+ if (*datalen != 3 || !crc || data[0] != chipID) return rawClose();
// get uid
data[0] = 0x0B;
*datalen = 1;
- msleep(100);
- //power off
- ans = HF14BCmdRaw(true, &crc, 0, data, datalen, true);
- if (!ans) return 0;
- if (*datalen < 10 || !crc) return 0;
+ //power off
+ // verbose on for now for testing - turn off when functional
+ if (HF14BCmdRaw(true, &crc, 1, data, datalen, true)==0) return 0;
+ rawClose();
+ if (*datalen != 10 || !crc) return 0;
PrintAndLog("\n14443-3b ST tag found:");
print_st_info(data);
return 1;
-
}
int HF14BReader(bool verbose){
uint8_t datalen = 5;
// try std 14b (atqb)
- int ans = HF14BStdRead(data, &datalen);
- if (ans) return 1;
+ if (HF14BStdRead(data, &datalen)) return 1;
// try st 14b
- ans = HF14B_ST_Read(data, &datalen);
- if (ans) return 1;
+ if (HF14B_ST_Read(data, &datalen)) return 1;
+
if (verbose) PrintAndLog("no 14443B tag found");
return 0;
-
}
-int CmdHF14BReader(const char *Cmd)
-{
+int CmdHF14BReader(const char *Cmd){
return HF14BReader(true);
- //UsbCommand c = {CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443, {strtol(Cmd, NULL, 0), 0, 0}};
- //SendCommand(&c);
}
-int CmdHF14BWrite( const char *Cmd){
+int CmdHFRawSamples(const char *Cmd){
+ UsbCommand resp;
+ UsbCommand c = {CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443, {strtol(Cmd,NULL,0), 0, 0}};
+ SendCommand(&c);
+
+ if (!WaitForResponseTimeout(CMD_ACK,&resp,1000)) {
+ PrintAndLog("timeout while waiting for reply.");
+ return 0;
+ }
+ getSamples("39999", true);
+ return 1;
+}
+int CmdHF14BWrite( const char *Cmd){
/*
* For SRIX4K blocks 00 - 7F
* hf 14b raw -c -p 09 $srix4kwblock $srix4kwdata
{
{"help", CmdHelp, 1, "This help"},
{"demod", CmdHF14BDemod, 1, "Demodulate ISO14443 Type B from tag"},
+ {"getsamples", CmdHFRawSamples,0, "[atqb=0 or ST=1] Send wake cmd and Get raw HF samples to GraphBuffer"},
{"list", CmdHF14BList, 0, "[Deprecated] List ISO 14443b history"},
{"reader", CmdHF14BReader, 0, "Find 14b tag (HF ISO 14443b)"},
{"sim", CmdHF14Sim, 0, "Fake ISO 14443 tag"},