]>
Commit | Line | Data |
---|---|---|
15c4dc5a | 1 | //----------------------------------------------------------------------------- |
bd20f8f4 | 2 | // Jonathan Westhues, split Nov 2006 |
6a5d4e17 | 3 | // piwi 2018 |
bd20f8f4 | 4 | // |
5 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
6 | // at your option, any later version. See the LICENSE.txt file for the text of | |
7 | // the license. | |
8 | //----------------------------------------------------------------------------- | |
51d4f6f1 | 9 | // Routines to support ISO 14443B. This includes both the reader software and |
10 | // the `fake tag' modes. | |
15c4dc5a | 11 | //----------------------------------------------------------------------------- |
bd20f8f4 | 12 | |
e30c654b | 13 | #include "proxmark3.h" |
15c4dc5a | 14 | #include "apps.h" |
f7e3ed82 | 15 | #include "util.h" |
9ab7a6c7 | 16 | #include "string.h" |
15c4dc5a | 17 | |
f7e3ed82 | 18 | #include "iso14443crc.h" |
15c4dc5a | 19 | |
6a5d4e17 | 20 | #define RECEIVE_SAMPLES_TIMEOUT 1000 // TR0 max is 256/fs = 256/(848kHz) = 302us or 64 samples from FPGA. 1000 seems to be much too high? |
21 | #define ISO14443B_DMA_BUFFER_SIZE 128 | |
0d9a86c7 | 22 | |
4be27083 FM |
23 | // PCB Block number for APDUs |
24 | static uint8_t pcb_blocknum = 0; | |
25 | ||
15c4dc5a | 26 | //============================================================================= |
27 | // An ISO 14443 Type B tag. We listen for commands from the reader, using | |
28 | // a UART kind of thing that's implemented in software. When we get a | |
29 | // frame (i.e., a group of bytes between SOF and EOF), we check the CRC. | |
30 | // If it's good, then we can do something appropriate with it, and send | |
31 | // a response. | |
32 | //============================================================================= | |
33 | ||
34 | //----------------------------------------------------------------------------- | |
35 | // Code up a string of octets at layer 2 (including CRC, we don't generate | |
36 | // that here) so that they can be transmitted to the reader. Doesn't transmit | |
37 | // them yet, just leaves them ready to send in ToSend[]. | |
38 | //----------------------------------------------------------------------------- | |
f7e3ed82 | 39 | static void CodeIso14443bAsTag(const uint8_t *cmd, int len) |
15c4dc5a | 40 | { |
7d5ebac9 MHS |
41 | int i; |
42 | ||
43 | ToSendReset(); | |
44 | ||
45 | // Transmit a burst of ones, as the initial thing that lets the | |
46 | // reader get phase sync. This (TR1) must be > 80/fs, per spec, | |
47 | // but tag that I've tried (a Paypass) exceeds that by a fair bit, | |
48 | // so I will too. | |
49 | for(i = 0; i < 20; i++) { | |
50 | ToSendStuffBit(1); | |
51 | ToSendStuffBit(1); | |
52 | ToSendStuffBit(1); | |
53 | ToSendStuffBit(1); | |
54 | } | |
55 | ||
56 | // Send SOF. | |
57 | for(i = 0; i < 10; i++) { | |
58 | ToSendStuffBit(0); | |
59 | ToSendStuffBit(0); | |
60 | ToSendStuffBit(0); | |
61 | ToSendStuffBit(0); | |
62 | } | |
63 | for(i = 0; i < 2; i++) { | |
64 | ToSendStuffBit(1); | |
65 | ToSendStuffBit(1); | |
66 | ToSendStuffBit(1); | |
67 | ToSendStuffBit(1); | |
68 | } | |
69 | ||
70 | for(i = 0; i < len; i++) { | |
71 | int j; | |
72 | uint8_t b = cmd[i]; | |
73 | ||
74 | // Start bit | |
75 | ToSendStuffBit(0); | |
76 | ToSendStuffBit(0); | |
77 | ToSendStuffBit(0); | |
78 | ToSendStuffBit(0); | |
79 | ||
80 | // Data bits | |
81 | for(j = 0; j < 8; j++) { | |
82 | if(b & 1) { | |
83 | ToSendStuffBit(1); | |
84 | ToSendStuffBit(1); | |
85 | ToSendStuffBit(1); | |
86 | ToSendStuffBit(1); | |
87 | } else { | |
88 | ToSendStuffBit(0); | |
89 | ToSendStuffBit(0); | |
90 | ToSendStuffBit(0); | |
91 | ToSendStuffBit(0); | |
92 | } | |
93 | b >>= 1; | |
94 | } | |
95 | ||
96 | // Stop bit | |
97 | ToSendStuffBit(1); | |
98 | ToSendStuffBit(1); | |
99 | ToSendStuffBit(1); | |
100 | ToSendStuffBit(1); | |
101 | } | |
102 | ||
51d4f6f1 | 103 | // Send EOF. |
7d5ebac9 MHS |
104 | for(i = 0; i < 10; i++) { |
105 | ToSendStuffBit(0); | |
106 | ToSendStuffBit(0); | |
107 | ToSendStuffBit(0); | |
108 | ToSendStuffBit(0); | |
109 | } | |
51d4f6f1 | 110 | for(i = 0; i < 2; i++) { |
7d5ebac9 MHS |
111 | ToSendStuffBit(1); |
112 | ToSendStuffBit(1); | |
113 | ToSendStuffBit(1); | |
114 | ToSendStuffBit(1); | |
115 | } | |
116 | ||
117 | // Convert from last byte pos to length | |
118 | ToSendMax++; | |
15c4dc5a | 119 | } |
120 | ||
121 | //----------------------------------------------------------------------------- | |
122 | // The software UART that receives commands from the reader, and its state | |
123 | // variables. | |
124 | //----------------------------------------------------------------------------- | |
125 | static struct { | |
7d5ebac9 MHS |
126 | enum { |
127 | STATE_UNSYNCD, | |
128 | STATE_GOT_FALLING_EDGE_OF_SOF, | |
129 | STATE_AWAITING_START_BIT, | |
46734099 | 130 | STATE_RECEIVING_DATA |
7d5ebac9 MHS |
131 | } state; |
132 | uint16_t shiftReg; | |
133 | int bitCnt; | |
134 | int byteCnt; | |
135 | int byteCntMax; | |
136 | int posCnt; | |
137 | uint8_t *output; | |
15c4dc5a | 138 | } Uart; |
139 | ||
140 | /* Receive & handle a bit coming from the reader. | |
51d4f6f1 | 141 | * |
142 | * This function is called 4 times per bit (every 2 subcarrier cycles). | |
143 | * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us | |
15c4dc5a | 144 | * |
145 | * LED handling: | |
146 | * LED A -> ON once we have received the SOF and are expecting the rest. | |
147 | * LED A -> OFF once we have received EOF or are in error state or unsynced | |
148 | * | |
149 | * Returns: true if we received a EOF | |
150 | * false if we are still waiting for some more | |
151 | */ | |
46734099 | 152 | static RAMFUNC int Handle14443bUartBit(uint8_t bit) |
15c4dc5a | 153 | { |
7d5ebac9 | 154 | switch(Uart.state) { |
03dc1740 | 155 | case STATE_UNSYNCD: |
7d5ebac9 MHS |
156 | if(!bit) { |
157 | // we went low, so this could be the beginning | |
158 | // of an SOF | |
159 | Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; | |
160 | Uart.posCnt = 0; | |
161 | Uart.bitCnt = 0; | |
162 | } | |
163 | break; | |
164 | ||
165 | case STATE_GOT_FALLING_EDGE_OF_SOF: | |
166 | Uart.posCnt++; | |
51d4f6f1 | 167 | if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit |
7d5ebac9 | 168 | if(bit) { |
51d4f6f1 | 169 | if(Uart.bitCnt > 9) { |
7d5ebac9 MHS |
170 | // we've seen enough consecutive |
171 | // zeros that it's a valid SOF | |
172 | Uart.posCnt = 0; | |
173 | Uart.byteCnt = 0; | |
174 | Uart.state = STATE_AWAITING_START_BIT; | |
175 | LED_A_ON(); // Indicate we got a valid SOF | |
176 | } else { | |
177 | // didn't stay down long enough | |
178 | // before going high, error | |
46734099 | 179 | Uart.state = STATE_UNSYNCD; |
7d5ebac9 MHS |
180 | } |
181 | } else { | |
182 | // do nothing, keep waiting | |
183 | } | |
184 | Uart.bitCnt++; | |
185 | } | |
186 | if(Uart.posCnt >= 4) Uart.posCnt = 0; | |
51d4f6f1 | 187 | if(Uart.bitCnt > 12) { |
7d5ebac9 MHS |
188 | // Give up if we see too many zeros without |
189 | // a one, too. | |
46734099 | 190 | LED_A_OFF(); |
191 | Uart.state = STATE_UNSYNCD; | |
7d5ebac9 MHS |
192 | } |
193 | break; | |
194 | ||
195 | case STATE_AWAITING_START_BIT: | |
196 | Uart.posCnt++; | |
197 | if(bit) { | |
51d4f6f1 | 198 | if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs |
7d5ebac9 MHS |
199 | // stayed high for too long between |
200 | // characters, error | |
46734099 | 201 | Uart.state = STATE_UNSYNCD; |
7d5ebac9 MHS |
202 | } |
203 | } else { | |
204 | // falling edge, this starts the data byte | |
205 | Uart.posCnt = 0; | |
206 | Uart.bitCnt = 0; | |
207 | Uart.shiftReg = 0; | |
208 | Uart.state = STATE_RECEIVING_DATA; | |
7d5ebac9 MHS |
209 | } |
210 | break; | |
211 | ||
212 | case STATE_RECEIVING_DATA: | |
213 | Uart.posCnt++; | |
214 | if(Uart.posCnt == 2) { | |
215 | // time to sample a bit | |
216 | Uart.shiftReg >>= 1; | |
217 | if(bit) { | |
218 | Uart.shiftReg |= 0x200; | |
219 | } | |
220 | Uart.bitCnt++; | |
221 | } | |
222 | if(Uart.posCnt >= 4) { | |
223 | Uart.posCnt = 0; | |
224 | } | |
225 | if(Uart.bitCnt == 10) { | |
226 | if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) | |
227 | { | |
228 | // this is a data byte, with correct | |
229 | // start and stop bits | |
230 | Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; | |
231 | Uart.byteCnt++; | |
232 | ||
233 | if(Uart.byteCnt >= Uart.byteCntMax) { | |
234 | // Buffer overflowed, give up | |
46734099 | 235 | LED_A_OFF(); |
236 | Uart.state = STATE_UNSYNCD; | |
7d5ebac9 MHS |
237 | } else { |
238 | // so get the next byte now | |
239 | Uart.posCnt = 0; | |
240 | Uart.state = STATE_AWAITING_START_BIT; | |
241 | } | |
46734099 | 242 | } else if (Uart.shiftReg == 0x000) { |
7d5ebac9 MHS |
243 | // this is an EOF byte |
244 | LED_A_OFF(); // Finished receiving | |
46734099 | 245 | Uart.state = STATE_UNSYNCD; |
132a0217 | 246 | if (Uart.byteCnt != 0) { |
44964fd1 | 247 | return true; |
132a0217 | 248 | } |
7d5ebac9 MHS |
249 | } else { |
250 | // this is an error | |
46734099 | 251 | LED_A_OFF(); |
252 | Uart.state = STATE_UNSYNCD; | |
7d5ebac9 MHS |
253 | } |
254 | } | |
255 | break; | |
256 | ||
7d5ebac9 | 257 | default: |
46734099 | 258 | LED_A_OFF(); |
7d5ebac9 MHS |
259 | Uart.state = STATE_UNSYNCD; |
260 | break; | |
261 | } | |
262 | ||
44964fd1 | 263 | return false; |
15c4dc5a | 264 | } |
265 | ||
46734099 | 266 | |
267 | static void UartReset() | |
268 | { | |
269 | Uart.byteCntMax = MAX_FRAME_SIZE; | |
270 | Uart.state = STATE_UNSYNCD; | |
271 | Uart.byteCnt = 0; | |
272 | Uart.bitCnt = 0; | |
273 | } | |
274 | ||
275 | ||
276 | static void UartInit(uint8_t *data) | |
277 | { | |
278 | Uart.output = data; | |
279 | UartReset(); | |
280 | } | |
281 | ||
282 | ||
15c4dc5a | 283 | //----------------------------------------------------------------------------- |
284 | // Receive a command (from the reader to us, where we are the simulated tag), | |
285 | // and store it in the given buffer, up to the given maximum length. Keeps | |
286 | // spinning, waiting for a well-framed command, until either we get one | |
44964fd1 | 287 | // (returns true) or someone presses the pushbutton on the board (false). |
15c4dc5a | 288 | // |
289 | // Assume that we're called with the SSC (to the FPGA) and ADC path set | |
290 | // correctly. | |
291 | //----------------------------------------------------------------------------- | |
46734099 | 292 | static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len) |
15c4dc5a | 293 | { |
51d4f6f1 | 294 | // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen |
7d5ebac9 MHS |
295 | // only, since we are receiving, not transmitting). |
296 | // Signal field is off with the appropriate LED | |
297 | LED_D_OFF(); | |
298 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); | |
299 | ||
7d5ebac9 | 300 | // Now run a `software UART' on the stream of incoming samples. |
46734099 | 301 | UartInit(received); |
7d5ebac9 MHS |
302 | |
303 | for(;;) { | |
304 | WDT_HIT(); | |
305 | ||
44964fd1 | 306 | if(BUTTON_PRESS()) return false; |
7d5ebac9 | 307 | |
7d5ebac9 MHS |
308 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
309 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
46734099 | 310 | for(uint8_t mask = 0x80; mask != 0x00; mask >>= 1) { |
311 | if(Handle14443bUartBit(b & mask)) { | |
7d5ebac9 | 312 | *len = Uart.byteCnt; |
44964fd1 | 313 | return true; |
7d5ebac9 MHS |
314 | } |
315 | } | |
316 | } | |
317 | } | |
bee99bbf | 318 | |
44964fd1 | 319 | return false; |
15c4dc5a | 320 | } |
321 | ||
322 | //----------------------------------------------------------------------------- | |
323 | // Main loop of simulated tag: receive commands from reader, decide what | |
324 | // response to send, and send it. | |
325 | //----------------------------------------------------------------------------- | |
51d4f6f1 | 326 | void SimulateIso14443bTag(void) |
15c4dc5a | 327 | { |
14660057 | 328 | // the only commands we understand is WUPB, AFI=0, Select All, N=1: |
329 | static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; // WUPB | |
330 | // ... and REQB, AFI=0, Normal Request, N=1: | |
f3b83bee | 331 | static const uint8_t cmd2[] = { 0x05, 0x00, 0x00, 0x71, 0xFF }; // REQB |
f3b83bee | 332 | // ... and HLTB |
14660057 | 333 | static const uint8_t cmd3[] = { 0x50, 0xff, 0xff, 0xff, 0xff }; // HLTB |
f3b83bee | 334 | // ... and ATTRIB |
14660057 | 335 | static const uint8_t cmd4[] = { 0x1D, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB |
46734099 | 336 | |
337 | // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922, | |
51d4f6f1 | 338 | // supports only 106kBit/s in both directions, max frame size = 32Bytes, |
339 | // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported: | |
7d5ebac9 MHS |
340 | static const uint8_t response1[] = { |
341 | 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22, | |
342 | 0x00, 0x21, 0x85, 0x5e, 0xd7 | |
343 | }; | |
f3b83bee | 344 | // response to HLTB and ATTRIB |
345 | static const uint8_t response2[] = {0x00, 0x78, 0xF0}; | |
346 | ||
15c4dc5a | 347 | |
5f605b8f | 348 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
349 | ||
46734099 | 350 | clear_trace(); |
44964fd1 | 351 | set_tracing(true); |
46734099 | 352 | |
353 | const uint8_t *resp; | |
354 | uint8_t *respCode; | |
355 | uint16_t respLen, respCodeLen; | |
15c4dc5a | 356 | |
51d4f6f1 | 357 | // allocate command receive buffer |
358 | BigBuf_free(); | |
359 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); | |
15c4dc5a | 360 | |
46734099 | 361 | uint16_t len; |
362 | uint16_t cmdsRecvd = 0; | |
15c4dc5a | 363 | |
51d4f6f1 | 364 | // prepare the (only one) tag answer: |
7d5ebac9 | 365 | CodeIso14443bAsTag(response1, sizeof(response1)); |
46734099 | 366 | uint8_t *resp1Code = BigBuf_malloc(ToSendMax); |
dd57061c | 367 | memcpy(resp1Code, ToSend, ToSendMax); |
46734099 | 368 | uint16_t resp1CodeLen = ToSendMax; |
15c4dc5a | 369 | |
f3b83bee | 370 | // prepare the (other) tag answer: |
371 | CodeIso14443bAsTag(response2, sizeof(response2)); | |
372 | uint8_t *resp2Code = BigBuf_malloc(ToSendMax); | |
dd57061c | 373 | memcpy(resp2Code, ToSend, ToSendMax); |
f3b83bee | 374 | uint16_t resp2CodeLen = ToSendMax; |
375 | ||
7d5ebac9 MHS |
376 | // We need to listen to the high-frequency, peak-detected path. |
377 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
6a5d4e17 | 378 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR); |
15c4dc5a | 379 | |
7d5ebac9 | 380 | cmdsRecvd = 0; |
15c4dc5a | 381 | |
7d5ebac9 | 382 | for(;;) { |
15c4dc5a | 383 | |
46734099 | 384 | if(!GetIso14443bCommandFromReader(receivedCmd, &len)) { |
51d4f6f1 | 385 | Dbprintf("button pressed, received %d commands", cmdsRecvd); |
386 | break; | |
46734099 | 387 | } |
7d5ebac9 | 388 | |
46734099 | 389 | if (tracing) { |
390 | uint8_t parity[MAX_PARITY_SIZE]; | |
44964fd1 | 391 | LogTrace(receivedCmd, len, 0, 0, parity, true); |
46734099 | 392 | } |
7d5ebac9 | 393 | |
46734099 | 394 | // Good, look at the command now. |
395 | if ( (len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len) == 0) | |
14660057 | 396 | || (len == sizeof(cmd2) && memcmp(receivedCmd, cmd2, len) == 0) ) { |
dd57061c | 397 | resp = response1; |
46734099 | 398 | respLen = sizeof(response1); |
dd57061c | 399 | respCode = resp1Code; |
46734099 | 400 | respCodeLen = resp1CodeLen; |
14660057 | 401 | } else if ( (len == sizeof(cmd3) && receivedCmd[0] == cmd3[0]) |
402 | || (len == sizeof(cmd4) && receivedCmd[0] == cmd4[0]) ) { | |
dd57061c | 403 | resp = response2; |
f3b83bee | 404 | respLen = sizeof(response2); |
dd57061c | 405 | respCode = resp2Code; |
f3b83bee | 406 | respCodeLen = resp2CodeLen; |
7d5ebac9 MHS |
407 | } else { |
408 | Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd); | |
409 | // And print whether the CRC fails, just for good measure | |
46734099 | 410 | uint8_t b1, b2; |
f3b83bee | 411 | if (len >= 3){ // if crc exists |
412 | ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2); | |
413 | if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) { | |
414 | // Not so good, try again. | |
415 | DbpString("+++CRC fail"); | |
14660057 | 416 | |
f3b83bee | 417 | } else { |
418 | DbpString("CRC passes"); | |
419 | } | |
7d5ebac9 | 420 | } |
f3b83bee | 421 | //get rid of compiler warning |
422 | respCodeLen = 0; | |
423 | resp = response1; | |
424 | respLen = 0; | |
425 | respCode = resp1Code; | |
426 | //don't crash at new command just wait and see if reader will send other new cmds. | |
427 | //break; | |
7d5ebac9 MHS |
428 | } |
429 | ||
7d5ebac9 MHS |
430 | cmdsRecvd++; |
431 | ||
432 | if(cmdsRecvd > 0x30) { | |
433 | DbpString("many commands later..."); | |
434 | break; | |
435 | } | |
436 | ||
46734099 | 437 | if(respCodeLen <= 0) continue; |
7d5ebac9 MHS |
438 | |
439 | // Modulate BPSK | |
440 | // Signal field is off with the appropriate LED | |
441 | LED_D_OFF(); | |
442 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK); | |
443 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
6a5d4e17 | 444 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR); |
7d5ebac9 MHS |
445 | |
446 | // Transmit the response. | |
46734099 | 447 | uint16_t i = 0; |
7d5ebac9 MHS |
448 | for(;;) { |
449 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
46734099 | 450 | uint8_t b = respCode[i]; |
7d5ebac9 MHS |
451 | |
452 | AT91C_BASE_SSC->SSC_THR = b; | |
453 | ||
454 | i++; | |
46734099 | 455 | if(i > respCodeLen) { |
7d5ebac9 MHS |
456 | break; |
457 | } | |
458 | } | |
459 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
460 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
461 | (void)b; | |
462 | } | |
463 | } | |
dd57061c | 464 | |
46734099 | 465 | // trace the response: |
466 | if (tracing) { | |
467 | uint8_t parity[MAX_PARITY_SIZE]; | |
44964fd1 | 468 | LogTrace(resp, respLen, 0, 0, parity, false); |
46734099 | 469 | } |
dd57061c | 470 | |
7d5ebac9 | 471 | } |
15c4dc5a | 472 | } |
473 | ||
474 | //============================================================================= | |
475 | // An ISO 14443 Type B reader. We take layer two commands, code them | |
476 | // appropriately, and then send them to the tag. We then listen for the | |
477 | // tag's response, which we leave in the buffer to be demodulated on the | |
478 | // PC side. | |
479 | //============================================================================= | |
480 | ||
481 | static struct { | |
7d5ebac9 MHS |
482 | enum { |
483 | DEMOD_UNSYNCD, | |
484 | DEMOD_PHASE_REF_TRAINING, | |
485 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, | |
486 | DEMOD_GOT_FALLING_EDGE_OF_SOF, | |
487 | DEMOD_AWAITING_START_BIT, | |
46734099 | 488 | DEMOD_RECEIVING_DATA |
7d5ebac9 MHS |
489 | } state; |
490 | int bitCount; | |
491 | int posCount; | |
492 | int thisBit; | |
51d4f6f1 | 493 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. |
7d5ebac9 MHS |
494 | int metric; |
495 | int metricN; | |
51d4f6f1 | 496 | */ |
7d5ebac9 MHS |
497 | uint16_t shiftReg; |
498 | uint8_t *output; | |
499 | int len; | |
500 | int sumI; | |
501 | int sumQ; | |
15c4dc5a | 502 | } Demod; |
503 | ||
504 | /* | |
505 | * Handles reception of a bit from the tag | |
506 | * | |
51d4f6f1 | 507 | * This function is called 2 times per bit (every 4 subcarrier cycles). |
508 | * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us | |
509 | * | |
15c4dc5a | 510 | * LED handling: |
511 | * LED C -> ON once we have received the SOF and are expecting the rest. | |
512 | * LED C -> OFF once we have received EOF or are unsynced | |
513 | * | |
514 | * Returns: true if we received a EOF | |
515 | * false if we are still waiting for some more | |
516 | * | |
517 | */ | |
51d4f6f1 | 518 | static RAMFUNC int Handle14443bSamplesDemod(int ci, int cq) |
15c4dc5a | 519 | { |
7d5ebac9 | 520 | int v; |
15c4dc5a | 521 | |
51d4f6f1 | 522 | // The soft decision on the bit uses an estimate of just the |
523 | // quadrant of the reference angle, not the exact angle. | |
15c4dc5a | 524 | #define MAKE_SOFT_DECISION() { \ |
7d5ebac9 MHS |
525 | if(Demod.sumI > 0) { \ |
526 | v = ci; \ | |
527 | } else { \ | |
528 | v = -ci; \ | |
529 | } \ | |
530 | if(Demod.sumQ > 0) { \ | |
531 | v += cq; \ | |
532 | } else { \ | |
533 | v -= cq; \ | |
534 | } \ | |
535 | } | |
15c4dc5a | 536 | |
51d4f6f1 | 537 | #define SUBCARRIER_DETECT_THRESHOLD 8 |
538 | ||
51d4f6f1 | 539 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) |
6a5d4e17 | 540 | #define AMPLITUDE(ci,cq) (MAX(ABS(ci),ABS(cq)) + (MIN(ABS(ci),ABS(cq))/2)) |
7d5ebac9 MHS |
541 | switch(Demod.state) { |
542 | case DEMOD_UNSYNCD: | |
6a5d4e17 | 543 | if(AMPLITUDE(ci,cq) > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected |
7d5ebac9 | 544 | Demod.state = DEMOD_PHASE_REF_TRAINING; |
51d4f6f1 | 545 | Demod.sumI = ci; |
546 | Demod.sumQ = cq; | |
547 | Demod.posCount = 1; | |
548 | } | |
7d5ebac9 MHS |
549 | break; |
550 | ||
551 | case DEMOD_PHASE_REF_TRAINING: | |
552 | if(Demod.posCount < 8) { | |
6a5d4e17 | 553 | if (AMPLITUDE(ci,cq) > SUBCARRIER_DETECT_THRESHOLD) { |
51d4f6f1 | 554 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. |
555 | // note: synchronization time > 80 1/fs | |
556 | Demod.sumI += ci; | |
557 | Demod.sumQ += cq; | |
558 | Demod.posCount++; | |
559 | } else { // subcarrier lost | |
560 | Demod.state = DEMOD_UNSYNCD; | |
7d5ebac9 | 561 | } |
51d4f6f1 | 562 | } else { |
563 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; | |
7d5ebac9 | 564 | } |
7d5ebac9 MHS |
565 | break; |
566 | ||
567 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: | |
568 | MAKE_SOFT_DECISION(); | |
51d4f6f1 | 569 | if(v < 0) { // logic '0' detected |
7d5ebac9 | 570 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; |
51d4f6f1 | 571 | Demod.posCount = 0; // start of SOF sequence |
7d5ebac9 | 572 | } else { |
51d4f6f1 | 573 | if(Demod.posCount > 200/4) { // maximum length of TR1 = 200 1/fs |
7d5ebac9 MHS |
574 | Demod.state = DEMOD_UNSYNCD; |
575 | } | |
576 | } | |
577 | Demod.posCount++; | |
578 | break; | |
579 | ||
580 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: | |
51d4f6f1 | 581 | Demod.posCount++; |
7d5ebac9 MHS |
582 | MAKE_SOFT_DECISION(); |
583 | if(v > 0) { | |
51d4f6f1 | 584 | if(Demod.posCount < 9*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges |
7d5ebac9 MHS |
585 | Demod.state = DEMOD_UNSYNCD; |
586 | } else { | |
587 | LED_C_ON(); // Got SOF | |
588 | Demod.state = DEMOD_AWAITING_START_BIT; | |
589 | Demod.posCount = 0; | |
590 | Demod.len = 0; | |
51d4f6f1 | 591 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. |
7d5ebac9 MHS |
592 | Demod.metricN = 0; |
593 | Demod.metric = 0; | |
51d4f6f1 | 594 | */ |
7d5ebac9 MHS |
595 | } |
596 | } else { | |
51d4f6f1 | 597 | if(Demod.posCount > 12*2) { // low phase of SOF too long (> 12 etu) |
7d5ebac9 | 598 | Demod.state = DEMOD_UNSYNCD; |
09c66f1f | 599 | LED_C_OFF(); |
7d5ebac9 MHS |
600 | } |
601 | } | |
7d5ebac9 MHS |
602 | break; |
603 | ||
604 | case DEMOD_AWAITING_START_BIT: | |
51d4f6f1 | 605 | Demod.posCount++; |
7d5ebac9 MHS |
606 | MAKE_SOFT_DECISION(); |
607 | if(v > 0) { | |
51d4f6f1 | 608 | if(Demod.posCount > 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs |
7d5ebac9 | 609 | Demod.state = DEMOD_UNSYNCD; |
09c66f1f | 610 | LED_C_OFF(); |
7d5ebac9 | 611 | } |
51d4f6f1 | 612 | } else { // start bit detected |
7d5ebac9 | 613 | Demod.bitCount = 0; |
51d4f6f1 | 614 | Demod.posCount = 1; // this was the first half |
7d5ebac9 MHS |
615 | Demod.thisBit = v; |
616 | Demod.shiftReg = 0; | |
617 | Demod.state = DEMOD_RECEIVING_DATA; | |
618 | } | |
619 | break; | |
620 | ||
621 | case DEMOD_RECEIVING_DATA: | |
622 | MAKE_SOFT_DECISION(); | |
51d4f6f1 | 623 | if(Demod.posCount == 0) { // first half of bit |
7d5ebac9 MHS |
624 | Demod.thisBit = v; |
625 | Demod.posCount = 1; | |
51d4f6f1 | 626 | } else { // second half of bit |
7d5ebac9 MHS |
627 | Demod.thisBit += v; |
628 | ||
51d4f6f1 | 629 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. |
7d5ebac9 MHS |
630 | if(Demod.thisBit > 0) { |
631 | Demod.metric += Demod.thisBit; | |
632 | } else { | |
633 | Demod.metric -= Demod.thisBit; | |
634 | } | |
635 | (Demod.metricN)++; | |
dd57061c | 636 | */ |
7d5ebac9 MHS |
637 | |
638 | Demod.shiftReg >>= 1; | |
51d4f6f1 | 639 | if(Demod.thisBit > 0) { // logic '1' |
7d5ebac9 MHS |
640 | Demod.shiftReg |= 0x200; |
641 | } | |
642 | ||
643 | Demod.bitCount++; | |
644 | if(Demod.bitCount == 10) { | |
645 | uint16_t s = Demod.shiftReg; | |
51d4f6f1 | 646 | if((s & 0x200) && !(s & 0x001)) { // stop bit == '1', start bit == '0' |
7d5ebac9 MHS |
647 | uint8_t b = (s >> 1); |
648 | Demod.output[Demod.len] = b; | |
649 | Demod.len++; | |
650 | Demod.state = DEMOD_AWAITING_START_BIT; | |
7d5ebac9 MHS |
651 | } else { |
652 | Demod.state = DEMOD_UNSYNCD; | |
09c66f1f | 653 | LED_C_OFF(); |
654 | if(s == 0x000) { | |
51d4f6f1 | 655 | // This is EOF (start, stop and all data bits == '0' |
44964fd1 | 656 | return true; |
09c66f1f | 657 | } |
7d5ebac9 MHS |
658 | } |
659 | } | |
660 | Demod.posCount = 0; | |
661 | } | |
662 | break; | |
663 | ||
664 | default: | |
665 | Demod.state = DEMOD_UNSYNCD; | |
09c66f1f | 666 | LED_C_OFF(); |
7d5ebac9 MHS |
667 | break; |
668 | } | |
669 | ||
44964fd1 | 670 | return false; |
7d5ebac9 | 671 | } |
67ac4bf7 | 672 | |
673 | ||
aeadbdb2 MHS |
674 | static void DemodReset() |
675 | { | |
676 | // Clear out the state of the "UART" that receives from the tag. | |
aeadbdb2 MHS |
677 | Demod.len = 0; |
678 | Demod.state = DEMOD_UNSYNCD; | |
51d4f6f1 | 679 | Demod.posCount = 0; |
aeadbdb2 | 680 | memset(Demod.output, 0x00, MAX_FRAME_SIZE); |
7d5ebac9 | 681 | } |
67ac4bf7 | 682 | |
683 | ||
7d5ebac9 MHS |
684 | static void DemodInit(uint8_t *data) |
685 | { | |
686 | Demod.output = data; | |
687 | DemodReset(); | |
aeadbdb2 MHS |
688 | } |
689 | ||
67ac4bf7 | 690 | |
15c4dc5a | 691 | /* |
355c8b4a | 692 | * Demodulate the samples we received from the tag, also log to tracebuffer |
44964fd1 | 693 | * quiet: set to 'true' to disable debug output |
15c4dc5a | 694 | */ |
51d4f6f1 | 695 | static void GetSamplesFor14443bDemod(int n, bool quiet) |
15c4dc5a | 696 | { |
6a5d4e17 | 697 | int maxBehindBy = 0; |
44964fd1 | 698 | bool gotFrame = false; |
6a5d4e17 | 699 | int lastRxCounter, samples = 0; |
700 | int8_t ci, cq; | |
701 | ||
7d5ebac9 MHS |
702 | // Allocate memory from BigBuf for some buffers |
703 | // free all previous allocations first | |
704 | BigBuf_free(); | |
dd57061c | 705 | |
7d5ebac9 MHS |
706 | // The response (tag -> reader) that we're receiving. |
707 | uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE); | |
dd57061c | 708 | |
7d5ebac9 | 709 | // The DMA buffer, used to stream samples from the FPGA |
6a5d4e17 | 710 | uint16_t *dmaBuf = (uint16_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE * sizeof(uint16_t)); |
15c4dc5a | 711 | |
7d5ebac9 MHS |
712 | // Set up the demodulator for tag -> reader responses. |
713 | DemodInit(receivedResponse); | |
15c4dc5a | 714 | |
6a5d4e17 | 715 | // wait for last transfer to complete |
716 | while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)) | |
717 | ||
7d5ebac9 | 718 | // Setup and start DMA. |
6a5d4e17 | 719 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); |
705bfa10 | 720 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE); |
15c4dc5a | 721 | |
6a5d4e17 | 722 | uint16_t *upTo = dmaBuf; |
705bfa10 | 723 | lastRxCounter = ISO14443B_DMA_BUFFER_SIZE; |
15c4dc5a | 724 | |
7d5ebac9 | 725 | // Signal field is ON with the appropriate LED: |
51d4f6f1 | 726 | LED_D_ON(); |
7d5ebac9 | 727 | // And put the FPGA in the appropriate mode |
da586b17 | 728 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); |
15c4dc5a | 729 | |
7d5ebac9 | 730 | for(;;) { |
6a5d4e17 | 731 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1); |
732 | if(behindBy > maxBehindBy) { | |
733 | maxBehindBy = behindBy; | |
734 | } | |
15c4dc5a | 735 | |
6a5d4e17 | 736 | if(behindBy < 1) continue; |
15c4dc5a | 737 | |
6a5d4e17 | 738 | ci = *upTo >> 8; |
739 | cq = *upTo; | |
740 | upTo++; | |
741 | lastRxCounter--; | |
742 | if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content. | |
743 | upTo = dmaBuf; // start reading the circular buffer from the beginning | |
744 | lastRxCounter += ISO14443B_DMA_BUFFER_SIZE; | |
745 | } | |
746 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated. | |
747 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and | |
748 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE; // DMA Next Counter registers | |
749 | } | |
750 | samples++; | |
751 | ||
752 | if(Handle14443bSamplesDemod(ci, cq)) { | |
753 | gotFrame = true; | |
754 | break; | |
7d5ebac9 | 755 | } |
15c4dc5a | 756 | |
6a5d4e17 | 757 | if(samples > n) { |
7d5ebac9 MHS |
758 | break; |
759 | } | |
760 | } | |
51d4f6f1 | 761 | |
6a5d4e17 | 762 | FpgaDisableSscDma(); |
51d4f6f1 | 763 | |
6a5d4e17 | 764 | if (!quiet) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", maxBehindBy, samples, gotFrame, Demod.len, Demod.sumI, Demod.sumQ); |
355c8b4a MHS |
765 | //Tracing |
766 | if (tracing && Demod.len > 0) { | |
767 | uint8_t parity[MAX_PARITY_SIZE]; | |
44964fd1 | 768 | LogTrace(Demod.output, Demod.len, 0, 0, parity, false); |
355c8b4a | 769 | } |
15c4dc5a | 770 | } |
771 | ||
67ac4bf7 | 772 | |
15c4dc5a | 773 | //----------------------------------------------------------------------------- |
774 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
775 | //----------------------------------------------------------------------------- | |
51d4f6f1 | 776 | static void TransmitFor14443b(void) |
15c4dc5a | 777 | { |
7d5ebac9 | 778 | int c; |
15c4dc5a | 779 | |
6a5d4e17 | 780 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_TX); |
15c4dc5a | 781 | |
7d5ebac9 | 782 | // Signal field is ON with the appropriate Red LED |
15c4dc5a | 783 | LED_D_ON(); |
784 | // Signal we are transmitting with the Green LED | |
785 | LED_B_ON(); | |
51d4f6f1 | 786 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); |
7d5ebac9 | 787 | |
7d5ebac9 MHS |
788 | c = 0; |
789 | for(;;) { | |
790 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
6a5d4e17 | 791 | AT91C_BASE_SSC->SSC_THR = ~ToSend[c]; |
7d5ebac9 MHS |
792 | c++; |
793 | if(c >= ToSendMax) { | |
794 | break; | |
795 | } | |
796 | } | |
7d5ebac9 MHS |
797 | WDT_HIT(); |
798 | } | |
799 | LED_B_OFF(); // Finished sending | |
15c4dc5a | 800 | } |
801 | ||
67ac4bf7 | 802 | |
15c4dc5a | 803 | //----------------------------------------------------------------------------- |
804 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], | |
51d4f6f1 | 805 | // so that it is ready to transmit to the tag using TransmitFor14443b(). |
15c4dc5a | 806 | //----------------------------------------------------------------------------- |
7cf3ef20 | 807 | static void CodeIso14443bAsReader(const uint8_t *cmd, int len) |
15c4dc5a | 808 | { |
7d5ebac9 MHS |
809 | int i, j; |
810 | uint8_t b; | |
811 | ||
812 | ToSendReset(); | |
813 | ||
7d5ebac9 MHS |
814 | // Send SOF |
815 | for(i = 0; i < 10; i++) { | |
816 | ToSendStuffBit(0); | |
817 | } | |
6a5d4e17 | 818 | ToSendStuffBit(1); |
819 | ToSendStuffBit(1); | |
7d5ebac9 MHS |
820 | |
821 | for(i = 0; i < len; i++) { | |
7d5ebac9 MHS |
822 | // Start bit |
823 | ToSendStuffBit(0); | |
824 | // Data bits | |
825 | b = cmd[i]; | |
826 | for(j = 0; j < 8; j++) { | |
827 | if(b & 1) { | |
828 | ToSendStuffBit(1); | |
829 | } else { | |
830 | ToSendStuffBit(0); | |
831 | } | |
832 | b >>= 1; | |
833 | } | |
6a5d4e17 | 834 | // Stop bit |
835 | ToSendStuffBit(1); | |
7d5ebac9 | 836 | } |
6a5d4e17 | 837 | |
7d5ebac9 | 838 | // Send EOF |
7d5ebac9 MHS |
839 | for(i = 0; i < 10; i++) { |
840 | ToSendStuffBit(0); | |
841 | } | |
6a5d4e17 | 842 | ToSendStuffBit(1); |
7d5ebac9 | 843 | |
6a5d4e17 | 844 | // ensure that last byte is filled up |
845 | for(i = 0; i < 8; i++) { | |
7d5ebac9 MHS |
846 | ToSendStuffBit(1); |
847 | } | |
848 | ||
849 | // Convert from last character reference to length | |
850 | ToSendMax++; | |
15c4dc5a | 851 | } |
852 | ||
67ac4bf7 | 853 | |
355c8b4a MHS |
854 | /** |
855 | Convenience function to encode, transmit and trace iso 14443b comms | |
856 | **/ | |
857 | static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len) | |
858 | { | |
859 | CodeIso14443bAsReader(cmd, len); | |
51d4f6f1 | 860 | TransmitFor14443b(); |
355c8b4a MHS |
861 | if (tracing) { |
862 | uint8_t parity[MAX_PARITY_SIZE]; | |
44964fd1 | 863 | LogTrace(cmd,len, 0, 0, parity, true); |
355c8b4a MHS |
864 | } |
865 | } | |
866 | ||
4be27083 FM |
867 | /* Sends an APDU to the tag |
868 | * TODO: check CRC and preamble | |
869 | */ | |
870 | int iso14443b_apdu(uint8_t const *message, size_t message_length, uint8_t *response) | |
871 | { | |
872 | uint8_t message_frame[message_length + 4]; | |
873 | // PCB | |
874 | message_frame[0] = 0x0A | pcb_blocknum; | |
875 | pcb_blocknum ^= 1; | |
876 | // CID | |
877 | message_frame[1] = 0; | |
878 | // INF | |
879 | memcpy(message_frame + 2, message, message_length); | |
880 | // EDC (CRC) | |
881 | ComputeCrc14443(CRC_14443_B, message_frame, message_length + 2, &message_frame[message_length + 2], &message_frame[message_length + 3]); | |
882 | // send | |
883 | CodeAndTransmit14443bAsReader(message_frame, message_length + 4); | |
884 | // get response | |
6a5d4e17 | 885 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true); |
4be27083 FM |
886 | if(Demod.len < 3) |
887 | { | |
888 | return 0; | |
889 | } | |
890 | // TODO: Check CRC | |
891 | // copy response contents | |
892 | if(response != NULL) | |
893 | { | |
894 | memcpy(response, Demod.output, Demod.len); | |
895 | } | |
896 | return Demod.len; | |
897 | } | |
898 | ||
899 | /* Perform the ISO 14443 B Card Selection procedure | |
900 | * Currently does NOT do any collision handling. | |
901 | * It expects 0-1 cards in the device's range. | |
902 | * TODO: Support multiple cards (perform anticollision) | |
903 | * TODO: Verify CRC checksums | |
904 | */ | |
905 | int iso14443b_select_card() | |
906 | { | |
907 | // WUPB command (including CRC) | |
908 | // Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state | |
909 | static const uint8_t wupb[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; | |
910 | // ATTRIB command (with space for CRC) | |
911 | uint8_t attrib[] = { 0x1D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00}; | |
912 | ||
913 | // first, wake up the tag | |
914 | CodeAndTransmit14443bAsReader(wupb, sizeof(wupb)); | |
44964fd1 | 915 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true); |
4be27083 FM |
916 | // ATQB too short? |
917 | if (Demod.len < 14) | |
918 | { | |
919 | return 2; | |
920 | } | |
921 | ||
922 | // select the tag | |
923 | // copy the PUPI to ATTRIB | |
924 | memcpy(attrib + 1, Demod.output + 1, 4); | |
925 | /* copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into | |
926 | ATTRIB (Param 3) */ | |
927 | attrib[7] = Demod.output[10] & 0x0F; | |
928 | ComputeCrc14443(CRC_14443_B, attrib, 9, attrib + 9, attrib + 10); | |
929 | CodeAndTransmit14443bAsReader(attrib, sizeof(attrib)); | |
44964fd1 | 930 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true); |
4be27083 FM |
931 | // Answer to ATTRIB too short? |
932 | if(Demod.len < 3) | |
933 | { | |
934 | return 2; | |
935 | } | |
936 | // reset PCB block number | |
937 | pcb_blocknum = 0; | |
938 | return 1; | |
939 | } | |
940 | ||
941 | // Set up ISO 14443 Type B communication (similar to iso14443a_setup) | |
942 | void iso14443b_setup() { | |
943 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
944 | // Set up the synchronous serial port | |
6a5d4e17 | 945 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_TX); |
4be27083 FM |
946 | // connect Demodulated Signal to ADC: |
947 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
948 | ||
949 | // Signal field is on with the appropriate LED | |
950 | LED_D_ON(); | |
951 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
952 | ||
4be27083 FM |
953 | DemodReset(); |
954 | UartReset(); | |
955 | } | |
67ac4bf7 | 956 | |
15c4dc5a | 957 | //----------------------------------------------------------------------------- |
51d4f6f1 | 958 | // Read a SRI512 ISO 14443B tag. |
15c4dc5a | 959 | // |
960 | // SRI512 tags are just simple memory tags, here we're looking at making a dump | |
961 | // of the contents of the memory. No anticollision algorithm is done, we assume | |
962 | // we have a single tag in the field. | |
963 | // | |
964 | // I tried to be systematic and check every answer of the tag, every CRC, etc... | |
965 | //----------------------------------------------------------------------------- | |
51d4f6f1 | 966 | void ReadSTMemoryIso14443b(uint32_t dwLast) |
15c4dc5a | 967 | { |
7d5ebac9 | 968 | uint8_t i = 0x00; |
15c4dc5a | 969 | |
7d5ebac9 MHS |
970 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
971 | // Make sure that we start from off, since the tags are stateful; | |
972 | // confusing things will happen if we don't reset them between reads. | |
973 | LED_D_OFF(); | |
974 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
975 | SpinDelay(200); | |
15c4dc5a | 976 | |
7d5ebac9 | 977 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
6a5d4e17 | 978 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); |
15c4dc5a | 979 | |
7d5ebac9 MHS |
980 | // Now give it time to spin up. |
981 | // Signal field is on with the appropriate LED | |
982 | LED_D_ON(); | |
705bfa10 | 983 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); |
7d5ebac9 | 984 | SpinDelay(200); |
15c4dc5a | 985 | |
5f605b8f | 986 | clear_trace(); |
44964fd1 | 987 | set_tracing(true); |
5f605b8f | 988 | |
7d5ebac9 | 989 | // First command: wake up the tag using the INITIATE command |
51d4f6f1 | 990 | uint8_t cmd1[] = {0x06, 0x00, 0x97, 0x5b}; |
355c8b4a | 991 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); |
44964fd1 | 992 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true); |
15c4dc5a | 993 | |
7d5ebac9 | 994 | if (Demod.len == 0) { |
705bfa10 | 995 | DbpString("No response from tag"); |
6a5d4e17 | 996 | LED_D_OFF(); |
997 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
705bfa10 | 998 | return; |
7d5ebac9 | 999 | } else { |
705bfa10 | 1000 | Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x", |
1001 | Demod.output[0], Demod.output[1], Demod.output[2]); | |
7d5ebac9 | 1002 | } |
705bfa10 | 1003 | |
7d5ebac9 MHS |
1004 | // There is a response, SELECT the uid |
1005 | DbpString("Now SELECT tag:"); | |
1006 | cmd1[0] = 0x0E; // 0x0E is SELECT | |
1007 | cmd1[1] = Demod.output[0]; | |
1008 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); | |
355c8b4a | 1009 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); |
44964fd1 | 1010 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true); |
7d5ebac9 | 1011 | if (Demod.len != 3) { |
51d4f6f1 | 1012 | Dbprintf("Expected 3 bytes from tag, got %d", Demod.len); |
6a5d4e17 | 1013 | LED_D_OFF(); |
1014 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
51d4f6f1 | 1015 | return; |
7d5ebac9 MHS |
1016 | } |
1017 | // Check the CRC of the answer: | |
1018 | ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]); | |
1019 | if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) { | |
51d4f6f1 | 1020 | DbpString("CRC Error reading select response."); |
6a5d4e17 | 1021 | LED_D_OFF(); |
1022 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
51d4f6f1 | 1023 | return; |
7d5ebac9 MHS |
1024 | } |
1025 | // Check response from the tag: should be the same UID as the command we just sent: | |
1026 | if (cmd1[1] != Demod.output[0]) { | |
132a0217 | 1027 | Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1[1], Demod.output[0]); |
6a5d4e17 | 1028 | LED_D_OFF(); |
1029 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
51d4f6f1 | 1030 | return; |
7d5ebac9 | 1031 | } |
705bfa10 | 1032 | |
7d5ebac9 MHS |
1033 | // Tag is now selected, |
1034 | // First get the tag's UID: | |
1035 | cmd1[0] = 0x0B; | |
1036 | ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]); | |
355c8b4a | 1037 | CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one |
44964fd1 | 1038 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true); |
7d5ebac9 | 1039 | if (Demod.len != 10) { |
51d4f6f1 | 1040 | Dbprintf("Expected 10 bytes from tag, got %d", Demod.len); |
6a5d4e17 | 1041 | LED_D_OFF(); |
1042 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
51d4f6f1 | 1043 | return; |
7d5ebac9 MHS |
1044 | } |
1045 | // The check the CRC of the answer (use cmd1 as temporary variable): | |
1046 | ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]); | |
51d4f6f1 | 1047 | if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) { |
132a0217 | 1048 | Dbprintf("CRC Error reading block! Expected: %04x got: %04x", |
705bfa10 | 1049 | (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]); |
51d4f6f1 | 1050 | // Do not return;, let's go on... (we should retry, maybe ?) |
7d5ebac9 MHS |
1051 | } |
1052 | Dbprintf("Tag UID (64 bits): %08x %08x", | |
705bfa10 | 1053 | (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4], |
1054 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]); | |
15c4dc5a | 1055 | |
7d5ebac9 | 1056 | // Now loop to read all 16 blocks, address from 0 to last block |
132a0217 | 1057 | Dbprintf("Tag memory dump, block 0 to %d", dwLast); |
7d5ebac9 MHS |
1058 | cmd1[0] = 0x08; |
1059 | i = 0x00; | |
1060 | dwLast++; | |
1061 | for (;;) { | |
51d4f6f1 | 1062 | if (i == dwLast) { |
7d5ebac9 MHS |
1063 | DbpString("System area block (0xff):"); |
1064 | i = 0xff; | |
1065 | } | |
1066 | cmd1[1] = i; | |
1067 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); | |
355c8b4a | 1068 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); |
44964fd1 | 1069 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true); |
7d5ebac9 | 1070 | if (Demod.len != 6) { // Check if we got an answer from the tag |
51d4f6f1 | 1071 | DbpString("Expected 6 bytes from tag, got less..."); |
6a5d4e17 | 1072 | LED_D_OFF(); |
1073 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
51d4f6f1 | 1074 | return; |
7d5ebac9 MHS |
1075 | } |
1076 | // The check the CRC of the answer (use cmd1 as temporary variable): | |
1077 | ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]); | |
51d4f6f1 | 1078 | if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) { |
132a0217 | 1079 | Dbprintf("CRC Error reading block! Expected: %04x got: %04x", |
705bfa10 | 1080 | (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]); |
51d4f6f1 | 1081 | // Do not return;, let's go on... (we should retry, maybe ?) |
7d5ebac9 MHS |
1082 | } |
1083 | // Now print out the memory location: | |
132a0217 | 1084 | Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i, |
705bfa10 | 1085 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0], |
1086 | (Demod.output[4]<<8)+Demod.output[5]); | |
7d5ebac9 | 1087 | if (i == 0xff) { |
51d4f6f1 | 1088 | break; |
7d5ebac9 MHS |
1089 | } |
1090 | i++; | |
1091 | } | |
6a5d4e17 | 1092 | |
1093 | LED_D_OFF(); | |
1094 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
15c4dc5a | 1095 | } |
1096 | ||
1097 | ||
1098 | //============================================================================= | |
1099 | // Finally, the `sniffer' combines elements from both the reader and | |
1100 | // simulated tag, to show both sides of the conversation. | |
1101 | //============================================================================= | |
1102 | ||
1103 | //----------------------------------------------------------------------------- | |
1104 | // Record the sequence of commands sent by the reader to the tag, with | |
1105 | // triggering so that we start recording at the point that the tag is moved | |
1106 | // near the reader. | |
1107 | //----------------------------------------------------------------------------- | |
1108 | /* | |
1109 | * Memory usage for this function, (within BigBuf) | |
5b95953d | 1110 | * Last Received command (reader->tag) - MAX_FRAME_SIZE |
1111 | * Last Received command (tag->reader) - MAX_FRAME_SIZE | |
705bfa10 | 1112 | * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE |
5b95953d | 1113 | * Demodulated samples received - all the rest |
15c4dc5a | 1114 | */ |
51d4f6f1 | 1115 | void RAMFUNC SnoopIso14443b(void) |
15c4dc5a | 1116 | { |
7d5ebac9 | 1117 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
f71f4deb | 1118 | BigBuf_free(); |
15c4dc5a | 1119 | |
aeadbdb2 | 1120 | clear_trace(); |
44964fd1 | 1121 | set_tracing(true); |
aeadbdb2 | 1122 | |
7d5ebac9 | 1123 | // The DMA buffer, used to stream samples from the FPGA |
6a5d4e17 | 1124 | uint16_t *dmaBuf = (uint16_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE * sizeof(uint16_t)); |
7d5ebac9 | 1125 | int lastRxCounter; |
6a5d4e17 | 1126 | uint16_t *upTo; |
1127 | int8_t ci, cq; | |
7d5ebac9 MHS |
1128 | int maxBehindBy = 0; |
1129 | ||
1130 | // Count of samples received so far, so that we can include timing | |
1131 | // information in the trace buffer. | |
1132 | int samples = 0; | |
15c4dc5a | 1133 | |
7d5ebac9 MHS |
1134 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); |
1135 | UartInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
15c4dc5a | 1136 | |
7d5ebac9 MHS |
1137 | // Print some debug information about the buffer sizes |
1138 | Dbprintf("Snooping buffers initialized:"); | |
1139 | Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen()); | |
aeadbdb2 MHS |
1140 | Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE); |
1141 | Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE); | |
705bfa10 | 1142 | Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE); |
e30c654b | 1143 | |
51d4f6f1 | 1144 | // Signal field is off, no reader signal, no tag signal |
1145 | LEDsoff(); | |
aeadbdb2 MHS |
1146 | |
1147 | // And put the FPGA in the appropriate mode | |
da586b17 | 1148 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); |
7d5ebac9 MHS |
1149 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
1150 | ||
1151 | // Setup for the DMA. | |
6a5d4e17 | 1152 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); |
7d5ebac9 | 1153 | upTo = dmaBuf; |
705bfa10 | 1154 | lastRxCounter = ISO14443B_DMA_BUFFER_SIZE; |
1155 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE); | |
aeadbdb2 | 1156 | uint8_t parity[MAX_PARITY_SIZE]; |
5b95953d | 1157 | |
44964fd1 | 1158 | bool TagIsActive = false; |
1159 | bool ReaderIsActive = false; | |
6a5d4e17 | 1160 | // We won't start recording the frames that we acquire until we trigger. |
1161 | // A good trigger condition to get started is probably when we see a | |
1162 | // reader command | |
1163 | bool triggered = false; | |
dd57061c | 1164 | |
7d5ebac9 MHS |
1165 | // And now we loop, receiving samples. |
1166 | for(;;) { | |
6a5d4e17 | 1167 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1); |
7d5ebac9 MHS |
1168 | if(behindBy > maxBehindBy) { |
1169 | maxBehindBy = behindBy; | |
7d5ebac9 | 1170 | } |
51d4f6f1 | 1171 | |
6a5d4e17 | 1172 | if(behindBy < 1) continue; |
7d5ebac9 | 1173 | |
6a5d4e17 | 1174 | ci = *upTo>>8; |
1175 | cq = *upTo; | |
1176 | upTo++; | |
1177 | lastRxCounter--; | |
1178 | if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content. | |
1179 | upTo = dmaBuf; // start reading the circular buffer from the beginning again | |
705bfa10 | 1180 | lastRxCounter += ISO14443B_DMA_BUFFER_SIZE; |
6a5d4e17 | 1181 | if(behindBy > (9*ISO14443B_DMA_BUFFER_SIZE/10)) { |
1182 | Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy); | |
51d4f6f1 | 1183 | break; |
1184 | } | |
6a5d4e17 | 1185 | } |
1186 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated. | |
1187 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and | |
1188 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE; // DMA Next Counter registers | |
1189 | WDT_HIT(); | |
51d4f6f1 | 1190 | if(BUTTON_PRESS()) { |
1191 | DbpString("cancelled"); | |
1192 | break; | |
1193 | } | |
7d5ebac9 | 1194 | } |
15c4dc5a | 1195 | |
6a5d4e17 | 1196 | samples++; |
15c4dc5a | 1197 | |
5b95953d | 1198 | if (!TagIsActive) { // no need to try decoding reader data if the tag is sending |
51d4f6f1 | 1199 | if(Handle14443bUartBit(ci & 0x01)) { |
6a5d4e17 | 1200 | triggered = true; |
1201 | if(tracing) { | |
44964fd1 | 1202 | LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, true); |
5b95953d | 1203 | } |
5b95953d | 1204 | /* And ready to receive another command. */ |
1205 | UartReset(); | |
1206 | /* And also reset the demod code, which might have been */ | |
1207 | /* false-triggered by the commands from the reader. */ | |
1208 | DemodReset(); | |
aeadbdb2 | 1209 | } |
51d4f6f1 | 1210 | if(Handle14443bUartBit(cq & 0x01)) { |
6a5d4e17 | 1211 | triggered = true; |
1212 | if(tracing) { | |
44964fd1 | 1213 | LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, true); |
5b95953d | 1214 | } |
5b95953d | 1215 | /* And ready to receive another command. */ |
1216 | UartReset(); | |
1217 | /* And also reset the demod code, which might have been */ | |
1218 | /* false-triggered by the commands from the reader. */ | |
1219 | DemodReset(); | |
1220 | } | |
46734099 | 1221 | ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF); |
aeadbdb2 | 1222 | } |
15c4dc5a | 1223 | |
6a5d4e17 | 1224 | if(!ReaderIsActive && triggered) { // no need to try decoding tag data if the reader is sending or not yet triggered |
1225 | if(Handle14443bSamplesDemod(ci/2, cq/2)) { | |
15c4dc5a | 1226 | |
5b95953d | 1227 | //Use samples as a time measurement |
1228 | if(tracing) | |
1229 | { | |
1230 | uint8_t parity[MAX_PARITY_SIZE]; | |
44964fd1 | 1231 | LogTrace(Demod.output, Demod.len, samples, samples, parity, false); |
5b95953d | 1232 | } |
5b95953d | 1233 | // And ready to receive another response. |
1234 | DemodReset(); | |
1235 | } | |
d5875804 | 1236 | TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF); |
aeadbdb2 | 1237 | } |
15c4dc5a | 1238 | |
7d5ebac9 | 1239 | } |
51d4f6f1 | 1240 | |
aeadbdb2 | 1241 | FpgaDisableSscDma(); |
51d4f6f1 | 1242 | LEDsoff(); |
15c4dc5a | 1243 | DbpString("Snoop statistics:"); |
355c8b4a | 1244 | Dbprintf(" Max behind by: %i", maxBehindBy); |
15c4dc5a | 1245 | Dbprintf(" Uart State: %x", Uart.state); |
1246 | Dbprintf(" Uart ByteCnt: %i", Uart.byteCnt); | |
1247 | Dbprintf(" Uart ByteCntMax: %i", Uart.byteCntMax); | |
3000dc4e | 1248 | Dbprintf(" Trace length: %i", BigBuf_get_traceLen()); |
15c4dc5a | 1249 | } |
7cf3ef20 | 1250 | |
67ac4bf7 | 1251 | |
7cf3ef20 | 1252 | /* |
1253 | * Send raw command to tag ISO14443B | |
1254 | * @Input | |
1255 | * datalen len of buffer data | |
1256 | * recv bool when true wait for data from tag and send to client | |
1257 | * powerfield bool leave the field on when true | |
1258 | * data buffer with byte to send | |
1259 | * | |
1260 | * @Output | |
1261 | * none | |
1262 | * | |
1263 | */ | |
67ac4bf7 | 1264 | void SendRawCommand14443B(uint32_t datalen, uint32_t recv, uint8_t powerfield, uint8_t data[]) |
7cf3ef20 | 1265 | { |
7d5ebac9 | 1266 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
51d4f6f1 | 1267 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
6a5d4e17 | 1268 | |
1269 | // switch field on and give tag some time to power up | |
1270 | LED_D_ON(); | |
1271 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_TX); | |
1272 | SpinDelay(10); | |
5f605b8f | 1273 | |
9d84e689 | 1274 | if (datalen){ |
44964fd1 | 1275 | set_tracing(true); |
9d84e689 | 1276 | |
1277 | CodeAndTransmit14443bAsReader(data, datalen); | |
1278 | ||
1279 | if(recv) { | |
44964fd1 | 1280 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true); |
9d84e689 | 1281 | uint16_t iLen = MIN(Demod.len, USB_CMD_DATA_SIZE); |
1282 | cmd_send(CMD_ACK, iLen, 0, 0, Demod.output, iLen); | |
1283 | } | |
dd57061c | 1284 | } |
355c8b4a | 1285 | |
51d4f6f1 | 1286 | if(!powerfield) { |
7d5ebac9 MHS |
1287 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1288 | LED_D_OFF(); | |
1289 | } | |
7cf3ef20 | 1290 | } |
1291 |