#include "crc16.h"
#include "string.h"
+// split into two routines so we can avoid timing issues after sending commands //
+void DoAcquisition125k_internal(int trigger_threshold,bool silent)
+{
+ uint8_t *dest = (uint8_t *)BigBuf;
+ int n = sizeof(BigBuf);
+ int i;
+
+ memset(dest, 0, n);
+ i = 0;
+ for(;;) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ LED_D_ON();
+ }
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ LED_D_OFF();
+ if (trigger_threshold != -1 && dest[i] < trigger_threshold)
+ continue;
+ else
+ trigger_threshold = -1;
+ if (++i >= n) break;
+ }
+ }
+ if(!silent)
+ {
+ Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
+ dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
+
+ }
+}
+void DoAcquisition125k(int trigger_threshold)
+{
+ DoAcquisition125k_internal(trigger_threshold, false);
+}
+
+//void SetupToAcquireRawAdcSamples(int divisor)
void LFSetupFPGAForADC(int divisor, bool lf_field)
{
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
void AcquireRawAdcSamples125k(int divisor)
{
LFSetupFPGAForADC(divisor, true);
- DoAcquisition125k(-1);
+ // Now call the acquisition routine
+ DoAcquisition125k_internal(-1,false);
}
-
void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
{
LFSetupFPGAForADC(divisor, false);
- DoAcquisition125k(trigger_threshold);
+ DoAcquisition125k(trigger_threshold, false);
}
-// split into two routines so we can avoid timing issues after sending commands //
-void DoAcquisition125k(int trigger_threshold)
-{
- uint8_t *dest = (uint8_t *)BigBuf;
- int n = sizeof(BigBuf);
- int i;
- memset(dest, 0, n);
- i = 0;
- for(;;) {
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- LED_D_ON();
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- LED_D_OFF();
- if (trigger_threshold != -1 && dest[i] < trigger_threshold)
- continue;
- else
- trigger_threshold = -1;
- if (++i >= n) break;
- }
- }
- Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
- dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
}
void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
LED_A_OFF();
}
-
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
-void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+size_t fsk_demod(uint8_t * dest, size_t size)
{
- uint8_t *dest = (uint8_t *)BigBuf;
- int m=0, n=0, i=0, idx=0, found=0, lastval=0;
- uint32_t hi2=0, hi=0, lo=0;
+ uint32_t last_transition = 0;
+ uint32_t idx = 1;
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ // we don't care about actual value, only if it's more or less than a
+ // threshold essentially we capture zero crossings for later analysis
+ uint8_t threshold_value = 127;
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+ // sync to first lo-hi transition, and threshold
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
+ //Need to threshold first sample
+ if(dest[0] < threshold_value) dest[0] = 0;
+ else dest[0] = 1;
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
+ size_t numBits = 0;
+ // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
+ // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
+ // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
+ for(idx = 1; idx < size; idx++) {
+ // threshold current value
+ if (dest[idx] < threshold_value) dest[idx] = 0;
+ else dest[idx] = 1;
- for(;;) {
- WDT_HIT();
- if (ledcontrol)
- LED_A_ON();
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- if (ledcontrol)
- LED_A_OFF();
- return;
- }
+ // Check for 0->1 transition
+ if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
- i = 0;
- m = sizeof(BigBuf);
- memset(dest,128,m);
- for(;;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- if (ledcontrol)
- LED_D_ON();
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- // we don't care about actual value, only if it's more or less than a
- // threshold essentially we capture zero crossings for later analysis
- if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
- i++;
- if (ledcontrol)
- LED_D_OFF();
- if(i >= m) {
- break;
- }
+ if (idx-last_transition < 9) {
+ dest[numBits]=1;
+ } else {
+ dest[numBits]=0;
}
+ last_transition = idx;
+ numBits++;
}
+ }
+ return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
+}
- // FSK demodulator
- // sync to first lo-hi transition
- for( idx=1; idx<m; idx++) {
- if (dest[idx-1]<dest[idx])
- lastval=idx;
- break;
+size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, uint8_t maxConsequtiveBits )
+{
+ uint8_t lastval=dest[0];
+ uint32_t idx=0;
+ size_t numBits=0;
+ uint32_t n=1;
+
+ for( idx=1; idx < size; idx++) {
+
+ if (dest[idx]==lastval) {
+ n++;
+ continue;
+ }
+ //if lastval was 1, we have a 1->0 crossing
+ if ( dest[idx-1] ) {
+ n=(n+1) / h2l_crossing_value;
+ } else {// 0->1 crossing
+ n=(n+1) / l2h_crossing_value;
}
+ if (n == 0) n = 1;
+
+ if(n < maxConsequtiveBits)
+ {
+ memset(dest+numBits, dest[idx-1] , n);
+ numBits += n;
+ }
+ n=0;
+ lastval=dest[idx];
+ }//end for
+
+ return numBits;
+
+}
+// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
+void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+ uint8_t *dest = (uint8_t *)BigBuf;
+
+ size_t size=0,idx=0; //, found=0;
+ uint32_t hi2=0, hi=0, lo=0;
+
+
+ while(!BUTTON_PRESS()) {
+
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(0, true)
+
WDT_HIT();
+ if (ledcontrol) LED_A_ON();
- // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
- // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
- // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
- for( i=0; idx<m; idx++) {
- if (dest[idx-1]<dest[idx]) {
- dest[i]=idx-lastval;
- if (dest[i] <= 8) {
- dest[i]=1;
- } else {
- dest[i]=0;
- }
+ DoAcquisition125k_internal(true);
+ size = sizeof(BigBuf);
- lastval=idx;
- i++;
- }
- }
- m=i;
+ // FSK demodulator
+ size = fsk_demod(dest, size);
WDT_HIT();
// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
- lastval=dest[0];
- idx=0;
- i=0;
- n=0;
- for( idx=0; idx<m; idx++) {
- if (dest[idx]==lastval) {
- n++;
- } else {
- // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
- // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
- // swallowed up by rounding
- // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
- // special start of frame markers use invalid manchester states (no transitions) by using sequences
- // like 111000
- if (dest[idx-1]) {
- n=(n+1)/6; // fc/8 in sets of 6
- } else {
- n=(n+1)/5; // fc/10 in sets of 5
- }
- switch (n) { // stuff appropriate bits in buffer
- case 0:
- case 1: // one bit
- dest[i++]=dest[idx-1];
- break;
- case 2: // two bits
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- case 3: // 3 bit start of frame markers
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- // When a logic 0 is immediately followed by the start of the next transmisson
- // (special pattern) a pattern of 4 bit duration lengths is created.
- case 4:
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- default: // this shouldn't happen, don't stuff any bits
- break;
- }
- n=0;
- lastval=dest[idx];
- }
- }
- m=i;
+ // 1->0 : fc/8 in sets of 6
+ // 0->1 : fc/10 in sets of 5
+ size = aggregate_bits(dest,size, 6,5,5);
+
WDT_HIT();
// final loop, go over previously decoded manchester data and decode into usable tag ID
// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
- for( idx=0; idx<m-6; idx++) {
+ uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
+ int numshifts = 0;
+ idx = 0;
+ while( idx + sizeof(frame_marker_mask) < size) {
// search for a start of frame marker
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
- {
- found=1;
- idx+=6;
- if (found && (hi2|hi|lo)) {
- if (hi2 != 0){
- Dbprintf("TAG ID: %x%08x%08x (%d)",
- (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- }
- else {
- Dbprintf("TAG ID: %x%08x (%d)",
- (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- }
- /* if we're only looking for one tag */
- if (findone)
- {
- *high = hi;
- *low = lo;
- return;
- }
- hi2=0;
- hi=0;
- lo=0;
- found=0;
+ if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
+ { // frame marker found
+ idx+=sizeof(frame_marker_mask);
+
+ while(dest[idx] != dest[idx+1] && idx < size-2)
+ { // Keep going until next frame marker (or error)
+ // Shift in a bit. Start by shifting high registers
+ hi2 = (hi2<<1)|(hi>>31);
+ hi = (hi<<1)|(lo>>31);
+ //Then, shift in a 0 or one into low
+ if (dest[idx] && !dest[idx+1]) // 1 0
+ lo=(lo<<1)|0;
+ else // 0 1
+ lo=(lo<<1)|
+ 1;
+ numshifts ++;
+ idx += 2;
}
- }
- if (found) {
- if (dest[idx] && (!dest[idx+1]) ) {
- hi2=(hi2<<1)|(hi>>31);
- hi=(hi<<1)|(lo>>31);
- lo=(lo<<1)|0;
- } else if ( (!dest[idx]) && dest[idx+1]) {
- hi2=(hi2<<1)|(hi>>31);
- hi=(hi<<1)|(lo>>31);
- lo=(lo<<1)|1;
- } else {
- found=0;
- hi2=0;
- hi=0;
- lo=0;
- }
- idx++;
- }
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
- {
- found=1;
- idx+=6;
- if (found && (hi|lo)) {
- if (hi2 != 0){
- Dbprintf("TAG ID: %x%08x%08x (%d)",
- (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- }
- else {
- Dbprintf("TAG ID: %x%08x (%d)",
- (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- }
- /* if we're only looking for one tag */
- if (findone)
- {
- *high = hi;
- *low = lo;
- return;
+ //Dbprintf("Num shifts: %d ", numshifts);
+ // Hopefully, we read a tag and hit upon the next frame marker
+ if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
+ {
+ if (hi2 != 0){
+ Dbprintf("TAG ID: %x%08x%08x (%d)",
+ (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ }
+ else {
+ Dbprintf("TAG ID: %x%08x (%d)",
+ (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
}
- hi2=0;
- hi=0;
- lo=0;
- found=0;
}
+
+ // reset
+ hi2 = hi = lo = 0;
+ numshifts = 0;
+ }else
+ {
+ idx++;
}
}
WDT_HIT();
+
}
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
}
+uint32_t bytebits_to_byte(uint8_t* src, int numbits)
+{
+ uint32_t num = 0;
+ for(int i = 0 ; i < numbits ; i++)
+ {
+ num = (num << 1) | (*src);
+ src++;
+ }
+ return num;
+}
+
+
void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = (uint8_t *)BigBuf;
- int m=0, n=0, i=0, idx=0, lastval=0;
- int found=0;
- uint32_t code=0, code2=0;
- //uint32_t hi2=0, hi=0, lo=0;
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ size_t size=0, idx=0;
+ uint32_t code=0, code2=0;
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
+ while(!BUTTON_PRESS()) {
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(0, true);
- for(;;) {
WDT_HIT();
- if (ledcontrol)
- LED_A_ON();
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- if (ledcontrol)
- LED_A_OFF();
- return;
- }
+ if (ledcontrol) LED_A_ON();
- i = 0;
- m = sizeof(BigBuf);
- memset(dest,128,m);
- for(;;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- if (ledcontrol)
- LED_D_ON();
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- // we don't care about actual value, only if it's more or less than a
- // threshold essentially we capture zero crossings for later analysis
- if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
- i++;
- if (ledcontrol)
- LED_D_OFF();
- if(i >= m) {
- break;
- }
- }
- }
+ DoAcquisition125k_internal(true);
+ size = sizeof(BigBuf);
// FSK demodulator
-
- // sync to first lo-hi transition
- for( idx=1; idx<m; idx++) {
- if (dest[idx-1]<dest[idx])
- lastval=idx;
- break;
- }
- WDT_HIT();
-
- // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
- // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
- // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
- for( i=0; idx<m; idx++) {
- if (dest[idx-1]<dest[idx]) {
- dest[i]=idx-lastval;
- if (dest[i] <= 8) {
- dest[i]=1;
- } else {
- dest[i]=0;
- }
-
- lastval=idx;
- i++;
- }
- }
- m=i;
+ size = fsk_demod(dest, size);
WDT_HIT();
// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
- lastval=dest[0];
- idx=0;
- i=0;
- n=0;
- for( idx=0; idx<m; idx++) {
- if (dest[idx]==lastval) {
- n++;
- } else {
- // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
- // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
- // swallowed up by rounding
- // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
- // special start of frame markers use invalid manchester states (no transitions) by using sequences
- // like 111000
- if (dest[idx-1]) {
- n=(n+1)/7; // fc/8 in sets of 7
- } else {
- n=(n+1)/6; // fc/10 in sets of 6
- }
- switch (n) { // stuff appropriate bits in buffer
- case 0:
- case 1: // one bit
- dest[i++]=dest[idx-1]^1;
- //Dbprintf("%d",dest[idx-1]);
- break;
- case 2: // two bits
- dest[i++]=dest[idx-1]^1;
- dest[i++]=dest[idx-1]^1;
- //Dbprintf("%d",dest[idx-1]);
- //Dbprintf("%d",dest[idx-1]);
- break;
- case 3: // 3 bit start of frame markers
- for(int j=0; j<3; j++){
- dest[i++]=dest[idx-1]^1;
- // Dbprintf("%d",dest[idx-1]);
- }
- break;
- case 4:
- for(int j=0; j<4; j++){
- dest[i++]=dest[idx-1]^1;
- // Dbprintf("%d",dest[idx-1]);
- }
- break;
- case 5:
- for(int j=0; j<5; j++){
- dest[i++]=dest[idx-1]^1;
- // Dbprintf("%d",dest[idx-1]);
- }
- break;
- case 6:
- for(int j=0; j<6; j++){
- dest[i++]=dest[idx-1]^1;
- // Dbprintf("%d",dest[idx-1]);
- }
- break;
- case 7:
- for(int j=0; j<7; j++){
- dest[i++]=dest[idx-1]^1;
- // Dbprintf("%d",dest[idx-1]);
- }
- break;
- case 8:
- for(int j=0; j<8; j++){
- dest[i++]=dest[idx-1]^1;
- // Dbprintf("%d",dest[idx-1]);
- }
- break;
- case 9:
- for(int j=0; j<9; j++){
- dest[i++]=dest[idx-1]^1;
- // Dbprintf("%d",dest[idx-1]);
- }
- break;
- case 10:
- for(int j=0; j<10; j++){
- dest[i++]=dest[idx-1]^1;
- // Dbprintf("%d",dest[idx-1]);
- }
- break;
- case 11:
- for(int j=0; j<11; j++){
- dest[i++]=dest[idx-1]^1;
- // Dbprintf("%d",dest[idx-1]);
- }
- break;
- case 12:
- for(int j=0; j<12; j++){
- dest[i++]=dest[idx-1]^1;
- // Dbprintf("%d",dest[idx-1]);
- }
- break;
- default: // this shouldn't happen, don't stuff any bits
- //Dbprintf("%d",dest[idx-1]);
- break;
- }
- n=0;
- lastval=dest[idx];
- }
- }//end for
- /*for(int j=0; j<64;j+=8){
- Dbprintf("%d%d%d%d%d%d%d%d",dest[j],dest[j+1],dest[j+2],dest[j+3],dest[j+4],dest[j+5],dest[j+6],dest[j+7]);
- }
- Dbprintf("\n");*/
- m=i;
+ // 1->0 : fc/8 in sets of 7
+ // 0->1 : fc/10 in sets of 6
+ size = aggregate_bits(dest, size, 7,6,13);
+
WDT_HIT();
- for( idx=0; idx<m-9; idx++) {
- if ( !(dest[idx]) && !(dest[idx+1]) && !(dest[idx+2]) && !(dest[idx+3]) && !(dest[idx+4]) && !(dest[idx+5]) && !(dest[idx+6]) && !(dest[idx+7]) && !(dest[idx+8])&& (dest[idx+9])){
- found=1;
- //idx+=9;
- if (found) {
+ //Handle the data
+ uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
+ for( idx=0; idx < size - 64; idx++) {
+
+ if ( memcmp(dest + idx, mask, sizeof(mask)) ) continue;
+
Dbprintf("%d%d%d%d%d%d%d%d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7]);
Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+8], dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15]);
Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+16],dest[idx+17],dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23]);
Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44],dest[idx+45],dest[idx+46],dest[idx+47]);
Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53],dest[idx+54],dest[idx+55]);
Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
-
- short version='\x00';
- char unknown='\x00';
- uint16_t number=0;
- for(int j=14;j<18;j++){
- //Dbprintf("%d",dest[idx+j]);
- version <<=1;
- if (dest[idx+j]) version |= 1;
- }
- for(int j=19;j<27;j++){
- //Dbprintf("%d",dest[idx+j]);
- unknown <<=1;
- if (dest[idx+j]) unknown |= 1;
- }
- for(int j=36;j<45;j++){
- //Dbprintf("%d",dest[idx+j]);
- number <<=1;
- if (dest[idx+j]) number |= 1;
- }
- for(int j=46;j<53;j++){
- //Dbprintf("%d",dest[idx+j]);
- number <<=1;
- if (dest[idx+j]) number |= 1;
- }
- for(int j=0; j<32; j++){
- code <<=1;
- if(dest[idx+j]) code |= 1;
- }
- for(int j=32; j<64; j++){
- code2 <<=1;
- if(dest[idx+j]) code2 |= 1;
- }
+
+ code = bytebits_to_byte(dest+idx,32);
+ code2 = bytebits_to_byte(dest+idx+32,32);
+
+ short version = bytebits_to_byte(dest+idx+14,4);
+ char unknown = bytebits_to_byte(dest+idx+19,8) ;
+ uint16_t number = bytebits_to_byte(dest+idx+36,9);
Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,unknown,number,code,code2);
- if (ledcontrol)
- LED_D_OFF();
- }
- // if we're only looking for one tag
- if (findone){
- //*high = hi;
- //*low = lo;
- LED_A_OFF();
- return;
- }
-
- //hi=0;
- //lo=0;
- found=0;
- }
+ if (ledcontrol) LED_D_OFF();
+ // if we're only looking for one tag
+ if (findone){
+ LED_A_OFF();
+ return;
+ }
+ }
+ WDT_HIT();
}
- }
- WDT_HIT();
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
}
/*------------------------------