]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
fix broken formatting in command table
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // Miscellaneous routines for low frequency tag operations.
3 // Tags supported here so far are Texas Instruments (TI), HID
4 // Also routines for raw mode reading/simulating of LF waveform
5 //
6 //-----------------------------------------------------------------------------
7 #include <proxmark3.h>
8 #include "apps.h"
9 #include "hitag2.h"
10 #include "../common/crc16.c"
11
12 int sprintf(char *dest, const char *fmt, ...);
13
14 void AcquireRawAdcSamples125k(BOOL at134khz)
15 {
16 if (at134khz)
17 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
18 else
19 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
20
21 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
22
23 // Connect the A/D to the peak-detected low-frequency path.
24 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
25
26 // Give it a bit of time for the resonant antenna to settle.
27 SpinDelay(50);
28
29 // Now set up the SSC to get the ADC samples that are now streaming at us.
30 FpgaSetupSsc();
31
32 // Now call the acquisition routine
33 DoAcquisition125k();
34 }
35
36 // split into two routines so we can avoid timing issues after sending commands //
37 void DoAcquisition125k(void)
38 {
39 BYTE *dest = (BYTE *)BigBuf;
40 int n = sizeof(BigBuf);
41 int i;
42
43 memset(dest, 0, n);
44 i = 0;
45 for(;;) {
46 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
47 AT91C_BASE_SSC->SSC_THR = 0x43;
48 LED_D_ON();
49 }
50 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
51 dest[i] = (BYTE)AT91C_BASE_SSC->SSC_RHR;
52 i++;
53 LED_D_OFF();
54 if (i >= n) break;
55 }
56 }
57 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
58 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
59 }
60
61 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, BYTE *command)
62 {
63 BOOL at134khz;
64
65 /* Make sure the tag is reset */
66 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
67 SpinDelay(2500);
68
69 // see if 'h' was specified
70 if (command[strlen((char *) command) - 1] == 'h')
71 at134khz = TRUE;
72 else
73 at134khz = FALSE;
74
75 if (at134khz)
76 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
77 else
78 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
79
80 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
81
82 // Give it a bit of time for the resonant antenna to settle.
83 SpinDelay(50);
84 // And a little more time for the tag to fully power up
85 SpinDelay(2000);
86
87 // Now set up the SSC to get the ADC samples that are now streaming at us.
88 FpgaSetupSsc();
89
90 // now modulate the reader field
91 while(*command != '\0' && *command != ' ') {
92 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
93 LED_D_OFF();
94 SpinDelayUs(delay_off);
95 if (at134khz)
96 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
97 else
98 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
99
100 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
101 LED_D_ON();
102 if(*(command++) == '0')
103 SpinDelayUs(period_0);
104 else
105 SpinDelayUs(period_1);
106 }
107 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
108 LED_D_OFF();
109 SpinDelayUs(delay_off);
110 if (at134khz)
111 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
112 else
113 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
114
115 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
116
117 // now do the read
118 DoAcquisition125k();
119 }
120
121 /* blank r/w tag data stream
122 ...0000000000000000 01111111
123 1010101010101010101010101010101010101010101010101010101010101010
124 0011010010100001
125 01111111
126 101010101010101[0]000...
127
128 [5555fe852c5555555555555555fe0000]
129 */
130 void ReadTItag(void)
131 {
132 // some hardcoded initial params
133 // when we read a TI tag we sample the zerocross line at 2Mhz
134 // TI tags modulate a 1 as 16 cycles of 123.2Khz
135 // TI tags modulate a 0 as 16 cycles of 134.2Khz
136 #define FSAMPLE 2000000
137 #define FREQLO 123200
138 #define FREQHI 134200
139
140 signed char *dest = (signed char *)BigBuf;
141 int n = sizeof(BigBuf);
142 // int *dest = GraphBuffer;
143 // int n = GraphTraceLen;
144
145 // 128 bit shift register [shift3:shift2:shift1:shift0]
146 DWORD shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
147
148 int i, cycles=0, samples=0;
149 // how many sample points fit in 16 cycles of each frequency
150 DWORD sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
151 // when to tell if we're close enough to one freq or another
152 DWORD threshold = (sampleslo - sampleshi + 1)>>1;
153
154 // TI tags charge at 134.2Khz
155 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
156
157 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
158 // connects to SSP_DIN and the SSP_DOUT logic level controls
159 // whether we're modulating the antenna (high)
160 // or listening to the antenna (low)
161 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
162
163 // get TI tag data into the buffer
164 AcquireTiType();
165
166 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
167
168 for (i=0; i<n-1; i++) {
169 // count cycles by looking for lo to hi zero crossings
170 if ( (dest[i]<0) && (dest[i+1]>0) ) {
171 cycles++;
172 // after 16 cycles, measure the frequency
173 if (cycles>15) {
174 cycles=0;
175 samples=i-samples; // number of samples in these 16 cycles
176
177 // TI bits are coming to us lsb first so shift them
178 // right through our 128 bit right shift register
179 shift0 = (shift0>>1) | (shift1 << 31);
180 shift1 = (shift1>>1) | (shift2 << 31);
181 shift2 = (shift2>>1) | (shift3 << 31);
182 shift3 >>= 1;
183
184 // check if the cycles fall close to the number
185 // expected for either the low or high frequency
186 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
187 // low frequency represents a 1
188 shift3 |= (1<<31);
189 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
190 // high frequency represents a 0
191 } else {
192 // probably detected a gay waveform or noise
193 // use this as gaydar or discard shift register and start again
194 shift3 = shift2 = shift1 = shift0 = 0;
195 }
196 samples = i;
197
198 // for each bit we receive, test if we've detected a valid tag
199
200 // if we see 17 zeroes followed by 6 ones, we might have a tag
201 // remember the bits are backwards
202 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
203 // if start and end bytes match, we have a tag so break out of the loop
204 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
205 cycles = 0xF0B; //use this as a flag (ugly but whatever)
206 break;
207 }
208 }
209 }
210 }
211 }
212
213 // if flag is set we have a tag
214 if (cycles!=0xF0B) {
215 DbpString("Info: No valid tag detected.");
216 } else {
217 // put 64 bit data into shift1 and shift0
218 shift0 = (shift0>>24) | (shift1 << 8);
219 shift1 = (shift1>>24) | (shift2 << 8);
220
221 // align 16 bit crc into lower half of shift2
222 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
223
224 // if r/w tag, check ident match
225 if ( shift3&(1<<15) ) {
226 DbpString("Info: TI tag is rewriteable");
227 // only 15 bits compare, last bit of ident is not valid
228 if ( ((shift3>>16)^shift0)&0x7fff ) {
229 DbpString("Error: Ident mismatch!");
230 } else {
231 DbpString("Info: TI tag ident is valid");
232 }
233 } else {
234 DbpString("Info: TI tag is readonly");
235 }
236
237 // WARNING the order of the bytes in which we calc crc below needs checking
238 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
239 // bytes in reverse or something
240 // calculate CRC
241 DWORD crc=0;
242
243 crc = update_crc16(crc, (shift0)&0xff);
244 crc = update_crc16(crc, (shift0>>8)&0xff);
245 crc = update_crc16(crc, (shift0>>16)&0xff);
246 crc = update_crc16(crc, (shift0>>24)&0xff);
247 crc = update_crc16(crc, (shift1)&0xff);
248 crc = update_crc16(crc, (shift1>>8)&0xff);
249 crc = update_crc16(crc, (shift1>>16)&0xff);
250 crc = update_crc16(crc, (shift1>>24)&0xff);
251
252 Dbprintf("Info: Tag data: %x%08x, crc=%x",
253 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
254 if (crc != (shift2&0xffff)) {
255 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
256 } else {
257 DbpString("Info: CRC is good");
258 }
259 }
260 }
261
262 void WriteTIbyte(BYTE b)
263 {
264 int i = 0;
265
266 // modulate 8 bits out to the antenna
267 for (i=0; i<8; i++)
268 {
269 if (b&(1<<i)) {
270 // stop modulating antenna
271 LOW(GPIO_SSC_DOUT);
272 SpinDelayUs(1000);
273 // modulate antenna
274 HIGH(GPIO_SSC_DOUT);
275 SpinDelayUs(1000);
276 } else {
277 // stop modulating antenna
278 LOW(GPIO_SSC_DOUT);
279 SpinDelayUs(300);
280 // modulate antenna
281 HIGH(GPIO_SSC_DOUT);
282 SpinDelayUs(1700);
283 }
284 }
285 }
286
287 void AcquireTiType(void)
288 {
289 int i, j, n;
290 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
291 // each sample is 1 bit stuffed into a DWORD so we need 1250 DWORDS
292 #define TIBUFLEN 1250
293
294 // clear buffer
295 memset(BigBuf,0,sizeof(BigBuf));
296
297 // Set up the synchronous serial port
298 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
299 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
300
301 // steal this pin from the SSP and use it to control the modulation
302 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
303 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
304
305 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
306 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
307
308 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
309 // 48/2 = 24 MHz clock must be divided by 12
310 AT91C_BASE_SSC->SSC_CMR = 12;
311
312 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
313 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
314 AT91C_BASE_SSC->SSC_TCMR = 0;
315 AT91C_BASE_SSC->SSC_TFMR = 0;
316
317 LED_D_ON();
318
319 // modulate antenna
320 HIGH(GPIO_SSC_DOUT);
321
322 // Charge TI tag for 50ms.
323 SpinDelay(50);
324
325 // stop modulating antenna and listen
326 LOW(GPIO_SSC_DOUT);
327
328 LED_D_OFF();
329
330 i = 0;
331 for(;;) {
332 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
333 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
334 i++; if(i >= TIBUFLEN) break;
335 }
336 WDT_HIT();
337 }
338
339 // return stolen pin to SSP
340 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
341 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
342
343 char *dest = (char *)BigBuf;
344 n = TIBUFLEN*32;
345 // unpack buffer
346 for (i=TIBUFLEN-1; i>=0; i--) {
347 for (j=0; j<32; j++) {
348 if(BigBuf[i] & (1 << j)) {
349 dest[--n] = 1;
350 } else {
351 dest[--n] = -1;
352 }
353 }
354 }
355 }
356
357 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
358 // if crc provided, it will be written with the data verbatim (even if bogus)
359 // if not provided a valid crc will be computed from the data and written.
360 void WriteTItag(DWORD idhi, DWORD idlo, WORD crc)
361 {
362 if(crc == 0) {
363 crc = update_crc16(crc, (idlo)&0xff);
364 crc = update_crc16(crc, (idlo>>8)&0xff);
365 crc = update_crc16(crc, (idlo>>16)&0xff);
366 crc = update_crc16(crc, (idlo>>24)&0xff);
367 crc = update_crc16(crc, (idhi)&0xff);
368 crc = update_crc16(crc, (idhi>>8)&0xff);
369 crc = update_crc16(crc, (idhi>>16)&0xff);
370 crc = update_crc16(crc, (idhi>>24)&0xff);
371 }
372 Dbprintf("Writing to tag: %x%08x, crc=%x",
373 (unsigned int) idhi, (unsigned int) idlo, crc);
374
375 // TI tags charge at 134.2Khz
376 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
377 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
378 // connects to SSP_DIN and the SSP_DOUT logic level controls
379 // whether we're modulating the antenna (high)
380 // or listening to the antenna (low)
381 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
382 LED_A_ON();
383
384 // steal this pin from the SSP and use it to control the modulation
385 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
386 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
387
388 // writing algorithm:
389 // a high bit consists of a field off for 1ms and field on for 1ms
390 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
391 // initiate a charge time of 50ms (field on) then immediately start writing bits
392 // start by writing 0xBB (keyword) and 0xEB (password)
393 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
394 // finally end with 0x0300 (write frame)
395 // all data is sent lsb firts
396 // finish with 15ms programming time
397
398 // modulate antenna
399 HIGH(GPIO_SSC_DOUT);
400 SpinDelay(50); // charge time
401
402 WriteTIbyte(0xbb); // keyword
403 WriteTIbyte(0xeb); // password
404 WriteTIbyte( (idlo )&0xff );
405 WriteTIbyte( (idlo>>8 )&0xff );
406 WriteTIbyte( (idlo>>16)&0xff );
407 WriteTIbyte( (idlo>>24)&0xff );
408 WriteTIbyte( (idhi )&0xff );
409 WriteTIbyte( (idhi>>8 )&0xff );
410 WriteTIbyte( (idhi>>16)&0xff );
411 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
412 WriteTIbyte( (crc )&0xff ); // crc lo
413 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
414 WriteTIbyte(0x00); // write frame lo
415 WriteTIbyte(0x03); // write frame hi
416 HIGH(GPIO_SSC_DOUT);
417 SpinDelay(50); // programming time
418
419 LED_A_OFF();
420
421 // get TI tag data into the buffer
422 AcquireTiType();
423
424 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
425 DbpString("Now use tiread to check");
426 }
427
428 void SimulateTagLowFrequency(int period, int ledcontrol)
429 {
430 int i;
431 BYTE *tab = (BYTE *)BigBuf;
432
433 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
434
435 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
436
437 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
438 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
439
440 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
441 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
442
443 i = 0;
444 for(;;) {
445 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
446 if(BUTTON_PRESS()) {
447 DbpString("Stopped");
448 return;
449 }
450 WDT_HIT();
451 }
452
453 if (ledcontrol)
454 LED_D_ON();
455
456 if(tab[i])
457 OPEN_COIL();
458 else
459 SHORT_COIL();
460
461 if (ledcontrol)
462 LED_D_OFF();
463
464 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
465 if(BUTTON_PRESS()) {
466 DbpString("Stopped");
467 return;
468 }
469 WDT_HIT();
470 }
471
472 i++;
473 if(i == period) i = 0;
474 }
475 }
476
477 /* Provides a framework for bidirectional LF tag communication
478 * Encoding is currently Hitag2, but the general idea can probably
479 * be transferred to other encodings.
480 *
481 * The new FPGA code will, for the LF simulator mode, give on SSC_FRAME
482 * (PA15) a thresholded version of the signal from the ADC. Setting the
483 * ADC path to the low frequency peak detection signal, will enable a
484 * somewhat reasonable receiver for modulation on the carrier signal
485 * that is generated by the reader. The signal is low when the reader
486 * field is switched off, and high when the reader field is active. Due
487 * to the way that the signal looks like, mostly only the rising edge is
488 * useful, your mileage may vary.
489 *
490 * Neat perk: PA15 can not only be used as a bit-banging GPIO, but is also
491 * TIOA1, which can be used as the capture input for timer 1. This should
492 * make it possible to measure the exact edge-to-edge time, without processor
493 * intervention.
494 *
495 * Arguments: divisor is the divisor to be sent to the FPGA (e.g. 95 for 125kHz)
496 * t0 is the carrier frequency cycle duration in terms of MCK (384 for 125kHz)
497 *
498 * The following defines are in carrier periods:
499 */
500 #define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */
501 #define HITAG_T_1_MIN 24 /* T[1] should be 26..30 */
502 #define HITAG_T_EOF 40 /* T_EOF should be > 36 */
503 #define HITAG_T_WRESP 208 /* T_wresp should be 204..212 */
504
505 static void hitag_handle_frame(int t0, int frame_len, char *frame);
506 //#define DEBUG_RA_VALUES 1
507 #define DEBUG_FRAME_CONTENTS 1
508 void SimulateTagLowFrequencyBidir(int divisor, int t0)
509 {
510 #if DEBUG_RA_VALUES || DEBUG_FRAME_CONTENTS
511 int i = 0;
512 #endif
513 char frame[10];
514 int frame_pos=0;
515
516 DbpString("Starting Hitag2 emulator, press button to end");
517 hitag2_init();
518
519 /* Set up simulator mode, frequency divisor which will drive the FPGA
520 * and analog mux selection.
521 */
522 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
523 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
524 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
525 RELAY_OFF();
526
527 /* Set up Timer 1:
528 * Capture mode, timer source MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
529 * external trigger rising edge, load RA on rising edge of TIOA, load RB on rising
530 * edge of TIOA. Assign PA15 to TIOA1 (peripheral B)
531 */
532
533 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
534 AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
535 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
536 AT91C_BASE_TC1->TC_CMR = TC_CMR_TCCLKS_TIMER_CLOCK1 |
537 AT91C_TC_ETRGEDG_RISING |
538 AT91C_TC_ABETRG |
539 AT91C_TC_LDRA_RISING |
540 AT91C_TC_LDRB_RISING;
541 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN |
542 AT91C_TC_SWTRG;
543
544 /* calculate the new value for the carrier period in terms of TC1 values */
545 t0 = t0/2;
546
547 int overflow = 0;
548 while(!BUTTON_PRESS()) {
549 WDT_HIT();
550 if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
551 int ra = AT91C_BASE_TC1->TC_RA;
552 if((ra > t0*HITAG_T_EOF) | overflow) ra = t0*HITAG_T_EOF+1;
553 #if DEBUG_RA_VALUES
554 if(ra > 255 || overflow) ra = 255;
555 ((char*)BigBuf)[i] = ra;
556 i = (i+1) % 8000;
557 #endif
558
559 if(overflow || (ra > t0*HITAG_T_EOF) || (ra < t0*HITAG_T_0_MIN)) {
560 /* Ignore */
561 } else if(ra >= t0*HITAG_T_1_MIN ) {
562 /* '1' bit */
563 if(frame_pos < 8*sizeof(frame)) {
564 frame[frame_pos / 8] |= 1<<( 7-(frame_pos%8) );
565 frame_pos++;
566 }
567 } else if(ra >= t0*HITAG_T_0_MIN) {
568 /* '0' bit */
569 if(frame_pos < 8*sizeof(frame)) {
570 frame[frame_pos / 8] |= 0<<( 7-(frame_pos%8) );
571 frame_pos++;
572 }
573 }
574
575 overflow = 0;
576 LED_D_ON();
577 } else {
578 if(AT91C_BASE_TC1->TC_CV > t0*HITAG_T_EOF) {
579 /* Minor nuisance: In Capture mode, the timer can not be
580 * stopped by a Compare C. There's no way to stop the clock
581 * in software, so we'll just have to note the fact that an
582 * overflow happened and the next loaded timer value might
583 * have wrapped. Also, this marks the end of frame, and the
584 * still running counter can be used to determine the correct
585 * time for the start of the reply.
586 */
587 overflow = 1;
588
589 if(frame_pos > 0) {
590 /* Have a frame, do something with it */
591 #if DEBUG_FRAME_CONTENTS
592 ((char*)BigBuf)[i++] = frame_pos;
593 memcpy( ((char*)BigBuf)+i, frame, 7);
594 i+=7;
595 i = i % sizeof(BigBuf);
596 #endif
597 hitag_handle_frame(t0, frame_pos, frame);
598 memset(frame, 0, sizeof(frame));
599 }
600 frame_pos = 0;
601
602 }
603 LED_D_OFF();
604 }
605 }
606 DbpString("All done");
607 }
608
609 static void hitag_send_bit(int t0, int bit) {
610 if(bit == 1) {
611 /* Manchester: Loaded, then unloaded */
612 LED_A_ON();
613 SHORT_COIL();
614 while(AT91C_BASE_TC1->TC_CV < t0*15);
615 OPEN_COIL();
616 while(AT91C_BASE_TC1->TC_CV < t0*31);
617 LED_A_OFF();
618 } else if(bit == 0) {
619 /* Manchester: Unloaded, then loaded */
620 LED_B_ON();
621 OPEN_COIL();
622 while(AT91C_BASE_TC1->TC_CV < t0*15);
623 SHORT_COIL();
624 while(AT91C_BASE_TC1->TC_CV < t0*31);
625 LED_B_OFF();
626 }
627 AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset clock for the next bit */
628
629 }
630 static void hitag_send_frame(int t0, int frame_len, const char const * frame, int fdt)
631 {
632 OPEN_COIL();
633 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
634
635 /* Wait for HITAG_T_WRESP carrier periods after the last reader bit,
636 * not that since the clock counts since the rising edge, but T_wresp is
637 * with respect to the falling edge, we need to wait actually (T_wresp - T_g)
638 * periods. The gap time T_g varies (4..10).
639 */
640 while(AT91C_BASE_TC1->TC_CV < t0*(fdt-8));
641
642 int saved_cmr = AT91C_BASE_TC1->TC_CMR;
643 AT91C_BASE_TC1->TC_CMR &= ~AT91C_TC_ETRGEDG; /* Disable external trigger for the clock */
644 AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset the clock and use it for response timing */
645
646 int i;
647 for(i=0; i<5; i++)
648 hitag_send_bit(t0, 1); /* Start of frame */
649
650 for(i=0; i<frame_len; i++) {
651 hitag_send_bit(t0, !!(frame[i/ 8] & (1<<( 7-(i%8) ))) );
652 }
653
654 OPEN_COIL();
655 AT91C_BASE_TC1->TC_CMR = saved_cmr;
656 }
657
658 /* Callback structure to cleanly separate tag emulation code from the radio layer. */
659 static int hitag_cb(const char* response_data, const int response_length, const int fdt, void *cb_cookie)
660 {
661 hitag_send_frame(*(int*)cb_cookie, response_length, response_data, fdt);
662 return 0;
663 }
664 /* Frame length in bits, frame contents in MSBit first format */
665 static void hitag_handle_frame(int t0, int frame_len, char *frame)
666 {
667 hitag2_handle_command(frame, frame_len, hitag_cb, &t0);
668 }
669
670 // compose fc/8 fc/10 waveform
671 static void fc(int c, int *n) {
672 BYTE *dest = (BYTE *)BigBuf;
673 int idx;
674
675 // for when we want an fc8 pattern every 4 logical bits
676 if(c==0) {
677 dest[((*n)++)]=1;
678 dest[((*n)++)]=1;
679 dest[((*n)++)]=0;
680 dest[((*n)++)]=0;
681 dest[((*n)++)]=0;
682 dest[((*n)++)]=0;
683 dest[((*n)++)]=0;
684 dest[((*n)++)]=0;
685 }
686 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
687 if(c==8) {
688 for (idx=0; idx<6; idx++) {
689 dest[((*n)++)]=1;
690 dest[((*n)++)]=1;
691 dest[((*n)++)]=0;
692 dest[((*n)++)]=0;
693 dest[((*n)++)]=0;
694 dest[((*n)++)]=0;
695 dest[((*n)++)]=0;
696 dest[((*n)++)]=0;
697 }
698 }
699
700 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
701 if(c==10) {
702 for (idx=0; idx<5; idx++) {
703 dest[((*n)++)]=1;
704 dest[((*n)++)]=1;
705 dest[((*n)++)]=1;
706 dest[((*n)++)]=0;
707 dest[((*n)++)]=0;
708 dest[((*n)++)]=0;
709 dest[((*n)++)]=0;
710 dest[((*n)++)]=0;
711 dest[((*n)++)]=0;
712 dest[((*n)++)]=0;
713 }
714 }
715 }
716
717 // prepare a waveform pattern in the buffer based on the ID given then
718 // simulate a HID tag until the button is pressed
719 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
720 {
721 int n=0, i=0;
722 /*
723 HID tag bitstream format
724 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
725 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
726 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
727 A fc8 is inserted before every 4 bits
728 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
729 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
730 */
731
732 if (hi>0xFFF) {
733 DbpString("Tags can only have 44 bits.");
734 return;
735 }
736 fc(0,&n);
737 // special start of frame marker containing invalid bit sequences
738 fc(8, &n); fc(8, &n); // invalid
739 fc(8, &n); fc(10, &n); // logical 0
740 fc(10, &n); fc(10, &n); // invalid
741 fc(8, &n); fc(10, &n); // logical 0
742
743 WDT_HIT();
744 // manchester encode bits 43 to 32
745 for (i=11; i>=0; i--) {
746 if ((i%4)==3) fc(0,&n);
747 if ((hi>>i)&1) {
748 fc(10, &n); fc(8, &n); // low-high transition
749 } else {
750 fc(8, &n); fc(10, &n); // high-low transition
751 }
752 }
753
754 WDT_HIT();
755 // manchester encode bits 31 to 0
756 for (i=31; i>=0; i--) {
757 if ((i%4)==3) fc(0,&n);
758 if ((lo>>i)&1) {
759 fc(10, &n); fc(8, &n); // low-high transition
760 } else {
761 fc(8, &n); fc(10, &n); // high-low transition
762 }
763 }
764
765 if (ledcontrol)
766 LED_A_ON();
767 SimulateTagLowFrequency(n, ledcontrol);
768
769 if (ledcontrol)
770 LED_A_OFF();
771 }
772
773
774 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
775 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
776 {
777 BYTE *dest = (BYTE *)BigBuf;
778 int m=0, n=0, i=0, idx=0, found=0, lastval=0;
779 DWORD hi=0, lo=0;
780
781 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
782 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
783
784 // Connect the A/D to the peak-detected low-frequency path.
785 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
786
787 // Give it a bit of time for the resonant antenna to settle.
788 SpinDelay(50);
789
790 // Now set up the SSC to get the ADC samples that are now streaming at us.
791 FpgaSetupSsc();
792
793 for(;;) {
794 WDT_HIT();
795 if (ledcontrol)
796 LED_A_ON();
797 if(BUTTON_PRESS()) {
798 DbpString("Stopped");
799 if (ledcontrol)
800 LED_A_OFF();
801 return;
802 }
803
804 i = 0;
805 m = sizeof(BigBuf);
806 memset(dest,128,m);
807 for(;;) {
808 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
809 AT91C_BASE_SSC->SSC_THR = 0x43;
810 if (ledcontrol)
811 LED_D_ON();
812 }
813 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
814 dest[i] = (BYTE)AT91C_BASE_SSC->SSC_RHR;
815 // we don't care about actual value, only if it's more or less than a
816 // threshold essentially we capture zero crossings for later analysis
817 if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
818 i++;
819 if (ledcontrol)
820 LED_D_OFF();
821 if(i >= m) {
822 break;
823 }
824 }
825 }
826
827 // FSK demodulator
828
829 // sync to first lo-hi transition
830 for( idx=1; idx<m; idx++) {
831 if (dest[idx-1]<dest[idx])
832 lastval=idx;
833 break;
834 }
835 WDT_HIT();
836
837 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
838 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
839 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
840 for( i=0; idx<m; idx++) {
841 if (dest[idx-1]<dest[idx]) {
842 dest[i]=idx-lastval;
843 if (dest[i] <= 8) {
844 dest[i]=1;
845 } else {
846 dest[i]=0;
847 }
848
849 lastval=idx;
850 i++;
851 }
852 }
853 m=i;
854 WDT_HIT();
855
856 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
857 lastval=dest[0];
858 idx=0;
859 i=0;
860 n=0;
861 for( idx=0; idx<m; idx++) {
862 if (dest[idx]==lastval) {
863 n++;
864 } else {
865 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
866 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
867 // swallowed up by rounding
868 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
869 // special start of frame markers use invalid manchester states (no transitions) by using sequences
870 // like 111000
871 if (dest[idx-1]) {
872 n=(n+1)/6; // fc/8 in sets of 6
873 } else {
874 n=(n+1)/5; // fc/10 in sets of 5
875 }
876 switch (n) { // stuff appropriate bits in buffer
877 case 0:
878 case 1: // one bit
879 dest[i++]=dest[idx-1];
880 break;
881 case 2: // two bits
882 dest[i++]=dest[idx-1];
883 dest[i++]=dest[idx-1];
884 break;
885 case 3: // 3 bit start of frame markers
886 dest[i++]=dest[idx-1];
887 dest[i++]=dest[idx-1];
888 dest[i++]=dest[idx-1];
889 break;
890 // When a logic 0 is immediately followed by the start of the next transmisson
891 // (special pattern) a pattern of 4 bit duration lengths is created.
892 case 4:
893 dest[i++]=dest[idx-1];
894 dest[i++]=dest[idx-1];
895 dest[i++]=dest[idx-1];
896 dest[i++]=dest[idx-1];
897 break;
898 default: // this shouldn't happen, don't stuff any bits
899 break;
900 }
901 n=0;
902 lastval=dest[idx];
903 }
904 }
905 m=i;
906 WDT_HIT();
907
908 // final loop, go over previously decoded manchester data and decode into usable tag ID
909 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
910 for( idx=0; idx<m-6; idx++) {
911 // search for a start of frame marker
912 if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
913 {
914 found=1;
915 idx+=6;
916 if (found && (hi|lo)) {
917 Dbprintf("TAG ID: %x%08x (%d)",
918 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
919 /* if we're only looking for one tag */
920 if (findone)
921 {
922 *high = hi;
923 *low = lo;
924 return;
925 }
926 hi=0;
927 lo=0;
928 found=0;
929 }
930 }
931 if (found) {
932 if (dest[idx] && (!dest[idx+1]) ) {
933 hi=(hi<<1)|(lo>>31);
934 lo=(lo<<1)|0;
935 } else if ( (!dest[idx]) && dest[idx+1]) {
936 hi=(hi<<1)|(lo>>31);
937 lo=(lo<<1)|1;
938 } else {
939 found=0;
940 hi=0;
941 lo=0;
942 }
943 idx++;
944 }
945 if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
946 {
947 found=1;
948 idx+=6;
949 if (found && (hi|lo)) {
950 Dbprintf("TAG ID: %x%08x (%d)",
951 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
952 /* if we're only looking for one tag */
953 if (findone)
954 {
955 *high = hi;
956 *low = lo;
957 return;
958 }
959 hi=0;
960 lo=0;
961 found=0;
962 }
963 }
964 }
965 WDT_HIT();
966 }
967 }
Impressum, Datenschutz