1 //-----------------------------------------------------------------------------
2 // Miscellaneous routines for low frequency tag operations.
3 // Tags supported here so far are Texas Instruments (TI), HID
4 // Also routines for raw mode reading/simulating of LF waveform
6 //-----------------------------------------------------------------------------
10 #include "../common/crc16.c"
12 int sprintf(char *dest
, const char *fmt
, ...);
14 void AcquireRawAdcSamples125k(BOOL at134khz
)
17 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
19 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
21 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
23 // Connect the A/D to the peak-detected low-frequency path.
24 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
26 // Give it a bit of time for the resonant antenna to settle.
29 // Now set up the SSC to get the ADC samples that are now streaming at us.
32 // Now call the acquisition routine
36 // split into two routines so we can avoid timing issues after sending commands //
37 void DoAcquisition125k(void)
39 BYTE
*dest
= (BYTE
*)BigBuf
;
40 int n
= sizeof(BigBuf
);
46 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
47 AT91C_BASE_SSC
->SSC_THR
= 0x43;
50 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
51 dest
[i
] = (BYTE
)AT91C_BASE_SSC
->SSC_RHR
;
57 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
58 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
61 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, BYTE
*command
)
65 /* Make sure the tag is reset */
66 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
69 // see if 'h' was specified
70 if (command
[strlen((char *) command
) - 1] == 'h')
76 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
78 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
80 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
82 // Give it a bit of time for the resonant antenna to settle.
84 // And a little more time for the tag to fully power up
87 // Now set up the SSC to get the ADC samples that are now streaming at us.
90 // now modulate the reader field
91 while(*command
!= '\0' && *command
!= ' ') {
92 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
94 SpinDelayUs(delay_off
);
96 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
98 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
100 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
102 if(*(command
++) == '0')
103 SpinDelayUs(period_0
);
105 SpinDelayUs(period_1
);
107 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
109 SpinDelayUs(delay_off
);
111 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
113 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
115 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
121 /* blank r/w tag data stream
122 ...0000000000000000 01111111
123 1010101010101010101010101010101010101010101010101010101010101010
126 101010101010101[0]000...
128 [5555fe852c5555555555555555fe0000]
132 // some hardcoded initial params
133 // when we read a TI tag we sample the zerocross line at 2Mhz
134 // TI tags modulate a 1 as 16 cycles of 123.2Khz
135 // TI tags modulate a 0 as 16 cycles of 134.2Khz
136 #define FSAMPLE 2000000
137 #define FREQLO 123200
138 #define FREQHI 134200
140 signed char *dest
= (signed char *)BigBuf
;
141 int n
= sizeof(BigBuf
);
142 // int *dest = GraphBuffer;
143 // int n = GraphTraceLen;
145 // 128 bit shift register [shift3:shift2:shift1:shift0]
146 DWORD shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
148 int i
, cycles
=0, samples
=0;
149 // how many sample points fit in 16 cycles of each frequency
150 DWORD sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
151 // when to tell if we're close enough to one freq or another
152 DWORD threshold
= (sampleslo
- sampleshi
+ 1)>>1;
154 // TI tags charge at 134.2Khz
155 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
157 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
158 // connects to SSP_DIN and the SSP_DOUT logic level controls
159 // whether we're modulating the antenna (high)
160 // or listening to the antenna (low)
161 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
163 // get TI tag data into the buffer
166 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
168 for (i
=0; i
<n
-1; i
++) {
169 // count cycles by looking for lo to hi zero crossings
170 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
172 // after 16 cycles, measure the frequency
175 samples
=i
-samples
; // number of samples in these 16 cycles
177 // TI bits are coming to us lsb first so shift them
178 // right through our 128 bit right shift register
179 shift0
= (shift0
>>1) | (shift1
<< 31);
180 shift1
= (shift1
>>1) | (shift2
<< 31);
181 shift2
= (shift2
>>1) | (shift3
<< 31);
184 // check if the cycles fall close to the number
185 // expected for either the low or high frequency
186 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
187 // low frequency represents a 1
189 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
190 // high frequency represents a 0
192 // probably detected a gay waveform or noise
193 // use this as gaydar or discard shift register and start again
194 shift3
= shift2
= shift1
= shift0
= 0;
198 // for each bit we receive, test if we've detected a valid tag
200 // if we see 17 zeroes followed by 6 ones, we might have a tag
201 // remember the bits are backwards
202 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
203 // if start and end bytes match, we have a tag so break out of the loop
204 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
205 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
213 // if flag is set we have a tag
215 DbpString("Info: No valid tag detected.");
217 // put 64 bit data into shift1 and shift0
218 shift0
= (shift0
>>24) | (shift1
<< 8);
219 shift1
= (shift1
>>24) | (shift2
<< 8);
221 // align 16 bit crc into lower half of shift2
222 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
224 // if r/w tag, check ident match
225 if ( shift3
&(1<<15) ) {
226 DbpString("Info: TI tag is rewriteable");
227 // only 15 bits compare, last bit of ident is not valid
228 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
229 DbpString("Error: Ident mismatch!");
231 DbpString("Info: TI tag ident is valid");
234 DbpString("Info: TI tag is readonly");
237 // WARNING the order of the bytes in which we calc crc below needs checking
238 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
239 // bytes in reverse or something
243 crc
= update_crc16(crc
, (shift0
)&0xff);
244 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
245 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
246 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
247 crc
= update_crc16(crc
, (shift1
)&0xff);
248 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
249 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
250 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
252 Dbprintf("Info: Tag data: %x%08x, crc=%x",
253 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
254 if (crc
!= (shift2
&0xffff)) {
255 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
257 DbpString("Info: CRC is good");
262 void WriteTIbyte(BYTE b
)
266 // modulate 8 bits out to the antenna
270 // stop modulating antenna
277 // stop modulating antenna
287 void AcquireTiType(void)
290 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
291 // each sample is 1 bit stuffed into a DWORD so we need 1250 DWORDS
292 #define TIBUFLEN 1250
295 memset(BigBuf
,0,sizeof(BigBuf
));
297 // Set up the synchronous serial port
298 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
299 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
301 // steal this pin from the SSP and use it to control the modulation
302 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
303 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
305 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
306 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
308 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
309 // 48/2 = 24 MHz clock must be divided by 12
310 AT91C_BASE_SSC
->SSC_CMR
= 12;
312 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
313 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
314 AT91C_BASE_SSC
->SSC_TCMR
= 0;
315 AT91C_BASE_SSC
->SSC_TFMR
= 0;
322 // Charge TI tag for 50ms.
325 // stop modulating antenna and listen
332 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
333 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
334 i
++; if(i
>= TIBUFLEN
) break;
339 // return stolen pin to SSP
340 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
341 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
343 char *dest
= (char *)BigBuf
;
346 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
347 for (j
=0; j
<32; j
++) {
348 if(BigBuf
[i
] & (1 << j
)) {
357 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
358 // if crc provided, it will be written with the data verbatim (even if bogus)
359 // if not provided a valid crc will be computed from the data and written.
360 void WriteTItag(DWORD idhi
, DWORD idlo
, WORD crc
)
363 crc
= update_crc16(crc
, (idlo
)&0xff);
364 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
365 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
366 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
367 crc
= update_crc16(crc
, (idhi
)&0xff);
368 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
369 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
370 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
372 Dbprintf("Writing to tag: %x%08x, crc=%x",
373 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
375 // TI tags charge at 134.2Khz
376 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
377 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
378 // connects to SSP_DIN and the SSP_DOUT logic level controls
379 // whether we're modulating the antenna (high)
380 // or listening to the antenna (low)
381 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
384 // steal this pin from the SSP and use it to control the modulation
385 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
386 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
388 // writing algorithm:
389 // a high bit consists of a field off for 1ms and field on for 1ms
390 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
391 // initiate a charge time of 50ms (field on) then immediately start writing bits
392 // start by writing 0xBB (keyword) and 0xEB (password)
393 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
394 // finally end with 0x0300 (write frame)
395 // all data is sent lsb firts
396 // finish with 15ms programming time
400 SpinDelay(50); // charge time
402 WriteTIbyte(0xbb); // keyword
403 WriteTIbyte(0xeb); // password
404 WriteTIbyte( (idlo
)&0xff );
405 WriteTIbyte( (idlo
>>8 )&0xff );
406 WriteTIbyte( (idlo
>>16)&0xff );
407 WriteTIbyte( (idlo
>>24)&0xff );
408 WriteTIbyte( (idhi
)&0xff );
409 WriteTIbyte( (idhi
>>8 )&0xff );
410 WriteTIbyte( (idhi
>>16)&0xff );
411 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
412 WriteTIbyte( (crc
)&0xff ); // crc lo
413 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
414 WriteTIbyte(0x00); // write frame lo
415 WriteTIbyte(0x03); // write frame hi
417 SpinDelay(50); // programming time
421 // get TI tag data into the buffer
424 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
425 DbpString("Now use tiread to check");
428 void SimulateTagLowFrequency(int period
, int ledcontrol
)
431 BYTE
*tab
= (BYTE
*)BigBuf
;
433 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR
);
435 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
437 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
438 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
440 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
441 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
445 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
447 DbpString("Stopped");
464 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
466 DbpString("Stopped");
473 if(i
== period
) i
= 0;
477 /* Provides a framework for bidirectional LF tag communication
478 * Encoding is currently Hitag2, but the general idea can probably
479 * be transferred to other encodings.
481 * The new FPGA code will, for the LF simulator mode, give on SSC_FRAME
482 * (PA15) a thresholded version of the signal from the ADC. Setting the
483 * ADC path to the low frequency peak detection signal, will enable a
484 * somewhat reasonable receiver for modulation on the carrier signal
485 * that is generated by the reader. The signal is low when the reader
486 * field is switched off, and high when the reader field is active. Due
487 * to the way that the signal looks like, mostly only the rising edge is
488 * useful, your mileage may vary.
490 * Neat perk: PA15 can not only be used as a bit-banging GPIO, but is also
491 * TIOA1, which can be used as the capture input for timer 1. This should
492 * make it possible to measure the exact edge-to-edge time, without processor
495 * Arguments: divisor is the divisor to be sent to the FPGA (e.g. 95 for 125kHz)
496 * t0 is the carrier frequency cycle duration in terms of MCK (384 for 125kHz)
498 * The following defines are in carrier periods:
500 #define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */
501 #define HITAG_T_1_MIN 24 /* T[1] should be 26..30 */
502 #define HITAG_T_EOF 40 /* T_EOF should be > 36 */
503 #define HITAG_T_WRESP 208 /* T_wresp should be 204..212 */
505 static void hitag_handle_frame(int t0
, int frame_len
, char *frame
);
506 //#define DEBUG_RA_VALUES 1
507 #define DEBUG_FRAME_CONTENTS 1
508 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
510 #if DEBUG_RA_VALUES || DEBUG_FRAME_CONTENTS
516 DbpString("Starting Hitag2 emulator, press button to end");
519 /* Set up simulator mode, frequency divisor which will drive the FPGA
520 * and analog mux selection.
522 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR
);
523 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
524 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
528 * Capture mode, timer source MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
529 * external trigger rising edge, load RA on rising edge of TIOA, load RB on rising
530 * edge of TIOA. Assign PA15 to TIOA1 (peripheral B)
533 AT91C_BASE_PMC
->PMC_PCER
= (1 << AT91C_ID_TC1
);
534 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_SSC_FRAME
;
535 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKDIS
;
536 AT91C_BASE_TC1
->TC_CMR
= TC_CMR_TCCLKS_TIMER_CLOCK1
|
537 AT91C_TC_ETRGEDG_RISING
|
539 AT91C_TC_LDRA_RISING
|
540 AT91C_TC_LDRB_RISING
;
541 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKEN
|
544 /* calculate the new value for the carrier period in terms of TC1 values */
548 while(!BUTTON_PRESS()) {
550 if(AT91C_BASE_TC1
->TC_SR
& AT91C_TC_LDRAS
) {
551 int ra
= AT91C_BASE_TC1
->TC_RA
;
552 if((ra
> t0
*HITAG_T_EOF
) | overflow
) ra
= t0
*HITAG_T_EOF
+1;
554 if(ra
> 255 || overflow
) ra
= 255;
555 ((char*)BigBuf
)[i
] = ra
;
559 if(overflow
|| (ra
> t0
*HITAG_T_EOF
) || (ra
< t0
*HITAG_T_0_MIN
)) {
561 } else if(ra
>= t0
*HITAG_T_1_MIN
) {
563 if(frame_pos
< 8*sizeof(frame
)) {
564 frame
[frame_pos
/ 8] |= 1<<( 7-(frame_pos
%8) );
567 } else if(ra
>= t0
*HITAG_T_0_MIN
) {
569 if(frame_pos
< 8*sizeof(frame
)) {
570 frame
[frame_pos
/ 8] |= 0<<( 7-(frame_pos
%8) );
578 if(AT91C_BASE_TC1
->TC_CV
> t0
*HITAG_T_EOF
) {
579 /* Minor nuisance: In Capture mode, the timer can not be
580 * stopped by a Compare C. There's no way to stop the clock
581 * in software, so we'll just have to note the fact that an
582 * overflow happened and the next loaded timer value might
583 * have wrapped. Also, this marks the end of frame, and the
584 * still running counter can be used to determine the correct
585 * time for the start of the reply.
590 /* Have a frame, do something with it */
591 #if DEBUG_FRAME_CONTENTS
592 ((char*)BigBuf
)[i
++] = frame_pos
;
593 memcpy( ((char*)BigBuf
)+i
, frame
, 7);
595 i
= i
% sizeof(BigBuf
);
597 hitag_handle_frame(t0
, frame_pos
, frame
);
598 memset(frame
, 0, sizeof(frame
));
606 DbpString("All done");
609 static void hitag_send_bit(int t0
, int bit
) {
611 /* Manchester: Loaded, then unloaded */
614 while(AT91C_BASE_TC1
->TC_CV
< t0
*15);
616 while(AT91C_BASE_TC1
->TC_CV
< t0
*31);
618 } else if(bit
== 0) {
619 /* Manchester: Unloaded, then loaded */
622 while(AT91C_BASE_TC1
->TC_CV
< t0
*15);
624 while(AT91C_BASE_TC1
->TC_CV
< t0
*31);
627 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_SWTRG
; /* Reset clock for the next bit */
630 static void hitag_send_frame(int t0
, int frame_len
, const char const * frame
, int fdt
)
633 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
635 /* Wait for HITAG_T_WRESP carrier periods after the last reader bit,
636 * not that since the clock counts since the rising edge, but T_wresp is
637 * with respect to the falling edge, we need to wait actually (T_wresp - T_g)
638 * periods. The gap time T_g varies (4..10).
640 while(AT91C_BASE_TC1
->TC_CV
< t0
*(fdt
-8));
642 int saved_cmr
= AT91C_BASE_TC1
->TC_CMR
;
643 AT91C_BASE_TC1
->TC_CMR
&= ~AT91C_TC_ETRGEDG
; /* Disable external trigger for the clock */
644 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_SWTRG
; /* Reset the clock and use it for response timing */
648 hitag_send_bit(t0
, 1); /* Start of frame */
650 for(i
=0; i
<frame_len
; i
++) {
651 hitag_send_bit(t0
, !!(frame
[i
/ 8] & (1<<( 7-(i
%8) ))) );
655 AT91C_BASE_TC1
->TC_CMR
= saved_cmr
;
658 /* Callback structure to cleanly separate tag emulation code from the radio layer. */
659 static int hitag_cb(const char* response_data
, const int response_length
, const int fdt
, void *cb_cookie
)
661 hitag_send_frame(*(int*)cb_cookie
, response_length
, response_data
, fdt
);
664 /* Frame length in bits, frame contents in MSBit first format */
665 static void hitag_handle_frame(int t0
, int frame_len
, char *frame
)
667 hitag2_handle_command(frame
, frame_len
, hitag_cb
, &t0
);
670 // compose fc/8 fc/10 waveform
671 static void fc(int c
, int *n
) {
672 BYTE
*dest
= (BYTE
*)BigBuf
;
675 // for when we want an fc8 pattern every 4 logical bits
686 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
688 for (idx
=0; idx
<6; idx
++) {
700 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
702 for (idx
=0; idx
<5; idx
++) {
717 // prepare a waveform pattern in the buffer based on the ID given then
718 // simulate a HID tag until the button is pressed
719 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
723 HID tag bitstream format
724 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
725 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
726 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
727 A fc8 is inserted before every 4 bits
728 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
729 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
733 DbpString("Tags can only have 44 bits.");
737 // special start of frame marker containing invalid bit sequences
738 fc(8, &n
); fc(8, &n
); // invalid
739 fc(8, &n
); fc(10, &n
); // logical 0
740 fc(10, &n
); fc(10, &n
); // invalid
741 fc(8, &n
); fc(10, &n
); // logical 0
744 // manchester encode bits 43 to 32
745 for (i
=11; i
>=0; i
--) {
746 if ((i
%4)==3) fc(0,&n
);
748 fc(10, &n
); fc(8, &n
); // low-high transition
750 fc(8, &n
); fc(10, &n
); // high-low transition
755 // manchester encode bits 31 to 0
756 for (i
=31; i
>=0; i
--) {
757 if ((i
%4)==3) fc(0,&n
);
759 fc(10, &n
); fc(8, &n
); // low-high transition
761 fc(8, &n
); fc(10, &n
); // high-low transition
767 SimulateTagLowFrequency(n
, ledcontrol
);
774 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
775 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
777 BYTE
*dest
= (BYTE
*)BigBuf
;
778 int m
=0, n
=0, i
=0, idx
=0, found
=0, lastval
=0;
781 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
782 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
784 // Connect the A/D to the peak-detected low-frequency path.
785 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
787 // Give it a bit of time for the resonant antenna to settle.
790 // Now set up the SSC to get the ADC samples that are now streaming at us.
798 DbpString("Stopped");
808 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
809 AT91C_BASE_SSC
->SSC_THR
= 0x43;
813 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
814 dest
[i
] = (BYTE
)AT91C_BASE_SSC
->SSC_RHR
;
815 // we don't care about actual value, only if it's more or less than a
816 // threshold essentially we capture zero crossings for later analysis
817 if(dest
[i
] < 127) dest
[i
] = 0; else dest
[i
] = 1;
829 // sync to first lo-hi transition
830 for( idx
=1; idx
<m
; idx
++) {
831 if (dest
[idx
-1]<dest
[idx
])
837 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
838 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
839 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
840 for( i
=0; idx
<m
; idx
++) {
841 if (dest
[idx
-1]<dest
[idx
]) {
856 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
861 for( idx
=0; idx
<m
; idx
++) {
862 if (dest
[idx
]==lastval
) {
865 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
866 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
867 // swallowed up by rounding
868 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
869 // special start of frame markers use invalid manchester states (no transitions) by using sequences
872 n
=(n
+1)/6; // fc/8 in sets of 6
874 n
=(n
+1)/5; // fc/10 in sets of 5
876 switch (n
) { // stuff appropriate bits in buffer
879 dest
[i
++]=dest
[idx
-1];
882 dest
[i
++]=dest
[idx
-1];
883 dest
[i
++]=dest
[idx
-1];
885 case 3: // 3 bit start of frame markers
886 dest
[i
++]=dest
[idx
-1];
887 dest
[i
++]=dest
[idx
-1];
888 dest
[i
++]=dest
[idx
-1];
890 // When a logic 0 is immediately followed by the start of the next transmisson
891 // (special pattern) a pattern of 4 bit duration lengths is created.
893 dest
[i
++]=dest
[idx
-1];
894 dest
[i
++]=dest
[idx
-1];
895 dest
[i
++]=dest
[idx
-1];
896 dest
[i
++]=dest
[idx
-1];
898 default: // this shouldn't happen, don't stuff any bits
908 // final loop, go over previously decoded manchester data and decode into usable tag ID
909 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
910 for( idx
=0; idx
<m
-6; idx
++) {
911 // search for a start of frame marker
912 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
916 if (found
&& (hi
|lo
)) {
917 Dbprintf("TAG ID: %x%08x (%d)",
918 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
919 /* if we're only looking for one tag */
932 if (dest
[idx
] && (!dest
[idx
+1]) ) {
935 } else if ( (!dest
[idx
]) && dest
[idx
+1]) {
945 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
949 if (found
&& (hi
|lo
)) {
950 Dbprintf("TAG ID: %x%08x (%d)",
951 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
952 /* if we're only looking for one tag */