/** extend_table\r
* using a bit of the keystream extend the table of possible lfsr states\r
*/\r
-static inline void\r
-extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)\r
+static inline void extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)\r
{\r
in <<= 24;\r
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)\r
*/\r
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)\r
{\r
- int i, ret = 0;\r
+/* int i, ret = 0;\r
for (i = 7; i >= 0; --i)\r
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;\r
+*/\r
+// unfold loop 20160112\r
+ uint8_t ret = 0;\r
+ ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7;\r
+ ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6;\r
+ ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5;\r
+ ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4;\r
+ ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3;\r
+ ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2;\r
+ ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1;\r
+ ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0;\r
return ret;\r
}\r
/** lfsr_rollback_word\r
*/\r
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)\r
{\r
- int i;\r
+/* int i;\r
uint32_t ret = 0;\r
for (i = 31; i >= 0; --i)\r
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);\r
+*/\r
+// unfold loop 20160112\r
+ uint32_t ret = 0;\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24);\r
+\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24);\r
+\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24);\r
+\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24);\r
+ ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24);\r
return ret;\r
}\r
\r
if(!s || !odd || !even) {\r
free(statelist);\r
statelist = 0;\r
- goto out;\r
+ goto out;\r
}\r
\r
for(o = odd; *o + 1; ++o)\r
}
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
+/*
uint8_t i, ret = 0;
for (i = 0; i < 8; ++i)
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
-
+*/
+// unfold loop 20161012
+ uint8_t ret = 0;
+ ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0;
+ ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1;
+ ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2;
+ ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3;
+ ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4;
+ ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5;
+ ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6;
+ ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7;
return ret;
}
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
{
+/*
uint32_t i, ret = 0;
for (i = 0; i < 32; ++i)
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
-
+*/
+//unfold loop 2016012
+ uint32_t ret = 0;
+ ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24);
+
+ ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24);
+
+ ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24);
+
+ ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24);
+ ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24);
return ret;
}