]>
Commit | Line | Data |
---|---|---|
bd20f8f4 | 1 | //----------------------------------------------------------------------------- |
2 | // (c) 2009 Henryk Plötz <henryk@ploetzli.ch> | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // LEGIC RF simulation code | |
9 | //----------------------------------------------------------------------------- | |
a7247d85 | 10 | |
f7e3ed82 | 11 | #include "legicrf.h" |
8e220a91 | 12 | |
a7247d85 | 13 | static struct legic_frame { |
ccedd6ae | 14 | int bits; |
a2b1414f | 15 | uint32_t data; |
a7247d85 | 16 | } current_frame; |
8e220a91 | 17 | |
3612a8a8 | 18 | static enum { |
19 | STATE_DISCON, | |
20 | STATE_IV, | |
21 | STATE_CON, | |
22 | } legic_state; | |
23 | ||
24 | static crc_t legic_crc; | |
25 | static int legic_read_count; | |
26 | static uint32_t legic_prng_bc; | |
27 | static uint32_t legic_prng_iv; | |
28 | ||
29 | static int legic_phase_drift; | |
30 | static int legic_frame_drift; | |
31 | static int legic_reqresp_drift; | |
8e220a91 | 32 | |
add16a62 | 33 | AT91PS_TC timer; |
3612a8a8 | 34 | AT91PS_TC prng_timer; |
add16a62 | 35 | |
ad5bc8cc | 36 | /* |
c71c5ee1 | 37 | static void setup_timer(void) { |
ad5bc8cc | 38 | // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging |
39 | // this it won't be terribly accurate but should be good enough. | |
40 | // | |
add16a62 | 41 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); |
42 | timer = AT91C_BASE_TC1; | |
43 | timer->TC_CCR = AT91C_TC_CLKDIS; | |
0aa4cfc2 | 44 | timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; |
add16a62 | 45 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; |
46 | ||
ad5bc8cc | 47 | // |
48 | // Set up Timer 2 to use for measuring time between frames in | |
49 | // tag simulation mode. Runs 4x faster as Timer 1 | |
50 | // | |
3612a8a8 | 51 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2); |
52 | prng_timer = AT91C_BASE_TC2; | |
53 | prng_timer->TC_CCR = AT91C_TC_CLKDIS; | |
54 | prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK; | |
55 | prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
56 | } | |
111c6934 | 57 | |
58 | AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14); | |
59 | AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE; | |
60 | ||
61 | // fast clock | |
62 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable | |
63 | AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks | |
64 | AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR | | |
65 | AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET; | |
66 | AT91C_BASE_TC0->TC_RA = 1; | |
67 | AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000 | |
68 | ||
ad5bc8cc | 69 | */ |
70 | ||
71 | // At TIMER_CLOCK3 (MCK/32) | |
72 | //#define RWD_TIME_1 150 /* RWD_TIME_PAUSE off, 80us on = 100us */ | |
73 | //#define RWD_TIME_0 90 /* RWD_TIME_PAUSE off, 40us on = 60us */ | |
74 | //#define RWD_TIME_PAUSE 30 /* 20us */ | |
75 | ||
76471e5d | 76 | // testing calculating in ticks instead of (us) microseconds. |
111c6934 | 77 | #define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks |
78 | #define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks | |
76471e5d | 79 | #define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */ |
80 | #define TAG_BIT_PERIOD 150 // 100us == 100 * 1.5 == 150ticks | |
111c6934 | 81 | #define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495 |
ad5bc8cc | 82 | |
76471e5d | 83 | #define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit |
add16a62 | 84 | |
3612a8a8 | 85 | #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */ |
86 | #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */ | |
87 | ||
3612a8a8 | 88 | #define OFFSET_LOG 1024 |
add16a62 | 89 | |
90 | #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz))) | |
aac23b24 | 91 | |
ad5bc8cc | 92 | #ifndef SHORT_COIL |
93 | //#define LOW(x) AT91C_BASE_PIOA->PIO_CODR = (x) | |
b4a6775b | 94 | # define SHORT_COIL LOW(GPIO_SSC_DOUT); |
ad5bc8cc | 95 | #endif |
96 | #ifndef OPEN_COIL | |
97 | //#define HIGH(x) AT91C_BASE_PIOA->PIO_SODR = (x) | |
b4a6775b | 98 | # define OPEN_COIL HIGH(GPIO_SSC_DOUT); |
ad5bc8cc | 99 | #endif |
100 | ||
101 | uint32_t stop_send_frame_us = 0; | |
102 | ||
111c6934 | 103 | // Pause pulse, off in 20us / 30ticks, |
104 | // ONE / ZERO bit pulse, | |
105 | // one == 80us / 120ticks | |
106 | // zero == 40us / 60ticks | |
107 | #ifndef COIL_PULSE | |
108 | # define COIL_PULSE(x) { \ | |
76471e5d | 109 | SHORT_COIL; \ |
110 | Wait(RWD_TIME_PAUSE); \ | |
111 | OPEN_COIL; \ | |
111c6934 | 112 | Wait((x)); \ |
76471e5d | 113 | } |
111c6934 | 114 | #endif |
115 | #ifndef GET_TICKS | |
116 | # define GET_TICKS AT91C_BASE_TC0->TC_CV | |
117 | #endif | |
c71c5ee1 | 118 | |
119 | // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces. | |
120 | // Historically it used to be FREE_BUFFER_SIZE, which was 2744. | |
121 | #define LEGIC_CARD_MEMSIZE 1024 | |
122 | static uint8_t* cardmem; | |
123 | ||
76471e5d | 124 | static void Wait(uint32_t time){ |
125 | if ( time == 0 ) return; | |
111c6934 | 126 | time += GET_TICKS; |
127 | while (GET_TICKS < time); | |
76471e5d | 128 | } |
ad5bc8cc | 129 | // Starts Clock and waits until its reset |
130 | static void Reset(AT91PS_TC clock){ | |
131 | clock->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
132 | while(clock->TC_CV > 1) ; | |
133 | } | |
134 | ||
135 | // Starts Clock and waits until its reset | |
136 | static void ResetClock(void){ | |
137 | Reset(timer); | |
138 | } | |
139 | ||
b4a6775b | 140 | static void frame_append_bit(struct legic_frame * const f, int bit) { |
141 | // Overflow, won't happen | |
142 | if (f->bits >= 31) return; | |
143 | ||
144 | f->data |= (bit << f->bits); | |
145 | f->bits++; | |
146 | } | |
147 | ||
148 | static void frame_clean(struct legic_frame * const f) { | |
149 | f->data = 0; | |
150 | f->bits = 0; | |
151 | } | |
152 | ||
ad5bc8cc | 153 | // Prng works when waiting in 99.1us cycles. |
154 | // and while sending/receiving in bit frames (100, 60) | |
b4a6775b | 155 | /*static void CalibratePrng( uint32_t time){ |
ad5bc8cc | 156 | // Calculate Cycles based on timer 100us |
157 | uint32_t i = (time - stop_send_frame_us) / 100 ; | |
158 | ||
159 | // substract cycles of finished frames | |
160 | int k = i - legic_prng_count()+1; | |
161 | ||
162 | // substract current frame length, rewind to beginning | |
163 | if ( k > 0 ) | |
164 | legic_prng_forward(k); | |
165 | } | |
b4a6775b | 166 | */ |
ad5bc8cc | 167 | |
3612a8a8 | 168 | /* Generate Keystream */ |
169 | static uint32_t get_key_stream(int skip, int count) | |
170 | { | |
c71c5ee1 | 171 | uint32_t key = 0; |
172 | int i; | |
edaf10af | 173 | |
c71c5ee1 | 174 | // Use int to enlarge timer tc to 32bit |
edaf10af | 175 | legic_prng_bc += prng_timer->TC_CV; |
c71c5ee1 | 176 | |
177 | // reset the prng timer. | |
ad5bc8cc | 178 | Reset(prng_timer); |
edaf10af | 179 | |
180 | /* If skip == -1, forward prng time based */ | |
181 | if(skip == -1) { | |
c71c5ee1 | 182 | i = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */ |
edaf10af | 183 | i -= legic_prng_count(); /* substract cycles of finished frames */ |
c71c5ee1 | 184 | i -= count; /* substract current frame length, rewind to beginning */ |
edaf10af | 185 | legic_prng_forward(i); |
186 | } else { | |
187 | legic_prng_forward(skip); | |
188 | } | |
189 | ||
edaf10af | 190 | i = (count == 6) ? -1 : legic_read_count; |
191 | ||
c71c5ee1 | 192 | /* Write Time Data into LOG */ |
193 | // uint8_t *BigBuf = BigBuf_get_addr(); | |
194 | // BigBuf[OFFSET_LOG+128+i] = legic_prng_count(); | |
195 | // BigBuf[OFFSET_LOG+256+i*4] = (legic_prng_bc >> 0) & 0xff; | |
196 | // BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff; | |
197 | // BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff; | |
198 | // BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff; | |
199 | // BigBuf[OFFSET_LOG+384+i] = count; | |
edaf10af | 200 | |
201 | /* Generate KeyStream */ | |
202 | for(i=0; i<count; i++) { | |
203 | key |= legic_prng_get_bit() << i; | |
204 | legic_prng_forward(1); | |
205 | } | |
206 | return key; | |
3612a8a8 | 207 | } |
208 | ||
209 | /* Send a frame in tag mode, the FPGA must have been set up by | |
210 | * LegicRfSimulate | |
211 | */ | |
ad5bc8cc | 212 | static void frame_send_tag(uint16_t response, uint8_t bits, uint8_t crypt) { |
213 | /* Bitbang the response */ | |
214 | LOW(GPIO_SSC_DOUT); | |
215 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
216 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
3612a8a8 | 217 | |
ad5bc8cc | 218 | /* Use time to crypt frame */ |
219 | if(crypt) { | |
111c6934 | 220 | legic_prng_forward(2); /* TAG_FRAME_WAIT -> shift by 2 */ |
ad5bc8cc | 221 | response ^= legic_prng_get_bits(bits); |
222 | } | |
c71c5ee1 | 223 | |
ad5bc8cc | 224 | /* Wait for the frame start */ |
111c6934 | 225 | Wait( TAG_FRAME_WAIT ); |
e30c654b | 226 | |
ad5bc8cc | 227 | uint8_t bit = 0; |
f7b42573 | 228 | for(int i = 0; i < bits; i++) { |
c71c5ee1 | 229 | |
ad5bc8cc | 230 | bit = response & 1; |
231 | response >>= 1; | |
8e220a91 | 232 | |
ad5bc8cc | 233 | if (bit) |
234 | HIGH(GPIO_SSC_DOUT); | |
edaf10af | 235 | else |
ad5bc8cc | 236 | LOW(GPIO_SSC_DOUT); |
237 | ||
111c6934 | 238 | Wait(100); |
ad5bc8cc | 239 | } |
240 | LOW(GPIO_SSC_DOUT); | |
241 | } | |
c71c5ee1 | 242 | |
ad5bc8cc | 243 | /* Send a frame in reader mode, the FPGA must have been set up by |
244 | * LegicRfReader | |
245 | */ | |
246 | static void frame_sendAsReader(uint32_t data, uint8_t bits){ | |
c71c5ee1 | 247 | |
111c6934 | 248 | uint32_t starttime = GET_TICKS, send = 0; |
ad5bc8cc | 249 | uint16_t mask = 1; |
111c6934 | 250 | uint8_t prng1 = legic_prng_count() ; |
251 | ||
252 | // xor lsfr onto data. | |
253 | send = data ^ legic_prng_get_bits(bits); | |
ad5bc8cc | 254 | |
255 | for (; mask < BITMASK(bits); mask <<= 1) { | |
256 | if (send & mask) { | |
76471e5d | 257 | COIL_PULSE(RWD_TIME_1); |
ad5bc8cc | 258 | } else { |
76471e5d | 259 | COIL_PULSE(RWD_TIME_0); |
ad5bc8cc | 260 | } |
dcc10e5e | 261 | } |
e30c654b | 262 | |
76471e5d | 263 | // Final pause to mark the end of the frame |
76471e5d | 264 | COIL_PULSE(0); |
b4a6775b | 265 | |
111c6934 | 266 | stop_send_frame_us = GET_TICKS; |
ad5bc8cc | 267 | uint8_t cmdbytes[] = { |
111c6934 | 268 | BYTEx(data, 0), |
269 | BYTEx(data, 1), | |
b4a6775b | 270 | bits, |
ad5bc8cc | 271 | prng1, |
272 | legic_prng_count() | |
273 | }; | |
274 | LogTrace(cmdbytes, sizeof(cmdbytes), starttime, stop_send_frame_us, NULL, TRUE); | |
dcc10e5e | 275 | } |
276 | ||
277 | /* Receive a frame from the card in reader emulation mode, the FPGA and | |
ad5bc8cc | 278 | * timer must have been set up by LegicRfReader and frame_sendAsReader. |
e30c654b | 279 | * |
dcc10e5e | 280 | * The LEGIC RF protocol from card to reader does not include explicit |
281 | * frame start/stop information or length information. The reader must | |
282 | * know beforehand how many bits it wants to receive. (Notably: a card | |
283 | * sending a stream of 0-bits is indistinguishable from no card present.) | |
e30c654b | 284 | * |
dcc10e5e | 285 | * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but |
286 | * I'm not smart enough to use it. Instead I have patched hi_read_tx to output | |
287 | * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look | |
288 | * for edges. Count the edges in each bit interval. If they are approximately | |
289 | * 0 this was a 0-bit, if they are approximately equal to the number of edges | |
290 | * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the | |
ad5bc8cc | 291 | * timer that's still running from frame_sendAsReader in order to get a synchronization |
dcc10e5e | 292 | * with the frame that we just sent. |
e30c654b | 293 | * |
294 | * FIXME: Because we're relying on the hysteresis to just do the right thing | |
dcc10e5e | 295 | * the range is severely reduced (and you'll probably also need a good antenna). |
e30c654b | 296 | * So this should be fixed some time in the future for a proper receiver. |
dcc10e5e | 297 | */ |
111c6934 | 298 | static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) { |
ad5bc8cc | 299 | |
b4a6775b | 300 | frame_clean(f); |
3612a8a8 | 301 | |
b4a6775b | 302 | uint8_t i = 0, edges = 0; |
303 | uint16_t lsfr = 0; | |
db44e049 | 304 | uint32_t the_bit = 1, next_bit_at = 0, data; |
b4a6775b | 305 | int old_level = 0, level = 0; |
ad5bc8cc | 306 | |
c71c5ee1 | 307 | if(bits > 32) bits = 32; |
dcc10e5e | 308 | |
db44e049 | 309 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; |
310 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
311 | ||
b4a6775b | 312 | // calibrate the prng. |
313 | legic_prng_forward(2); | |
ad5bc8cc | 314 | |
315 | // precompute the cipher | |
b4a6775b | 316 | uint8_t prng_before = legic_prng_count() ; |
317 | ||
111c6934 | 318 | lsfr = legic_prng_get_bits(bits); |
e30c654b | 319 | |
b4a6775b | 320 | data = lsfr; |
321 | ||
b4a6775b | 322 | //FIXED time between sending frame and now listening frame. 330us |
111c6934 | 323 | Wait( TAG_FRAME_WAIT ); |
324 | ||
325 | uint32_t starttime = GET_TICKS; | |
326 | ||
327 | next_bit_at = GET_TICKS + TAG_BIT_PERIOD; | |
ad5bc8cc | 328 | |
ad5bc8cc | 329 | for( i = 0; i < bits; i++) { |
dcc10e5e | 330 | edges = 0; |
111c6934 | 331 | while ( GET_TICKS < next_bit_at) { |
ad5bc8cc | 332 | |
b4a6775b | 333 | level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); |
ad5bc8cc | 334 | |
335 | if (level != old_level) | |
b4a6775b | 336 | ++edges; |
337 | ||
dcc10e5e | 338 | old_level = level; |
339 | } | |
ad5bc8cc | 340 | next_bit_at += TAG_BIT_PERIOD; |
3612a8a8 | 341 | |
ad5bc8cc | 342 | // We expect 42 edges == ONE |
111c6934 | 343 | if(edges > 20 && edges < 60) { |
8e220a91 | 344 | data ^= the_bit; |
111c6934 | 345 | } |
dcc10e5e | 346 | the_bit <<= 1; |
347 | } | |
e30c654b | 348 | |
b4a6775b | 349 | // output |
dcc10e5e | 350 | f->data = data; |
351 | f->bits = bits; | |
f7b42573 | 352 | |
353 | // log | |
111c6934 | 354 | stop_send_frame_us = GET_TICKS; |
db44e049 | 355 | |
ad5bc8cc | 356 | uint8_t cmdbytes[] = { |
111c6934 | 357 | BYTEx(data,0), |
358 | BYTEx(data,1), | |
b4a6775b | 359 | bits, |
111c6934 | 360 | BYTEx(lsfr,0), |
361 | BYTEx(lsfr,1), | |
b4a6775b | 362 | prng_before, |
111c6934 | 363 | legic_prng_count() |
ad5bc8cc | 364 | }; |
db44e049 | 365 | LogTrace(cmdbytes, sizeof(cmdbytes), starttime, stop_send_frame_us, NULL, FALSE); |
a7247d85 | 366 | } |
367 | ||
c71c5ee1 | 368 | // Setup pm3 as a Legic Reader |
f7b42573 | 369 | static uint32_t perform_setup_phase_rwd(uint8_t iv) { |
370 | ||
371 | // Switch on carrier and let the tag charge for 1ms | |
ad5bc8cc | 372 | HIGH(GPIO_SSC_DOUT); |
111c6934 | 373 | SpinDelay(40); |
ad5bc8cc | 374 | |
375 | ResetUSClock(); | |
376 | ||
f7b42573 | 377 | // no keystream yet |
c71c5ee1 | 378 | legic_prng_init(0); |
f7b42573 | 379 | |
ad5bc8cc | 380 | // send IV handshake |
381 | frame_sendAsReader(iv, 7); | |
382 | ||
383 | // Now both tag and reader has same IV. Prng can start. | |
3612a8a8 | 384 | legic_prng_init(iv); |
e30c654b | 385 | |
111c6934 | 386 | frame_receiveAsReader(¤t_frame, 6); |
f7b42573 | 387 | |
ad5bc8cc | 388 | // fixed delay before sending ack. |
111c6934 | 389 | Wait(TAG_FRAME_WAIT); |
390 | legic_prng_forward(4); | |
ad5bc8cc | 391 | |
f7b42573 | 392 | // Send obsfuscated acknowledgment frame. |
ad5bc8cc | 393 | // 0x19 = 0x18 MIM22, 0x01 LSB READCMD |
394 | // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD | |
395 | switch ( current_frame.data ) { | |
396 | case 0x0D: | |
397 | frame_sendAsReader(0x19, 6); | |
398 | break; | |
399 | case 0x1D: | |
400 | case 0x3D: | |
401 | frame_sendAsReader(0x39, 6); | |
402 | break; | |
403 | default: | |
404 | break; | |
f7b42573 | 405 | } |
8e220a91 | 406 | return current_frame.data; |
2561caa2 | 407 | } |
408 | ||
ad5bc8cc | 409 | static void LegicCommonInit(void) { |
7cc204bf | 410 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
b4a6775b | 411 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); |
dcc10e5e | 412 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
413 | FpgaSetupSsc(); | |
e30c654b | 414 | |
dcc10e5e | 415 | /* Bitbang the transmitter */ |
ad5bc8cc | 416 | LOW(GPIO_SSC_DOUT); |
dcc10e5e | 417 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
418 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
e30c654b | 419 | |
c71c5ee1 | 420 | // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier. |
421 | cardmem = BigBuf_malloc(LEGIC_CARD_MEMSIZE); | |
422 | memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE); | |
423 | ||
424 | clear_trace(); | |
425 | set_tracing(TRUE); | |
8e220a91 | 426 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
ad5bc8cc | 427 | |
428 | StartCountUS(); | |
8e220a91 | 429 | } |
430 | ||
111c6934 | 431 | // Switch off carrier, make sure tag is reset |
c71c5ee1 | 432 | static void switch_off_tag_rwd(void) { |
ad5bc8cc | 433 | LOW(GPIO_SSC_DOUT); |
8e220a91 | 434 | SpinDelay(10); |
8e220a91 | 435 | WDT_HIT(); |
436 | } | |
c71c5ee1 | 437 | |
f7b42573 | 438 | // calculate crc4 for a legic READ command |
439 | // 5,8,10 address size. | |
111c6934 | 440 | static uint32_t legic4Crc(uint8_t legicCmd, uint16_t byte_index, uint8_t value, uint8_t cmd_sz) { |
ad5bc8cc | 441 | crc_clear(&legic_crc); |
111c6934 | 442 | uint32_t temp = (value << cmd_sz) | (byte_index << 1) | legicCmd; |
ad5bc8cc | 443 | crc_update(&legic_crc, temp, cmd_sz + 8 ); |
8e220a91 | 444 | return crc_finish(&legic_crc); |
445 | } | |
446 | ||
f7b42573 | 447 | int legic_read_byte(int byte_index, int cmd_sz) { |
8e220a91 | 448 | |
ad5bc8cc | 449 | uint8_t byte = 0, crc = 0; |
b4a6775b | 450 | uint32_t calcCrc = 0; |
f7b42573 | 451 | uint32_t cmd = (byte_index << 1) | LEGIC_READ; |
c71c5ee1 | 452 | |
111c6934 | 453 | Wait(TAG_FRAME_WAIT); |
b4a6775b | 454 | |
ad5bc8cc | 455 | frame_sendAsReader(cmd, cmd_sz); |
111c6934 | 456 | frame_receiveAsReader(¤t_frame, 12); |
c71c5ee1 | 457 | |
111c6934 | 458 | byte = BYTEx(current_frame.data, 0); |
459 | calcCrc = legic4Crc(LEGIC_READ, byte_index, byte, cmd_sz); | |
460 | crc = BYTEx(current_frame.data, 1); | |
65c2d21d | 461 | |
c71c5ee1 | 462 | if( calcCrc != crc ) { |
463 | Dbprintf("!!! crc mismatch: expected %x but got %x !!!", calcCrc, crc); | |
a2b1414f | 464 | return -1; |
465 | } | |
111c6934 | 466 | legic_prng_forward(4); |
8e220a91 | 467 | return byte; |
468 | } | |
469 | ||
c71c5ee1 | 470 | /* |
471 | * - assemble a write_cmd_frame with crc and send it | |
472 | * - wait until the tag sends back an ACK ('1' bit unencrypted) | |
473 | * - forward the prng based on the timing | |
8e220a91 | 474 | */ |
3e134b4c | 475 | //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) { |
111c6934 | 476 | int legic_write_byte(uint8_t byte, uint16_t addr, uint8_t addr_sz) { |
c71c5ee1 | 477 | |
478 | //do not write UID, CRC at offset 0-4. | |
111c6934 | 479 | if (addr <= 4) return 0; |
c71c5ee1 | 480 | |
481 | // crc | |
3612a8a8 | 482 | crc_clear(&legic_crc); |
483 | crc_update(&legic_crc, 0, 1); /* CMD_WRITE */ | |
484 | crc_update(&legic_crc, addr, addr_sz); | |
485 | crc_update(&legic_crc, byte, 8); | |
3612a8a8 | 486 | uint32_t crc = crc_finish(&legic_crc); |
c71c5ee1 | 487 | |
111c6934 | 488 | uint32_t crc2 = legic4Crc(LEGIC_WRITE, addr, byte, addr_sz+1); |
489 | if ( crc != crc2 ) | |
490 | Dbprintf("crc is missmatch"); | |
491 | ||
c71c5ee1 | 492 | // send write command |
3612a8a8 | 493 | uint32_t cmd = ((crc <<(addr_sz+1+8)) //CRC |
494 | |(byte <<(addr_sz+1)) //Data | |
495 | |(addr <<1) //Address | |
111c6934 | 496 | | LEGIC_WRITE); //CMD = Write |
497 | ||
3612a8a8 | 498 | uint32_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd |
499 | ||
cc708897 | 500 | legic_prng_forward(2); /* we wait anyways */ |
c71c5ee1 | 501 | |
111c6934 | 502 | Wait(TAG_FRAME_WAIT); |
c71c5ee1 | 503 | |
ad5bc8cc | 504 | frame_sendAsReader(cmd, cmd_sz); |
c71c5ee1 | 505 | |
111c6934 | 506 | // wllm-rbnt doesnt have these |
507 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; | |
508 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
3612a8a8 | 509 | |
c71c5ee1 | 510 | // wait for ack |
511 | int t, old_level = 0, edges = 0; | |
512 | int next_bit_at = 0; | |
3e134b4c | 513 | |
111c6934 | 514 | Wait(TAG_FRAME_WAIT); |
c71c5ee1 | 515 | |
111c6934 | 516 | for( t = 0; t < 80; ++t) { |
3612a8a8 | 517 | edges = 0; |
ad5bc8cc | 518 | next_bit_at += TAG_BIT_PERIOD; |
3612a8a8 | 519 | while(timer->TC_CV < next_bit_at) { |
520 | int level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); | |
111c6934 | 521 | if(level != old_level) |
3612a8a8 | 522 | edges++; |
111c6934 | 523 | |
3612a8a8 | 524 | old_level = level; |
525 | } | |
526 | if(edges > 20 && edges < 60) { /* expected are 42 edges */ | |
527 | int t = timer->TC_CV; | |
ad5bc8cc | 528 | int c = t / TAG_BIT_PERIOD; |
c71c5ee1 | 529 | |
530 | ResetClock(); | |
cc708897 | 531 | legic_prng_forward(c); |
3612a8a8 | 532 | return 0; |
533 | } | |
534 | } | |
c71c5ee1 | 535 | |
536 | ResetClock(); | |
3612a8a8 | 537 | return -1; |
538 | } | |
8e220a91 | 539 | |
cc708897 | 540 | int LegicRfReader(int offset, int bytes, int iv) { |
3e134b4c | 541 | |
111c6934 | 542 | uint16_t byte_index = 0; |
543 | uint8_t cmd_sz = 0; | |
544 | int card_sz = 0; | |
cc708897 | 545 | |
111c6934 | 546 | if ( MF_DBGLEVEL >= 2) |
547 | Dbprintf("setting up legic card, IV = 0x%03.3x", iv); | |
ad5bc8cc | 548 | |
8e220a91 | 549 | LegicCommonInit(); |
550 | ||
cc708897 | 551 | uint32_t tag_type = perform_setup_phase_rwd(iv); |
c71c5ee1 | 552 | |
553 | //we lose to mutch time with dprintf | |
554 | switch_off_tag_rwd(); | |
ad5bc8cc | 555 | |
a2b1414f | 556 | switch(tag_type) { |
3e134b4c | 557 | case 0x0d: |
111c6934 | 558 | if ( MF_DBGLEVEL >= 2) DbpString("MIM22 card found, reading card"); |
3e134b4c | 559 | cmd_sz = 6; |
560 | card_sz = 22; | |
561 | break; | |
a2b1414f | 562 | case 0x1d: |
111c6934 | 563 | if ( MF_DBGLEVEL >= 2) DbpString("MIM256 card found, reading card"); |
3612a8a8 | 564 | cmd_sz = 9; |
a2b1414f | 565 | card_sz = 256; |
566 | break; | |
567 | case 0x3d: | |
111c6934 | 568 | if ( MF_DBGLEVEL >= 2) DbpString("MIM1024 card found, reading card"); |
3612a8a8 | 569 | cmd_sz = 11; |
a2b1414f | 570 | card_sz = 1024; |
571 | break; | |
572 | default: | |
111c6934 | 573 | if ( MF_DBGLEVEL >= 1) Dbprintf("Unknown card format: %x", tag_type); |
ad5bc8cc | 574 | return 1; |
a2b1414f | 575 | } |
111c6934 | 576 | if (bytes == -1) |
a2b1414f | 577 | bytes = card_sz; |
edaf10af | 578 | |
111c6934 | 579 | if (bytes + offset >= card_sz) |
c71c5ee1 | 580 | bytes = card_sz - offset; |
a2b1414f | 581 | |
ad5bc8cc | 582 | // Start setup and read bytes. |
cc708897 | 583 | perform_setup_phase_rwd(iv); |
584 | ||
3612a8a8 | 585 | LED_B_ON(); |
ad5bc8cc | 586 | while (byte_index < bytes) { |
111c6934 | 587 | int r = legic_read_byte(byte_index + offset, cmd_sz); |
ad5bc8cc | 588 | |
589 | if (r == -1 || BUTTON_PRESS()) { | |
c71c5ee1 | 590 | switch_off_tag_rwd(); |
591 | LEDsoff(); | |
592 | if ( MF_DBGLEVEL >= 2) DbpString("operation aborted"); | |
ad5bc8cc | 593 | cmd_send(CMD_ACK,0,0,0,0,0); |
594 | return 1; | |
a2b1414f | 595 | } |
111c6934 | 596 | cardmem[++byte_index] = r; |
597 | //byte_index++; | |
3612a8a8 | 598 | WDT_HIT(); |
2561caa2 | 599 | } |
c71c5ee1 | 600 | |
3612a8a8 | 601 | switch_off_tag_rwd(); |
c71c5ee1 | 602 | LEDsoff(); |
ad5bc8cc | 603 | uint8_t len = (bytes & 0x3FF); |
604 | cmd_send(CMD_ACK,1,len,0,0,0); | |
3612a8a8 | 605 | return 0; |
606 | } | |
607 | ||
cc708897 | 608 | /*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) { |
3e134b4c | 609 | int byte_index=0; |
610 | ||
611 | LED_B_ON(); | |
ad5bc8cc | 612 | perform_setup_phase_rwd(iv); |
3e134b4c | 613 | //legic_prng_forward(2); |
614 | while(byte_index < bytes) { | |
615 | int r; | |
616 | ||
617 | //check if the DCF should be changed | |
618 | if ( (offset == 0x05) && (bytes == 0x02) ) { | |
619 | //write DCF in reverse order (addr 0x06 before 0x05) | |
620 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); | |
621 | //legic_prng_forward(1); | |
622 | if(r == 0) { | |
623 | byte_index++; | |
624 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); | |
625 | } | |
626 | //legic_prng_forward(1); | |
627 | } | |
628 | else { | |
629 | r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue); | |
630 | } | |
631 | if((r != 0) || BUTTON_PRESS()) { | |
632 | Dbprintf("operation aborted @ 0x%03.3x", byte_index); | |
633 | switch_off_tag_rwd(); | |
634 | LED_B_OFF(); | |
635 | LED_C_OFF(); | |
636 | return -1; | |
637 | } | |
638 | ||
639 | WDT_HIT(); | |
640 | byte_index++; | |
641 | if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); | |
642 | } | |
643 | LED_B_OFF(); | |
644 | LED_C_OFF(); | |
645 | DbpString("write successful"); | |
646 | return 0; | |
647 | }*/ | |
648 | ||
cc708897 | 649 | void LegicRfWriter(int offset, int bytes, int iv) { |
650 | ||
ad5bc8cc | 651 | int byte_index = 0, addr_sz = 0; |
117d9ec2 | 652 | |
3612a8a8 | 653 | LegicCommonInit(); |
654 | ||
c71c5ee1 | 655 | if ( MF_DBGLEVEL >= 2) DbpString("setting up legic card"); |
656 | ||
cc708897 | 657 | uint32_t tag_type = perform_setup_phase_rwd(iv); |
c71c5ee1 | 658 | |
8e220a91 | 659 | switch_off_tag_rwd(); |
c71c5ee1 | 660 | |
3612a8a8 | 661 | switch(tag_type) { |
3e134b4c | 662 | case 0x0d: |
663 | if(offset+bytes > 22) { | |
111c6934 | 664 | Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset + bytes); |
3e134b4c | 665 | return; |
666 | } | |
667 | addr_sz = 5; | |
111c6934 | 668 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset + bytes); |
3e134b4c | 669 | break; |
3612a8a8 | 670 | case 0x1d: |
671 | if(offset+bytes > 0x100) { | |
111c6934 | 672 | Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset + bytes); |
3612a8a8 | 673 | return; |
674 | } | |
675 | addr_sz = 8; | |
111c6934 | 676 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset + bytes); |
3612a8a8 | 677 | break; |
678 | case 0x3d: | |
679 | if(offset+bytes > 0x400) { | |
111c6934 | 680 | Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset + bytes); |
3612a8a8 | 681 | return; |
682 | } | |
683 | addr_sz = 10; | |
111c6934 | 684 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset, offset + bytes); |
3612a8a8 | 685 | break; |
686 | default: | |
687 | Dbprintf("No or unknown card found, aborting"); | |
688 | return; | |
689 | } | |
690 | ||
691 | LED_B_ON(); | |
cc708897 | 692 | perform_setup_phase_rwd(iv); |
111c6934 | 693 | int r = 0; |
3612a8a8 | 694 | while(byte_index < bytes) { |
3e134b4c | 695 | |
696 | //check if the DCF should be changed | |
697 | if ( ((byte_index+offset) == 0x05) && (bytes >= 0x02) ) { | |
698 | //write DCF in reverse order (addr 0x06 before 0x05) | |
c71c5ee1 | 699 | r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), addr_sz); |
3e134b4c | 700 | |
701 | // write second byte on success... | |
702 | if(r == 0) { | |
703 | byte_index++; | |
c71c5ee1 | 704 | r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), addr_sz); |
3e134b4c | 705 | } |
706 | } | |
707 | else { | |
c71c5ee1 | 708 | r = legic_write_byte(cardmem[byte_index+offset], byte_index+offset, addr_sz); |
3e134b4c | 709 | } |
c71c5ee1 | 710 | |
111c6934 | 711 | if ((r != 0) || BUTTON_PRESS()) { |
3612a8a8 | 712 | Dbprintf("operation aborted @ 0x%03.3x", byte_index); |
713 | switch_off_tag_rwd(); | |
c71c5ee1 | 714 | LEDsoff(); |
3612a8a8 | 715 | return; |
716 | } | |
3e134b4c | 717 | |
718 | WDT_HIT(); | |
719 | byte_index++; | |
3e134b4c | 720 | } |
c71c5ee1 | 721 | LEDsoff(); |
722 | if ( MF_DBGLEVEL >= 1) DbpString("write successful"); | |
3e134b4c | 723 | } |
724 | ||
cc708897 | 725 | void LegicRfRawWriter(int address, int byte, int iv) { |
c71c5ee1 | 726 | |
727 | int byte_index = 0, addr_sz = 0; | |
3e134b4c | 728 | |
729 | LegicCommonInit(); | |
730 | ||
c71c5ee1 | 731 | if ( MF_DBGLEVEL >= 2) DbpString("setting up legic card"); |
732 | ||
cc708897 | 733 | uint32_t tag_type = perform_setup_phase_rwd(iv); |
c71c5ee1 | 734 | |
3e134b4c | 735 | switch_off_tag_rwd(); |
c71c5ee1 | 736 | |
3e134b4c | 737 | switch(tag_type) { |
738 | case 0x0d: | |
cc708897 | 739 | if(address > 22) { |
740 | Dbprintf("Error: can not write to 0x%03.3x on MIM22", address); | |
3e134b4c | 741 | return; |
742 | } | |
743 | addr_sz = 5; | |
c71c5ee1 | 744 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte); |
3e134b4c | 745 | break; |
746 | case 0x1d: | |
cc708897 | 747 | if(address > 0x100) { |
748 | Dbprintf("Error: can not write to 0x%03.3x on MIM256", address); | |
3e134b4c | 749 | return; |
750 | } | |
751 | addr_sz = 8; | |
c71c5ee1 | 752 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte); |
3e134b4c | 753 | break; |
754 | case 0x3d: | |
cc708897 | 755 | if(address > 0x400) { |
756 | Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address); | |
3e134b4c | 757 | return; |
758 | } | |
759 | addr_sz = 10; | |
c71c5ee1 | 760 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address, byte); |
3e134b4c | 761 | break; |
762 | default: | |
763 | Dbprintf("No or unknown card found, aborting"); | |
764 | return; | |
765 | } | |
c71c5ee1 | 766 | |
cc708897 | 767 | Dbprintf("integer value: %d address: %d addr_sz: %d", byte, address, addr_sz); |
3e134b4c | 768 | LED_B_ON(); |
c71c5ee1 | 769 | |
cc708897 | 770 | perform_setup_phase_rwd(iv); |
111c6934 | 771 | |
cc708897 | 772 | int r = legic_write_byte(byte, address, addr_sz); |
3e134b4c | 773 | |
774 | if((r != 0) || BUTTON_PRESS()) { | |
775 | Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index, r); | |
776 | switch_off_tag_rwd(); | |
c71c5ee1 | 777 | LEDsoff(); |
3e134b4c | 778 | return; |
3612a8a8 | 779 | } |
3612a8a8 | 780 | |
c71c5ee1 | 781 | LEDsoff(); |
782 | if ( MF_DBGLEVEL >= 1) DbpString("write successful"); | |
783 | } | |
3612a8a8 | 784 | |
c71c5ee1 | 785 | /* Handle (whether to respond) a frame in tag mode |
786 | * Only called when simulating a tag. | |
787 | */ | |
3612a8a8 | 788 | static void frame_handle_tag(struct legic_frame const * const f) |
789 | { | |
117d9ec2 | 790 | uint8_t *BigBuf = BigBuf_get_addr(); |
791 | ||
3612a8a8 | 792 | /* First Part of Handshake (IV) */ |
793 | if(f->bits == 7) { | |
c71c5ee1 | 794 | |
3612a8a8 | 795 | LED_C_ON(); |
c71c5ee1 | 796 | |
ad5bc8cc | 797 | // Reset prng timer |
798 | Reset(prng_timer); | |
c71c5ee1 | 799 | |
3612a8a8 | 800 | legic_prng_init(f->data); |
ad5bc8cc | 801 | frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1B */ |
3612a8a8 | 802 | legic_state = STATE_IV; |
803 | legic_read_count = 0; | |
804 | legic_prng_bc = 0; | |
805 | legic_prng_iv = f->data; | |
806 | ||
111c6934 | 807 | |
c71c5ee1 | 808 | ResetClock(); |
111c6934 | 809 | Wait(280); |
3612a8a8 | 810 | return; |
3612a8a8 | 811 | } |
812 | ||
813 | /* 0x19==??? */ | |
814 | if(legic_state == STATE_IV) { | |
cc708897 | 815 | int local_key = get_key_stream(3, 6); |
816 | int xored = 0x39 ^ local_key; | |
817 | if((f->bits == 6) && (f->data == xored)) { | |
3612a8a8 | 818 | legic_state = STATE_CON; |
819 | ||
c71c5ee1 | 820 | ResetClock(); |
111c6934 | 821 | Wait(200); |
3612a8a8 | 822 | return; |
111c6934 | 823 | |
824 | } else { | |
3612a8a8 | 825 | legic_state = STATE_DISCON; |
826 | LED_C_OFF(); | |
cc708897 | 827 | Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored); |
3612a8a8 | 828 | return; |
829 | } | |
830 | } | |
831 | ||
832 | /* Read */ | |
833 | if(f->bits == 11) { | |
834 | if(legic_state == STATE_CON) { | |
cc708897 | 835 | int key = get_key_stream(2, 11); //legic_phase_drift, 11); |
3612a8a8 | 836 | int addr = f->data ^ key; addr = addr >> 1; |
117d9ec2 | 837 | int data = BigBuf[addr]; |
111c6934 | 838 | int hash = legic4Crc(LEGIC_READ, addr, data, 11) << 8; |
117d9ec2 | 839 | BigBuf[OFFSET_LOG+legic_read_count] = (uint8_t)addr; |
3612a8a8 | 840 | legic_read_count++; |
841 | ||
842 | //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c); | |
843 | legic_prng_forward(legic_reqresp_drift); | |
844 | ||
845 | frame_send_tag(hash | data, 12, 1); | |
846 | ||
c71c5ee1 | 847 | ResetClock(); |
cc708897 | 848 | legic_prng_forward(2); |
111c6934 | 849 | Wait(180); |
3612a8a8 | 850 | return; |
851 | } | |
852 | } | |
853 | ||
854 | /* Write */ | |
855 | if(f->bits == 23) { | |
856 | int key = get_key_stream(-1, 23); //legic_frame_drift, 23); | |
857 | int addr = f->data ^ key; addr = addr >> 1; addr = addr & 0x3ff; | |
858 | int data = f->data ^ key; data = data >> 11; data = data & 0xff; | |
859 | ||
860 | /* write command */ | |
861 | legic_state = STATE_DISCON; | |
862 | LED_C_OFF(); | |
863 | Dbprintf("write - addr: %x, data: %x", addr, data); | |
864 | return; | |
865 | } | |
866 | ||
867 | if(legic_state != STATE_DISCON) { | |
868 | Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count); | |
869 | int i; | |
870 | Dbprintf("IV: %03.3x", legic_prng_iv); | |
871 | for(i = 0; i<legic_read_count; i++) { | |
117d9ec2 | 872 | Dbprintf("Read Nb: %u, Addr: %u", i, BigBuf[OFFSET_LOG+i]); |
3612a8a8 | 873 | } |
874 | ||
875 | for(i = -1; i<legic_read_count; i++) { | |
876 | uint32_t t; | |
117d9ec2 | 877 | t = BigBuf[OFFSET_LOG+256+i*4]; |
878 | t |= BigBuf[OFFSET_LOG+256+i*4+1] << 8; | |
879 | t |= BigBuf[OFFSET_LOG+256+i*4+2] <<16; | |
880 | t |= BigBuf[OFFSET_LOG+256+i*4+3] <<24; | |
3612a8a8 | 881 | |
882 | Dbprintf("Cycles: %u, Frame Length: %u, Time: %u", | |
117d9ec2 | 883 | BigBuf[OFFSET_LOG+128+i], |
884 | BigBuf[OFFSET_LOG+384+i], | |
3612a8a8 | 885 | t); |
886 | } | |
887 | } | |
888 | legic_state = STATE_DISCON; | |
889 | legic_read_count = 0; | |
890 | SpinDelay(10); | |
891 | LED_C_OFF(); | |
892 | return; | |
893 | } | |
894 | ||
895 | /* Read bit by bit untill full frame is received | |
896 | * Call to process frame end answer | |
897 | */ | |
c71c5ee1 | 898 | static void emit(int bit) { |
899 | ||
900 | switch (bit) { | |
901 | case 1: | |
902 | frame_append_bit(¤t_frame, 1); | |
903 | break; | |
904 | case 0: | |
905 | frame_append_bit(¤t_frame, 0); | |
906 | break; | |
907 | default: | |
908 | if(current_frame.bits <= 4) { | |
909 | frame_clean(¤t_frame); | |
910 | } else { | |
911 | frame_handle_tag(¤t_frame); | |
912 | frame_clean(¤t_frame); | |
913 | } | |
914 | WDT_HIT(); | |
915 | break; | |
916 | } | |
3612a8a8 | 917 | } |
918 | ||
919 | void LegicRfSimulate(int phase, int frame, int reqresp) | |
920 | { | |
921 | /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode, | |
922 | * modulation mode set to 212kHz subcarrier. We are getting the incoming raw | |
923 | * envelope waveform on DIN and should send our response on DOUT. | |
924 | * | |
925 | * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll | |
926 | * measure the time between two rising edges on DIN, and no encoding on the | |
927 | * subcarrier from card to reader, so we'll just shift out our verbatim data | |
928 | * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear, | |
929 | * seems to be 300us-ish. | |
930 | */ | |
931 | ||
c71c5ee1 | 932 | legic_phase_drift = phase; |
933 | legic_frame_drift = frame; | |
934 | legic_reqresp_drift = reqresp; | |
935 | ||
936 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
937 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
938 | FpgaSetupSsc(); | |
939 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K); | |
940 | ||
941 | /* Bitbang the receiver */ | |
942 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; | |
943 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
944 | ||
ad5bc8cc | 945 | //setup_timer(); |
c71c5ee1 | 946 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
947 | ||
948 | int old_level = 0; | |
949 | int active = 0; | |
950 | legic_state = STATE_DISCON; | |
951 | ||
952 | LED_B_ON(); | |
953 | DbpString("Starting Legic emulator, press button to end"); | |
3612a8a8 | 954 | |
c71c5ee1 | 955 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
956 | int level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); | |
957 | int time = timer->TC_CV; | |
958 | ||
959 | if(level != old_level) { | |
960 | if(level == 1) { | |
961 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
962 | ||
963 | if (FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) { | |
964 | /* 1 bit */ | |
965 | emit(1); | |
966 | active = 1; | |
967 | LED_A_ON(); | |
968 | } else if (FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) { | |
969 | /* 0 bit */ | |
970 | emit(0); | |
971 | active = 1; | |
972 | LED_A_ON(); | |
973 | } else if (active) { | |
974 | /* invalid */ | |
975 | emit(-1); | |
976 | active = 0; | |
977 | LED_A_OFF(); | |
978 | } | |
979 | } | |
980 | } | |
3612a8a8 | 981 | |
c71c5ee1 | 982 | /* Frame end */ |
983 | if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) { | |
984 | emit(-1); | |
985 | active = 0; | |
986 | LED_A_OFF(); | |
987 | } | |
a2b1414f | 988 | |
c71c5ee1 | 989 | if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) { |
990 | timer->TC_CCR = AT91C_TC_CLKDIS; | |
991 | } | |
992 | ||
993 | old_level = level; | |
994 | WDT_HIT(); | |
995 | } | |
996 | if ( MF_DBGLEVEL >= 1) DbpString("Stopped"); | |
997 | LEDsoff(); | |
998 | } | |
3e134b4c | 999 | |
1000 | //----------------------------------------------------------------------------- | |
1001 | //----------------------------------------------------------------------------- | |
1002 | ||
1003 | ||
1004 | //----------------------------------------------------------------------------- | |
1005 | // Code up a string of octets at layer 2 (including CRC, we don't generate | |
1006 | // that here) so that they can be transmitted to the reader. Doesn't transmit | |
1007 | // them yet, just leaves them ready to send in ToSend[]. | |
1008 | //----------------------------------------------------------------------------- | |
1009 | // static void CodeLegicAsTag(const uint8_t *cmd, int len) | |
1010 | // { | |
1011 | // int i; | |
1012 | ||
1013 | // ToSendReset(); | |
1014 | ||
1015 | // // Transmit a burst of ones, as the initial thing that lets the | |
1016 | // // reader get phase sync. This (TR1) must be > 80/fs, per spec, | |
1017 | // // but tag that I've tried (a Paypass) exceeds that by a fair bit, | |
1018 | // // so I will too. | |
1019 | // for(i = 0; i < 20; i++) { | |
1020 | // ToSendStuffBit(1); | |
1021 | // ToSendStuffBit(1); | |
1022 | // ToSendStuffBit(1); | |
1023 | // ToSendStuffBit(1); | |
1024 | // } | |
1025 | ||
1026 | // // Send SOF. | |
1027 | // for(i = 0; i < 10; i++) { | |
1028 | // ToSendStuffBit(0); | |
1029 | // ToSendStuffBit(0); | |
1030 | // ToSendStuffBit(0); | |
1031 | // ToSendStuffBit(0); | |
1032 | // } | |
1033 | // for(i = 0; i < 2; i++) { | |
1034 | // ToSendStuffBit(1); | |
1035 | // ToSendStuffBit(1); | |
1036 | // ToSendStuffBit(1); | |
1037 | // ToSendStuffBit(1); | |
1038 | // } | |
1039 | ||
1040 | // for(i = 0; i < len; i++) { | |
1041 | // int j; | |
1042 | // uint8_t b = cmd[i]; | |
1043 | ||
1044 | // // Start bit | |
1045 | // ToSendStuffBit(0); | |
1046 | // ToSendStuffBit(0); | |
1047 | // ToSendStuffBit(0); | |
1048 | // ToSendStuffBit(0); | |
1049 | ||
1050 | // // Data bits | |
1051 | // for(j = 0; j < 8; j++) { | |
1052 | // if(b & 1) { | |
1053 | // ToSendStuffBit(1); | |
1054 | // ToSendStuffBit(1); | |
1055 | // ToSendStuffBit(1); | |
1056 | // ToSendStuffBit(1); | |
1057 | // } else { | |
1058 | // ToSendStuffBit(0); | |
1059 | // ToSendStuffBit(0); | |
1060 | // ToSendStuffBit(0); | |
1061 | // ToSendStuffBit(0); | |
1062 | // } | |
1063 | // b >>= 1; | |
1064 | // } | |
1065 | ||
1066 | // // Stop bit | |
1067 | // ToSendStuffBit(1); | |
1068 | // ToSendStuffBit(1); | |
1069 | // ToSendStuffBit(1); | |
1070 | // ToSendStuffBit(1); | |
1071 | // } | |
1072 | ||
1073 | // // Send EOF. | |
1074 | // for(i = 0; i < 10; i++) { | |
1075 | // ToSendStuffBit(0); | |
1076 | // ToSendStuffBit(0); | |
1077 | // ToSendStuffBit(0); | |
1078 | // ToSendStuffBit(0); | |
1079 | // } | |
1080 | // for(i = 0; i < 2; i++) { | |
1081 | // ToSendStuffBit(1); | |
1082 | // ToSendStuffBit(1); | |
1083 | // ToSendStuffBit(1); | |
1084 | // ToSendStuffBit(1); | |
1085 | // } | |
1086 | ||
1087 | // // Convert from last byte pos to length | |
1088 | // ToSendMax++; | |
1089 | // } | |
1090 | ||
1091 | //----------------------------------------------------------------------------- | |
1092 | // The software UART that receives commands from the reader, and its state | |
1093 | // variables. | |
1094 | //----------------------------------------------------------------------------- | |
1095 | static struct { | |
1096 | enum { | |
1097 | STATE_UNSYNCD, | |
1098 | STATE_GOT_FALLING_EDGE_OF_SOF, | |
1099 | STATE_AWAITING_START_BIT, | |
1100 | STATE_RECEIVING_DATA | |
1101 | } state; | |
1102 | uint16_t shiftReg; | |
1103 | int bitCnt; | |
1104 | int byteCnt; | |
1105 | int byteCntMax; | |
1106 | int posCnt; | |
1107 | uint8_t *output; | |
1108 | } Uart; | |
1109 | ||
1110 | /* Receive & handle a bit coming from the reader. | |
1111 | * | |
1112 | * This function is called 4 times per bit (every 2 subcarrier cycles). | |
1113 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us | |
1114 | * | |
1115 | * LED handling: | |
1116 | * LED A -> ON once we have received the SOF and are expecting the rest. | |
1117 | * LED A -> OFF once we have received EOF or are in error state or unsynced | |
1118 | * | |
1119 | * Returns: true if we received a EOF | |
1120 | * false if we are still waiting for some more | |
1121 | */ | |
1122 | // static RAMFUNC int HandleLegicUartBit(uint8_t bit) | |
1123 | // { | |
1124 | // switch(Uart.state) { | |
1125 | // case STATE_UNSYNCD: | |
1126 | // if(!bit) { | |
1127 | // // we went low, so this could be the beginning of an SOF | |
1128 | // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; | |
1129 | // Uart.posCnt = 0; | |
1130 | // Uart.bitCnt = 0; | |
1131 | // } | |
1132 | // break; | |
1133 | ||
1134 | // case STATE_GOT_FALLING_EDGE_OF_SOF: | |
1135 | // Uart.posCnt++; | |
1136 | // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit | |
1137 | // if(bit) { | |
1138 | // if(Uart.bitCnt > 9) { | |
1139 | // // we've seen enough consecutive | |
1140 | // // zeros that it's a valid SOF | |
1141 | // Uart.posCnt = 0; | |
1142 | // Uart.byteCnt = 0; | |
1143 | // Uart.state = STATE_AWAITING_START_BIT; | |
1144 | // LED_A_ON(); // Indicate we got a valid SOF | |
1145 | // } else { | |
1146 | // // didn't stay down long enough | |
1147 | // // before going high, error | |
1148 | // Uart.state = STATE_UNSYNCD; | |
1149 | // } | |
1150 | // } else { | |
1151 | // // do nothing, keep waiting | |
1152 | // } | |
1153 | // Uart.bitCnt++; | |
1154 | // } | |
1155 | // if(Uart.posCnt >= 4) Uart.posCnt = 0; | |
1156 | // if(Uart.bitCnt > 12) { | |
1157 | // // Give up if we see too many zeros without | |
1158 | // // a one, too. | |
1159 | // LED_A_OFF(); | |
1160 | // Uart.state = STATE_UNSYNCD; | |
1161 | // } | |
1162 | // break; | |
1163 | ||
1164 | // case STATE_AWAITING_START_BIT: | |
1165 | // Uart.posCnt++; | |
1166 | // if(bit) { | |
1167 | // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs | |
1168 | // // stayed high for too long between | |
1169 | // // characters, error | |
1170 | // Uart.state = STATE_UNSYNCD; | |
1171 | // } | |
1172 | // } else { | |
1173 | // // falling edge, this starts the data byte | |
1174 | // Uart.posCnt = 0; | |
1175 | // Uart.bitCnt = 0; | |
1176 | // Uart.shiftReg = 0; | |
1177 | // Uart.state = STATE_RECEIVING_DATA; | |
1178 | // } | |
1179 | // break; | |
1180 | ||
1181 | // case STATE_RECEIVING_DATA: | |
1182 | // Uart.posCnt++; | |
1183 | // if(Uart.posCnt == 2) { | |
1184 | // // time to sample a bit | |
1185 | // Uart.shiftReg >>= 1; | |
1186 | // if(bit) { | |
1187 | // Uart.shiftReg |= 0x200; | |
1188 | // } | |
1189 | // Uart.bitCnt++; | |
1190 | // } | |
1191 | // if(Uart.posCnt >= 4) { | |
1192 | // Uart.posCnt = 0; | |
1193 | // } | |
1194 | // if(Uart.bitCnt == 10) { | |
1195 | // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) | |
1196 | // { | |
1197 | // // this is a data byte, with correct | |
1198 | // // start and stop bits | |
1199 | // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; | |
1200 | // Uart.byteCnt++; | |
1201 | ||
1202 | // if(Uart.byteCnt >= Uart.byteCntMax) { | |
1203 | // // Buffer overflowed, give up | |
1204 | // LED_A_OFF(); | |
1205 | // Uart.state = STATE_UNSYNCD; | |
1206 | // } else { | |
1207 | // // so get the next byte now | |
1208 | // Uart.posCnt = 0; | |
1209 | // Uart.state = STATE_AWAITING_START_BIT; | |
1210 | // } | |
1211 | // } else if (Uart.shiftReg == 0x000) { | |
1212 | // // this is an EOF byte | |
1213 | // LED_A_OFF(); // Finished receiving | |
1214 | // Uart.state = STATE_UNSYNCD; | |
1215 | // if (Uart.byteCnt != 0) { | |
1216 | // return TRUE; | |
1217 | // } | |
1218 | // } else { | |
1219 | // // this is an error | |
1220 | // LED_A_OFF(); | |
1221 | // Uart.state = STATE_UNSYNCD; | |
1222 | // } | |
1223 | // } | |
1224 | // break; | |
1225 | ||
1226 | // default: | |
1227 | // LED_A_OFF(); | |
1228 | // Uart.state = STATE_UNSYNCD; | |
1229 | // break; | |
1230 | // } | |
1231 | ||
1232 | // return FALSE; | |
1233 | // } | |
1234 | ||
1235 | ||
f7b42573 | 1236 | static void UartReset() { |
1237 | Uart.byteCntMax = 3; | |
3e134b4c | 1238 | Uart.state = STATE_UNSYNCD; |
1239 | Uart.byteCnt = 0; | |
1240 | Uart.bitCnt = 0; | |
1241 | Uart.posCnt = 0; | |
f7b42573 | 1242 | memset(Uart.output, 0x00, 3); |
3e134b4c | 1243 | } |
1244 | ||
f7b42573 | 1245 | // static void UartInit(uint8_t *data) { |
3e134b4c | 1246 | // Uart.output = data; |
1247 | // UartReset(); | |
1248 | // } | |
1249 | ||
1250 | //============================================================================= | |
1251 | // An LEGIC reader. We take layer two commands, code them | |
1252 | // appropriately, and then send them to the tag. We then listen for the | |
1253 | // tag's response, which we leave in the buffer to be demodulated on the | |
1254 | // PC side. | |
1255 | //============================================================================= | |
1256 | ||
1257 | static struct { | |
1258 | enum { | |
1259 | DEMOD_UNSYNCD, | |
1260 | DEMOD_PHASE_REF_TRAINING, | |
1261 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, | |
1262 | DEMOD_GOT_FALLING_EDGE_OF_SOF, | |
1263 | DEMOD_AWAITING_START_BIT, | |
1264 | DEMOD_RECEIVING_DATA | |
1265 | } state; | |
1266 | int bitCount; | |
1267 | int posCount; | |
1268 | int thisBit; | |
1269 | uint16_t shiftReg; | |
1270 | uint8_t *output; | |
1271 | int len; | |
1272 | int sumI; | |
1273 | int sumQ; | |
1274 | } Demod; | |
1275 | ||
1276 | /* | |
1277 | * Handles reception of a bit from the tag | |
1278 | * | |
1279 | * This function is called 2 times per bit (every 4 subcarrier cycles). | |
1280 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us | |
1281 | * | |
1282 | * LED handling: | |
1283 | * LED C -> ON once we have received the SOF and are expecting the rest. | |
1284 | * LED C -> OFF once we have received EOF or are unsynced | |
1285 | * | |
1286 | * Returns: true if we received a EOF | |
1287 | * false if we are still waiting for some more | |
1288 | * | |
1289 | */ | |
1290 | ||
1291 | #ifndef SUBCARRIER_DETECT_THRESHOLD | |
1292 | # define SUBCARRIER_DETECT_THRESHOLD 8 | |
1293 | #endif | |
1294 | ||
1295 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) | |
1296 | #ifndef CHECK_FOR_SUBCARRIER | |
1297 | # define CHECK_FOR_SUBCARRIER() { v = MAX(ai, aq) + MIN(halfci, halfcq); } | |
1298 | #endif | |
1299 | ||
1300 | // The soft decision on the bit uses an estimate of just the | |
1301 | // quadrant of the reference angle, not the exact angle. | |
1302 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) | |
1303 | #define MAKE_SOFT_DECISION() { \ | |
1304 | if(Demod.sumI > 0) \ | |
1305 | v = ci; \ | |
1306 | else \ | |
1307 | v = -ci; \ | |
1308 | \ | |
1309 | if(Demod.sumQ > 0) \ | |
1310 | v += cq; \ | |
1311 | else \ | |
1312 | v -= cq; \ | |
1313 | \ | |
1314 | } | |
1315 | ||
1316 | static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq) | |
1317 | { | |
1318 | int v = 0; | |
1319 | int ai = ABS(ci); | |
1320 | int aq = ABS(cq); | |
1321 | int halfci = (ai >> 1); | |
1322 | int halfcq = (aq >> 1); | |
1323 | ||
1324 | switch(Demod.state) { | |
1325 | case DEMOD_UNSYNCD: | |
1326 | ||
1327 | CHECK_FOR_SUBCARRIER() | |
1328 | ||
1329 | if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected | |
1330 | Demod.state = DEMOD_PHASE_REF_TRAINING; | |
1331 | Demod.sumI = ci; | |
1332 | Demod.sumQ = cq; | |
1333 | Demod.posCount = 1; | |
1334 | } | |
1335 | break; | |
1336 | ||
1337 | case DEMOD_PHASE_REF_TRAINING: | |
1338 | if(Demod.posCount < 8) { | |
1339 | ||
1340 | CHECK_FOR_SUBCARRIER() | |
1341 | ||
1342 | if (v > SUBCARRIER_DETECT_THRESHOLD) { | |
1343 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. | |
1344 | // note: synchronization time > 80 1/fs | |
1345 | Demod.sumI += ci; | |
1346 | Demod.sumQ += cq; | |
1347 | ++Demod.posCount; | |
1348 | } else { | |
1349 | // subcarrier lost | |
1350 | Demod.state = DEMOD_UNSYNCD; | |
1351 | } | |
1352 | } else { | |
1353 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; | |
1354 | } | |
1355 | break; | |
1356 | ||
1357 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: | |
1358 | ||
1359 | MAKE_SOFT_DECISION() | |
1360 | ||
1361 | //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq ); | |
1362 | // logic '0' detected | |
1363 | if (v <= 0) { | |
1364 | ||
1365 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; | |
1366 | ||
1367 | // start of SOF sequence | |
1368 | Demod.posCount = 0; | |
1369 | } else { | |
1370 | // maximum length of TR1 = 200 1/fs | |
1371 | if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD; | |
1372 | } | |
1373 | ++Demod.posCount; | |
1374 | break; | |
1375 | ||
1376 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: | |
1377 | ++Demod.posCount; | |
1378 | ||
1379 | MAKE_SOFT_DECISION() | |
1380 | ||
1381 | if(v > 0) { | |
1382 | // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges | |
1383 | if(Demod.posCount < 10*2) { | |
1384 | Demod.state = DEMOD_UNSYNCD; | |
1385 | } else { | |
1386 | LED_C_ON(); // Got SOF | |
1387 | Demod.state = DEMOD_AWAITING_START_BIT; | |
1388 | Demod.posCount = 0; | |
1389 | Demod.len = 0; | |
1390 | } | |
1391 | } else { | |
1392 | // low phase of SOF too long (> 12 etu) | |
1393 | if(Demod.posCount > 13*2) { | |
1394 | Demod.state = DEMOD_UNSYNCD; | |
1395 | LED_C_OFF(); | |
1396 | } | |
1397 | } | |
1398 | break; | |
1399 | ||
1400 | case DEMOD_AWAITING_START_BIT: | |
1401 | ++Demod.posCount; | |
1402 | ||
1403 | MAKE_SOFT_DECISION() | |
1404 | ||
1405 | if(v > 0) { | |
1406 | // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs | |
1407 | if(Demod.posCount > 3*2) { | |
1408 | Demod.state = DEMOD_UNSYNCD; | |
1409 | LED_C_OFF(); | |
1410 | } | |
1411 | } else { | |
1412 | // start bit detected | |
1413 | Demod.bitCount = 0; | |
1414 | Demod.posCount = 1; // this was the first half | |
1415 | Demod.thisBit = v; | |
1416 | Demod.shiftReg = 0; | |
1417 | Demod.state = DEMOD_RECEIVING_DATA; | |
1418 | } | |
1419 | break; | |
1420 | ||
1421 | case DEMOD_RECEIVING_DATA: | |
1422 | ||
1423 | MAKE_SOFT_DECISION() | |
1424 | ||
1425 | if(Demod.posCount == 0) { | |
1426 | // first half of bit | |
1427 | Demod.thisBit = v; | |
1428 | Demod.posCount = 1; | |
1429 | } else { | |
1430 | // second half of bit | |
1431 | Demod.thisBit += v; | |
1432 | Demod.shiftReg >>= 1; | |
1433 | // logic '1' | |
1434 | if(Demod.thisBit > 0) | |
1435 | Demod.shiftReg |= 0x200; | |
1436 | ||
1437 | ++Demod.bitCount; | |
1438 | ||
1439 | if(Demod.bitCount == 10) { | |
1440 | ||
1441 | uint16_t s = Demod.shiftReg; | |
1442 | ||
1443 | if((s & 0x200) && !(s & 0x001)) { | |
1444 | // stop bit == '1', start bit == '0' | |
1445 | uint8_t b = (s >> 1); | |
1446 | Demod.output[Demod.len] = b; | |
1447 | ++Demod.len; | |
1448 | Demod.state = DEMOD_AWAITING_START_BIT; | |
1449 | } else { | |
1450 | Demod.state = DEMOD_UNSYNCD; | |
1451 | LED_C_OFF(); | |
1452 | ||
1453 | if(s == 0x000) { | |
1454 | // This is EOF (start, stop and all data bits == '0' | |
1455 | return TRUE; | |
1456 | } | |
1457 | } | |
1458 | } | |
1459 | Demod.posCount = 0; | |
1460 | } | |
1461 | break; | |
1462 | ||
1463 | default: | |
1464 | Demod.state = DEMOD_UNSYNCD; | |
1465 | LED_C_OFF(); | |
1466 | break; | |
1467 | } | |
1468 | return FALSE; | |
1469 | } | |
1470 | ||
1471 | // Clear out the state of the "UART" that receives from the tag. | |
1472 | static void DemodReset() { | |
1473 | Demod.len = 0; | |
1474 | Demod.state = DEMOD_UNSYNCD; | |
1475 | Demod.posCount = 0; | |
1476 | Demod.sumI = 0; | |
1477 | Demod.sumQ = 0; | |
1478 | Demod.bitCount = 0; | |
1479 | Demod.thisBit = 0; | |
1480 | Demod.shiftReg = 0; | |
f7b42573 | 1481 | memset(Demod.output, 0x00, 3); |
3e134b4c | 1482 | } |
1483 | ||
1484 | static void DemodInit(uint8_t *data) { | |
1485 | Demod.output = data; | |
1486 | DemodReset(); | |
1487 | } | |
1488 | ||
1489 | /* | |
1490 | * Demodulate the samples we received from the tag, also log to tracebuffer | |
1491 | * quiet: set to 'TRUE' to disable debug output | |
1492 | */ | |
1493 | #define LEGIC_DMA_BUFFER_SIZE 256 | |
1494 | static void GetSamplesForLegicDemod(int n, bool quiet) | |
1495 | { | |
1496 | int max = 0; | |
1497 | bool gotFrame = FALSE; | |
1498 | int lastRxCounter = LEGIC_DMA_BUFFER_SIZE; | |
1499 | int ci, cq, samples = 0; | |
1500 | ||
1501 | BigBuf_free(); | |
1502 | ||
1503 | // And put the FPGA in the appropriate mode | |
1504 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ); | |
1505 | ||
1506 | // The response (tag -> reader) that we're receiving. | |
1507 | // Set up the demodulator for tag -> reader responses. | |
1508 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1509 | ||
1510 | // The DMA buffer, used to stream samples from the FPGA | |
1511 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE); | |
1512 | int8_t *upTo = dmaBuf; | |
1513 | ||
1514 | // Setup and start DMA. | |
1515 | if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){ | |
1516 | if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); | |
1517 | return; | |
1518 | } | |
1519 | ||
1520 | // Signal field is ON with the appropriate LED: | |
1521 | LED_D_ON(); | |
1522 | for(;;) { | |
1523 | int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; | |
1524 | if(behindBy > max) max = behindBy; | |
1525 | ||
1526 | while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) { | |
1527 | ci = upTo[0]; | |
1528 | cq = upTo[1]; | |
1529 | upTo += 2; | |
1530 | if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) { | |
1531 | upTo = dmaBuf; | |
1532 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
1533 | AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE; | |
1534 | } | |
1535 | lastRxCounter -= 2; | |
1536 | if(lastRxCounter <= 0) | |
1537 | lastRxCounter = LEGIC_DMA_BUFFER_SIZE; | |
1538 | ||
1539 | samples += 2; | |
1540 | ||
1541 | gotFrame = HandleLegicSamplesDemod(ci , cq ); | |
1542 | if ( gotFrame ) | |
1543 | break; | |
1544 | } | |
1545 | ||
1546 | if(samples > n || gotFrame) | |
1547 | break; | |
1548 | } | |
1549 | ||
1550 | FpgaDisableSscDma(); | |
1551 | ||
1552 | if (!quiet && Demod.len == 0) { | |
1553 | Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", | |
1554 | max, | |
1555 | samples, | |
1556 | gotFrame, | |
1557 | Demod.len, | |
1558 | Demod.sumI, | |
1559 | Demod.sumQ | |
1560 | ); | |
1561 | } | |
1562 | ||
1563 | //Tracing | |
1564 | if (Demod.len > 0) { | |
1565 | uint8_t parity[MAX_PARITY_SIZE] = {0x00}; | |
1566 | LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE); | |
1567 | } | |
1568 | } | |
1569 | //----------------------------------------------------------------------------- | |
1570 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1571 | //----------------------------------------------------------------------------- | |
1572 | static void TransmitForLegic(void) | |
1573 | { | |
1574 | int c; | |
1575 | ||
1576 | FpgaSetupSsc(); | |
1577 | ||
1578 | while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) | |
1579 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
1580 | ||
1581 | // Signal field is ON with the appropriate Red LED | |
1582 | LED_D_ON(); | |
1583 | ||
1584 | // Signal we are transmitting with the Green LED | |
1585 | LED_B_ON(); | |
1586 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
1587 | ||
1588 | for(c = 0; c < 10;) { | |
1589 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1590 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
1591 | c++; | |
1592 | } | |
1593 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1594 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1595 | (void)r; | |
1596 | } | |
1597 | WDT_HIT(); | |
1598 | } | |
1599 | ||
1600 | c = 0; | |
1601 | for(;;) { | |
1602 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1603 | AT91C_BASE_SSC->SSC_THR = ToSend[c]; | |
1604 | legic_prng_forward(1); // forward the lfsr | |
1605 | c++; | |
1606 | if(c >= ToSendMax) { | |
1607 | break; | |
1608 | } | |
1609 | } | |
1610 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1611 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1612 | (void)r; | |
1613 | } | |
1614 | WDT_HIT(); | |
1615 | } | |
1616 | LED_B_OFF(); | |
1617 | } | |
1618 | ||
1619 | ||
1620 | //----------------------------------------------------------------------------- | |
1621 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], | |
1622 | // so that it is ready to transmit to the tag using TransmitForLegic(). | |
1623 | //----------------------------------------------------------------------------- | |
bf2cd644 | 1624 | static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) |
3e134b4c | 1625 | { |
1626 | int i, j; | |
1627 | uint8_t b; | |
1628 | ||
1629 | ToSendReset(); | |
1630 | ||
1631 | // Send SOF | |
bf2cd644 | 1632 | for(i = 0; i < 7; i++) |
3e134b4c | 1633 | ToSendStuffBit(1); |
3e134b4c | 1634 | |
bf2cd644 | 1635 | |
1636 | for(i = 0; i < cmdlen; i++) { | |
3e134b4c | 1637 | // Start bit |
1638 | ToSendStuffBit(0); | |
1639 | ||
1640 | // Data bits | |
1641 | b = cmd[i]; | |
bf2cd644 | 1642 | for(j = 0; j < bits; j++) { |
3e134b4c | 1643 | if(b & 1) { |
1644 | ToSendStuffBit(1); | |
1645 | } else { | |
1646 | ToSendStuffBit(0); | |
1647 | } | |
1648 | b >>= 1; | |
1649 | } | |
1650 | } | |
1651 | ||
1652 | // Convert from last character reference to length | |
1653 | ++ToSendMax; | |
1654 | } | |
1655 | ||
1656 | /** | |
1657 | Convenience function to encode, transmit and trace Legic comms | |
1658 | **/ | |
bf2cd644 | 1659 | static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) |
3e134b4c | 1660 | { |
bf2cd644 | 1661 | CodeLegicBitsAsReader(cmd, cmdlen, bits); |
3e134b4c | 1662 | TransmitForLegic(); |
1663 | if (tracing) { | |
1664 | uint8_t parity[1] = {0x00}; | |
3e82f956 | 1665 | LogTrace(cmd, cmdlen, 0, 0, parity, TRUE); |
3e134b4c | 1666 | } |
1667 | } | |
1668 | ||
1669 | int ice_legic_select_card() | |
1670 | { | |
1671 | //int cmd_size=0, card_size=0; | |
bf2cd644 | 1672 | uint8_t wakeup[] = { 0x7F }; |
3e134b4c | 1673 | uint8_t getid[] = {0x19}; |
1674 | ||
ad5bc8cc | 1675 | //legic_prng_init(SESSION_IV); |
3e134b4c | 1676 | |
1677 | // first, wake up the tag, 7bits | |
bf2cd644 | 1678 | CodeAndTransmitLegicAsReader(wakeup, sizeof(wakeup), 7); |
3e134b4c | 1679 | |
1680 | GetSamplesForLegicDemod(1000, TRUE); | |
1681 | ||
ad5bc8cc | 1682 | //frame_receiveAsReader(¤t_frame, 6, 1); |
3e134b4c | 1683 | |
1684 | legic_prng_forward(1); /* we wait anyways */ | |
1685 | ||
1686 | //while(timer->TC_CV < 387) ; /* ~ 258us */ | |
ad5bc8cc | 1687 | //frame_sendAsReader(0x19, 6); |
bf2cd644 | 1688 | CodeAndTransmitLegicAsReader(getid, sizeof(getid), 8); |
3e134b4c | 1689 | GetSamplesForLegicDemod(1000, TRUE); |
1690 | ||
1691 | //if (Demod.len < 14) return 2; | |
1692 | Dbprintf("CARD TYPE: %02x LEN: %d", Demod.output[0], Demod.len); | |
1693 | ||
1694 | switch(Demod.output[0]) { | |
1695 | case 0x1d: | |
1696 | DbpString("MIM 256 card found"); | |
1697 | // cmd_size = 9; | |
1698 | // card_size = 256; | |
1699 | break; | |
1700 | case 0x3d: | |
1701 | DbpString("MIM 1024 card found"); | |
1702 | // cmd_size = 11; | |
1703 | // card_size = 1024; | |
1704 | break; | |
1705 | default: | |
1706 | return -1; | |
1707 | } | |
1708 | ||
1709 | // if(bytes == -1) | |
1710 | // bytes = card_size; | |
1711 | ||
1712 | // if(bytes + offset >= card_size) | |
1713 | // bytes = card_size - offset; | |
1714 | ||
1715 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1716 | set_tracing(FALSE); | |
1717 | return 1; | |
1718 | } | |
1719 | ||
1720 | // Set up LEGIC communication | |
1721 | void ice_legic_setup() { | |
1722 | ||
1723 | // standard things. | |
1724 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1725 | BigBuf_free(); BigBuf_Clear_ext(false); | |
1726 | clear_trace(); | |
1727 | set_tracing(TRUE); | |
1728 | DemodReset(); | |
1729 | UartReset(); | |
1730 | ||
1731 | // Set up the synchronous serial port | |
1732 | FpgaSetupSsc(); | |
1733 | ||
1734 | // connect Demodulated Signal to ADC: | |
1735 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1736 | ||
1737 | // Signal field is on with the appropriate LED | |
1738 | LED_D_ON(); | |
1739 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
f7b42573 | 1740 | SpinDelay(20); |
3e134b4c | 1741 | // Start the timer |
1742 | //StartCountSspClk(); | |
1743 | ||
1744 | // initalize CRC | |
1745 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); | |
1746 | ||
1747 | // initalize prng | |
1748 | legic_prng_init(0); | |
1749 | } |