2 * Elliptic curves over GF(p): generic functions
4 * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
5 * SPDX-License-Identifier: GPL-2.0
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 * This file is part of mbed TLS (https://tls.mbed.org)
27 * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
28 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
29 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
30 * RFC 4492 for the related TLS structures and constants
31 * RFC 7748 for the Curve448 and Curve25519 curve definitions
33 * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
35 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
36 * for elliptic curve cryptosystems. In : Cryptographic Hardware and
37 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
38 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
40 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
41 * render ECC resistant against Side Channel Attacks. IACR Cryptology
42 * ePrint Archive, 2004, vol. 2004, p. 342.
43 * <http://eprint.iacr.org/2004/342.pdf>
46 #if !defined(MBEDTLS_CONFIG_FILE)
47 #include "mbedtls/config.h"
49 #include MBEDTLS_CONFIG_FILE
52 #if defined(MBEDTLS_ECP_C)
54 #include "mbedtls/ecp.h"
55 #include "mbedtls/threading.h"
56 #include "mbedtls/platform_util.h"
60 #if !defined(MBEDTLS_ECP_ALT)
62 #if defined(MBEDTLS_PLATFORM_C)
63 #include "mbedtls/platform.h"
67 #define mbedtls_printf printf
68 #define mbedtls_calloc calloc
69 #define mbedtls_free free
72 #include "mbedtls/ecp_internal.h"
74 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
75 !defined(inline) && !defined(__cplusplus)
76 #define inline __inline
79 #if defined(MBEDTLS_SELF_TEST)
81 * Counts of point addition and doubling, and field multiplications.
82 * Used to test resistance of point multiplication to simple timing attacks.
84 static unsigned long add_count
, dbl_count
, mul_count
;
87 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) || \
88 defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
89 defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
90 defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) || \
91 defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) || \
92 defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) || \
93 defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) || \
94 defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) || \
95 defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
96 defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
97 defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
98 #define ECP_SHORTWEIERSTRASS
101 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) || \
102 defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
103 #define ECP_MONTGOMERY
107 * Curve types: internal for now, might be exposed later
112 ECP_TYPE_SHORT_WEIERSTRASS
, /* y^2 = x^3 + a x + b */
113 ECP_TYPE_MONTGOMERY
, /* y^2 = x^3 + a x^2 + x */
117 * List of supported curves:
119 * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
123 * Curves are listed in order: largest curves first, and for a given size,
124 * fastest curves first. This provides the default order for the SSL module.
126 * Reminder: update profiles in x509_crt.c when adding a new curves!
128 static const mbedtls_ecp_curve_info ecp_supported_curves
[] =
130 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
131 { MBEDTLS_ECP_DP_SECP521R1
, 25, 521, "secp521r1" },
133 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
134 { MBEDTLS_ECP_DP_BP512R1
, 28, 512, "brainpoolP512r1" },
136 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
137 { MBEDTLS_ECP_DP_SECP384R1
, 24, 384, "secp384r1" },
139 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
140 { MBEDTLS_ECP_DP_BP384R1
, 27, 384, "brainpoolP384r1" },
142 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
143 { MBEDTLS_ECP_DP_SECP256R1
, 23, 256, "secp256r1" },
145 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
146 { MBEDTLS_ECP_DP_SECP256K1
, 22, 256, "secp256k1" },
148 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
149 { MBEDTLS_ECP_DP_BP256R1
, 26, 256, "brainpoolP256r1" },
151 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
152 { MBEDTLS_ECP_DP_SECP224R1
, 21, 224, "secp224r1" },
154 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
155 { MBEDTLS_ECP_DP_SECP224K1
, 20, 224, "secp224k1" },
157 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
158 { MBEDTLS_ECP_DP_SECP192R1
, 19, 192, "secp192r1" },
160 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
161 { MBEDTLS_ECP_DP_SECP192K1
, 18, 192, "secp192k1" },
163 { MBEDTLS_ECP_DP_NONE
, 0, 0, NULL
},
166 #define ECP_NB_CURVES sizeof( ecp_supported_curves ) / \
167 sizeof( ecp_supported_curves[0] )
169 static mbedtls_ecp_group_id ecp_supported_grp_id
[ECP_NB_CURVES
];
172 * List of supported curves and associated info
174 const mbedtls_ecp_curve_info
*mbedtls_ecp_curve_list( void )
176 return( ecp_supported_curves
);
180 * List of supported curves, group ID only
182 const mbedtls_ecp_group_id
*mbedtls_ecp_grp_id_list( void )
184 static int init_done
= 0;
189 const mbedtls_ecp_curve_info
*curve_info
;
191 for( curve_info
= mbedtls_ecp_curve_list();
192 curve_info
->grp_id
!= MBEDTLS_ECP_DP_NONE
;
195 ecp_supported_grp_id
[i
++] = curve_info
->grp_id
;
197 ecp_supported_grp_id
[i
] = MBEDTLS_ECP_DP_NONE
;
202 return( ecp_supported_grp_id
);
206 * Get the curve info for the internal identifier
208 const mbedtls_ecp_curve_info
*mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id
)
210 const mbedtls_ecp_curve_info
*curve_info
;
212 for( curve_info
= mbedtls_ecp_curve_list();
213 curve_info
->grp_id
!= MBEDTLS_ECP_DP_NONE
;
216 if( curve_info
->grp_id
== grp_id
)
217 return( curve_info
);
224 * Get the curve info from the TLS identifier
226 const mbedtls_ecp_curve_info
*mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id
)
228 const mbedtls_ecp_curve_info
*curve_info
;
230 for( curve_info
= mbedtls_ecp_curve_list();
231 curve_info
->grp_id
!= MBEDTLS_ECP_DP_NONE
;
234 if( curve_info
->tls_id
== tls_id
)
235 return( curve_info
);
242 * Get the curve info from the name
244 const mbedtls_ecp_curve_info
*mbedtls_ecp_curve_info_from_name( const char *name
)
246 const mbedtls_ecp_curve_info
*curve_info
;
248 for( curve_info
= mbedtls_ecp_curve_list();
249 curve_info
->grp_id
!= MBEDTLS_ECP_DP_NONE
;
252 if( strcmp( curve_info
->name
, name
) == 0 )
253 return( curve_info
);
260 * Get the type of a curve
262 static inline ecp_curve_type
ecp_get_type( const mbedtls_ecp_group
*grp
)
264 if( grp
->G
.X
.p
== NULL
)
265 return( ECP_TYPE_NONE
);
267 if( grp
->G
.Y
.p
== NULL
)
268 return( ECP_TYPE_MONTGOMERY
);
270 return( ECP_TYPE_SHORT_WEIERSTRASS
);
274 * Initialize (the components of) a point
276 void mbedtls_ecp_point_init( mbedtls_ecp_point
*pt
)
281 mbedtls_mpi_init( &pt
->X
);
282 mbedtls_mpi_init( &pt
->Y
);
283 mbedtls_mpi_init( &pt
->Z
);
287 * Initialize (the components of) a group
289 void mbedtls_ecp_group_init( mbedtls_ecp_group
*grp
)
294 memset( grp
, 0, sizeof( mbedtls_ecp_group
) );
298 * Initialize (the components of) a key pair
300 void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair
*key
)
305 mbedtls_ecp_group_init( &key
->grp
);
306 mbedtls_mpi_init( &key
->d
);
307 mbedtls_ecp_point_init( &key
->Q
);
311 * Unallocate (the components of) a point
313 void mbedtls_ecp_point_free( mbedtls_ecp_point
*pt
)
318 mbedtls_mpi_free( &( pt
->X
) );
319 mbedtls_mpi_free( &( pt
->Y
) );
320 mbedtls_mpi_free( &( pt
->Z
) );
324 * Unallocate (the components of) a group
326 void mbedtls_ecp_group_free( mbedtls_ecp_group
*grp
)
335 mbedtls_mpi_free( &grp
->P
);
336 mbedtls_mpi_free( &grp
->A
);
337 mbedtls_mpi_free( &grp
->B
);
338 mbedtls_ecp_point_free( &grp
->G
);
339 mbedtls_mpi_free( &grp
->N
);
344 for( i
= 0; i
< grp
->T_size
; i
++ )
345 mbedtls_ecp_point_free( &grp
->T
[i
] );
346 mbedtls_free( grp
->T
);
349 mbedtls_platform_zeroize( grp
, sizeof( mbedtls_ecp_group
) );
353 * Unallocate (the components of) a key pair
355 void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair
*key
)
360 mbedtls_ecp_group_free( &key
->grp
);
361 mbedtls_mpi_free( &key
->d
);
362 mbedtls_ecp_point_free( &key
->Q
);
366 * Copy the contents of a point
368 int mbedtls_ecp_copy( mbedtls_ecp_point
*P
, const mbedtls_ecp_point
*Q
)
372 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P
->X
, &Q
->X
) );
373 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P
->Y
, &Q
->Y
) );
374 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P
->Z
, &Q
->Z
) );
381 * Copy the contents of a group object
383 int mbedtls_ecp_group_copy( mbedtls_ecp_group
*dst
, const mbedtls_ecp_group
*src
)
385 return mbedtls_ecp_group_load( dst
, src
->id
);
391 int mbedtls_ecp_set_zero( mbedtls_ecp_point
*pt
)
395 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt
->X
, 1 ) );
396 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt
->Y
, 1 ) );
397 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt
->Z
, 0 ) );
404 * Tell if a point is zero
406 int mbedtls_ecp_is_zero( mbedtls_ecp_point
*pt
)
408 return( mbedtls_mpi_cmp_int( &pt
->Z
, 0 ) == 0 );
412 * Compare two points lazyly
414 int mbedtls_ecp_point_cmp( const mbedtls_ecp_point
*P
,
415 const mbedtls_ecp_point
*Q
)
417 if( mbedtls_mpi_cmp_mpi( &P
->X
, &Q
->X
) == 0 &&
418 mbedtls_mpi_cmp_mpi( &P
->Y
, &Q
->Y
) == 0 &&
419 mbedtls_mpi_cmp_mpi( &P
->Z
, &Q
->Z
) == 0 )
424 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
428 * Import a non-zero point from ASCII strings
430 int mbedtls_ecp_point_read_string( mbedtls_ecp_point
*P
, int radix
,
431 const char *x
, const char *y
)
435 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P
->X
, radix
, x
) );
436 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P
->Y
, radix
, y
) );
437 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P
->Z
, 1 ) );
444 * Export a point into unsigned binary data (SEC1 2.3.3)
446 int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group
*grp
, const mbedtls_ecp_point
*P
,
447 int format
, size_t *olen
,
448 unsigned char *buf
, size_t buflen
)
453 if( format
!= MBEDTLS_ECP_PF_UNCOMPRESSED
&&
454 format
!= MBEDTLS_ECP_PF_COMPRESSED
)
455 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
458 * Common case: P == 0
460 if( mbedtls_mpi_cmp_int( &P
->Z
, 0 ) == 0 )
463 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL
);
471 plen
= mbedtls_mpi_size( &grp
->P
);
473 if( format
== MBEDTLS_ECP_PF_UNCOMPRESSED
)
475 *olen
= 2 * plen
+ 1;
478 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL
);
481 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P
->X
, buf
+ 1, plen
) );
482 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P
->Y
, buf
+ 1 + plen
, plen
) );
484 else if( format
== MBEDTLS_ECP_PF_COMPRESSED
)
489 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL
);
491 buf
[0] = 0x02 + mbedtls_mpi_get_bit( &P
->Y
, 0 );
492 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P
->X
, buf
+ 1, plen
) );
500 * Import a point from unsigned binary data (SEC1 2.3.4)
502 int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*pt
,
503 const unsigned char *buf
, size_t ilen
)
509 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
514 return( mbedtls_ecp_set_zero( pt
) );
516 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
519 plen
= mbedtls_mpi_size( &grp
->P
);
522 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE
);
524 if( ilen
!= 2 * plen
+ 1 )
525 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
527 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt
->X
, buf
+ 1, plen
) );
528 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt
->Y
, buf
+ 1 + plen
, plen
) );
529 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt
->Z
, 1 ) );
536 * Import a point from a TLS ECPoint record (RFC 4492)
538 * opaque point <1..2^8-1>;
541 int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*pt
,
542 const unsigned char **buf
, size_t buf_len
)
544 unsigned char data_len
;
545 const unsigned char *buf_start
;
548 * We must have at least two bytes (1 for length, at least one for data)
551 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
553 data_len
= *(*buf
)++;
554 if( data_len
< 1 || data_len
> buf_len
- 1 )
555 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
558 * Save buffer start for read_binary and update buf
563 return mbedtls_ecp_point_read_binary( grp
, pt
, buf_start
, data_len
);
567 * Export a point as a TLS ECPoint record (RFC 4492)
569 * opaque point <1..2^8-1>;
572 int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group
*grp
, const mbedtls_ecp_point
*pt
,
573 int format
, size_t *olen
,
574 unsigned char *buf
, size_t blen
)
579 * buffer length must be at least one, for our length byte
582 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
584 if( ( ret
= mbedtls_ecp_point_write_binary( grp
, pt
, format
,
585 olen
, buf
+ 1, blen
- 1) ) != 0 )
589 * write length to the first byte and update total length
591 buf
[0] = (unsigned char) *olen
;
598 * Set a group from an ECParameters record (RFC 4492)
600 int mbedtls_ecp_tls_read_group( mbedtls_ecp_group
*grp
, const unsigned char **buf
, size_t len
)
603 const mbedtls_ecp_curve_info
*curve_info
;
606 * We expect at least three bytes (see below)
609 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
612 * First byte is curve_type; only named_curve is handled
614 if( *(*buf
)++ != MBEDTLS_ECP_TLS_NAMED_CURVE
)
615 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
618 * Next two bytes are the namedcurve value
624 if( ( curve_info
= mbedtls_ecp_curve_info_from_tls_id( tls_id
) ) == NULL
)
625 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE
);
627 return mbedtls_ecp_group_load( grp
, curve_info
->grp_id
);
631 * Write the ECParameters record corresponding to a group (RFC 4492)
633 int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group
*grp
, size_t *olen
,
634 unsigned char *buf
, size_t blen
)
636 const mbedtls_ecp_curve_info
*curve_info
;
638 if( ( curve_info
= mbedtls_ecp_curve_info_from_grp_id( grp
->id
) ) == NULL
)
639 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
642 * We are going to write 3 bytes (see below)
646 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL
);
649 * First byte is curve_type, always named_curve
651 *buf
++ = MBEDTLS_ECP_TLS_NAMED_CURVE
;
654 * Next two bytes are the namedcurve value
656 buf
[0] = curve_info
->tls_id
>> 8;
657 buf
[1] = curve_info
->tls_id
& 0xFF;
663 * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
664 * See the documentation of struct mbedtls_ecp_group.
666 * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
668 static int ecp_modp( mbedtls_mpi
*N
, const mbedtls_ecp_group
*grp
)
672 if( grp
->modp
== NULL
)
673 return( mbedtls_mpi_mod_mpi( N
, N
, &grp
->P
) );
675 /* N->s < 0 is a much faster test, which fails only if N is 0 */
676 if( ( N
->s
< 0 && mbedtls_mpi_cmp_int( N
, 0 ) != 0 ) ||
677 mbedtls_mpi_bitlen( N
) > 2 * grp
->pbits
)
679 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
682 MBEDTLS_MPI_CHK( grp
->modp( N
) );
684 /* N->s < 0 is a much faster test, which fails only if N is 0 */
685 while( N
->s
< 0 && mbedtls_mpi_cmp_int( N
, 0 ) != 0 )
686 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N
, N
, &grp
->P
) );
688 while( mbedtls_mpi_cmp_mpi( N
, &grp
->P
) >= 0 )
689 /* we known P, N and the result are positive */
690 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N
, N
, &grp
->P
) );
697 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
699 * In order to guarantee that, we need to ensure that operands of
700 * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
701 * bring the result back to this range.
703 * The following macros are shortcuts for doing that.
707 * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
709 #if defined(MBEDTLS_SELF_TEST)
710 #define INC_MUL_COUNT mul_count++;
712 #define INC_MUL_COUNT
715 #define MOD_MUL( N ) do { MBEDTLS_MPI_CHK( ecp_modp( &N, grp ) ); INC_MUL_COUNT } \
719 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
720 * N->s < 0 is a very fast test, which fails only if N is 0
722 #define MOD_SUB( N ) \
723 while( N.s < 0 && mbedtls_mpi_cmp_int( &N, 0 ) != 0 ) \
724 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &N, &N, &grp->P ) )
727 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
728 * We known P, N and the result are positive, so sub_abs is correct, and
731 #define MOD_ADD( N ) \
732 while( mbedtls_mpi_cmp_mpi( &N, &grp->P ) >= 0 ) \
733 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &N, &N, &grp->P ) )
735 #if defined(ECP_SHORTWEIERSTRASS)
737 * For curves in short Weierstrass form, we do all the internal operations in
738 * Jacobian coordinates.
740 * For multiplication, we'll use a comb method with coutermeasueres against
741 * SPA, hence timing attacks.
745 * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
746 * Cost: 1N := 1I + 3M + 1S
748 static int ecp_normalize_jac( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*pt
)
753 if( mbedtls_mpi_cmp_int( &pt
->Z
, 0 ) == 0 )
756 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
757 if ( mbedtls_internal_ecp_grp_capable( grp
) )
759 return mbedtls_internal_ecp_normalize_jac( grp
, pt
);
761 #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
762 mbedtls_mpi_init( &Zi
); mbedtls_mpi_init( &ZZi
);
767 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi
, &pt
->Z
, &grp
->P
) );
768 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi
, &Zi
, &Zi
) ); MOD_MUL( ZZi
);
769 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt
->X
, &pt
->X
, &ZZi
) ); MOD_MUL( pt
->X
);
774 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt
->Y
, &pt
->Y
, &ZZi
) ); MOD_MUL( pt
->Y
);
775 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt
->Y
, &pt
->Y
, &Zi
) ); MOD_MUL( pt
->Y
);
780 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt
->Z
, 1 ) );
784 mbedtls_mpi_free( &Zi
); mbedtls_mpi_free( &ZZi
);
790 * Normalize jacobian coordinates of an array of (pointers to) points,
791 * using Montgomery's trick to perform only one inversion mod P.
792 * (See for example Cohen's "A Course in Computational Algebraic Number
793 * Theory", Algorithm 10.3.4.)
795 * Warning: fails (returning an error) if one of the points is zero!
796 * This should never happen, see choice of w in ecp_mul_comb().
798 * Cost: 1N(t) := 1I + (6t - 3)M + 1S
800 static int ecp_normalize_jac_many( const mbedtls_ecp_group
*grp
,
801 mbedtls_ecp_point
*T
[], size_t t_len
)
805 mbedtls_mpi
*c
, u
, Zi
, ZZi
;
808 return( ecp_normalize_jac( grp
, *T
) );
810 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
811 if ( mbedtls_internal_ecp_grp_capable( grp
) )
813 return mbedtls_internal_ecp_normalize_jac_many(grp
, T
, t_len
);
817 if( ( c
= mbedtls_calloc( t_len
, sizeof( mbedtls_mpi
) ) ) == NULL
)
818 return( MBEDTLS_ERR_ECP_ALLOC_FAILED
);
820 mbedtls_mpi_init( &u
); mbedtls_mpi_init( &Zi
); mbedtls_mpi_init( &ZZi
);
823 * c[i] = Z_0 * ... * Z_i
825 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &c
[0], &T
[0]->Z
) );
826 for( i
= 1; i
< t_len
; i
++ )
828 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &c
[i
], &c
[i
-1], &T
[i
]->Z
) );
833 * u = 1 / (Z_0 * ... * Z_n) mod P
835 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &u
, &c
[t_len
-1], &grp
->P
) );
837 for( i
= t_len
- 1; ; i
-- )
841 * u = 1 / (Z_0 * ... * Z_i) mod P
844 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Zi
, &u
) );
848 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Zi
, &u
, &c
[i
-1] ) ); MOD_MUL( Zi
);
849 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u
, &u
, &T
[i
]->Z
) ); MOD_MUL( u
);
853 * proceed as in normalize()
855 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi
, &Zi
, &Zi
) ); MOD_MUL( ZZi
);
856 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T
[i
]->X
, &T
[i
]->X
, &ZZi
) ); MOD_MUL( T
[i
]->X
);
857 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T
[i
]->Y
, &T
[i
]->Y
, &ZZi
) ); MOD_MUL( T
[i
]->Y
);
858 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T
[i
]->Y
, &T
[i
]->Y
, &Zi
) ); MOD_MUL( T
[i
]->Y
);
861 * Post-precessing: reclaim some memory by shrinking coordinates
862 * - not storing Z (always 1)
863 * - shrinking other coordinates, but still keeping the same number of
864 * limbs as P, as otherwise it will too likely be regrown too fast.
866 MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T
[i
]->X
, grp
->P
.n
) );
867 MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T
[i
]->Y
, grp
->P
.n
) );
868 mbedtls_mpi_free( &T
[i
]->Z
);
876 mbedtls_mpi_free( &u
); mbedtls_mpi_free( &Zi
); mbedtls_mpi_free( &ZZi
);
877 for( i
= 0; i
< t_len
; i
++ )
878 mbedtls_mpi_free( &c
[i
] );
885 * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
886 * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
888 static int ecp_safe_invert_jac( const mbedtls_ecp_group
*grp
,
889 mbedtls_ecp_point
*Q
,
893 unsigned char nonzero
;
896 mbedtls_mpi_init( &mQY
);
898 /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
899 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mQY
, &grp
->P
, &Q
->Y
) );
900 nonzero
= mbedtls_mpi_cmp_int( &Q
->Y
, 0 ) != 0;
901 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &Q
->Y
, &mQY
, inv
& nonzero
) );
904 mbedtls_mpi_free( &mQY
);
910 * Point doubling R = 2 P, Jacobian coordinates
912 * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
914 * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
915 * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
917 * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
919 * Cost: 1D := 3M + 4S (A == 0)
921 * 3M + 6S + 1a otherwise
923 static int ecp_double_jac( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*R
,
924 const mbedtls_ecp_point
*P
)
927 mbedtls_mpi M
, S
, T
, U
;
929 #if defined(MBEDTLS_SELF_TEST)
933 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
934 if ( mbedtls_internal_ecp_grp_capable( grp
) )
936 return mbedtls_internal_ecp_double_jac( grp
, R
, P
);
938 #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
940 mbedtls_mpi_init( &M
); mbedtls_mpi_init( &S
); mbedtls_mpi_init( &T
); mbedtls_mpi_init( &U
);
942 /* Special case for A = -3 */
943 if( grp
->A
.p
== NULL
)
945 /* M = 3(X + Z^2)(X - Z^2) */
946 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
, &P
->Z
, &P
->Z
) ); MOD_MUL( S
);
947 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T
, &P
->X
, &S
) ); MOD_ADD( T
);
948 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U
, &P
->X
, &S
) ); MOD_SUB( U
);
949 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
, &T
, &U
) ); MOD_MUL( S
);
950 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M
, &S
, 3 ) ); MOD_ADD( M
);
955 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
, &P
->X
, &P
->X
) ); MOD_MUL( S
);
956 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M
, &S
, 3 ) ); MOD_ADD( M
);
958 /* Optimize away for "koblitz" curves with A = 0 */
959 if( mbedtls_mpi_cmp_int( &grp
->A
, 0 ) != 0 )
962 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
, &P
->Z
, &P
->Z
) ); MOD_MUL( S
);
963 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T
, &S
, &S
) ); MOD_MUL( T
);
964 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
, &T
, &grp
->A
) ); MOD_MUL( S
);
965 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M
, &M
, &S
) ); MOD_ADD( M
);
970 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T
, &P
->Y
, &P
->Y
) ); MOD_MUL( T
);
971 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T
, 1 ) ); MOD_ADD( T
);
972 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
, &P
->X
, &T
) ); MOD_MUL( S
);
973 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &S
, 1 ) ); MOD_ADD( S
);
976 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U
, &T
, &T
) ); MOD_MUL( U
);
977 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U
, 1 ) ); MOD_ADD( U
);
980 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T
, &M
, &M
) ); MOD_MUL( T
);
981 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T
, &T
, &S
) ); MOD_SUB( T
);
982 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T
, &T
, &S
) ); MOD_SUB( T
);
984 /* S = M(S - T) - U */
985 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S
, &S
, &T
) ); MOD_SUB( S
);
986 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
, &S
, &M
) ); MOD_MUL( S
);
987 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S
, &S
, &U
) ); MOD_SUB( S
);
990 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U
, &P
->Y
, &P
->Z
) ); MOD_MUL( U
);
991 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U
, 1 ) ); MOD_ADD( U
);
993 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R
->X
, &T
) );
994 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R
->Y
, &S
) );
995 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R
->Z
, &U
) );
998 mbedtls_mpi_free( &M
); mbedtls_mpi_free( &S
); mbedtls_mpi_free( &T
); mbedtls_mpi_free( &U
);
1004 * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1006 * The coordinates of Q must be normalized (= affine),
1007 * but those of P don't need to. R is not normalized.
1009 * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1010 * None of these cases can happen as intermediate step in ecp_mul_comb():
1011 * - at each step, P, Q and R are multiples of the base point, the factor
1012 * being less than its order, so none of them is zero;
1013 * - Q is an odd multiple of the base point, P an even multiple,
1014 * due to the choice of precomputed points in the modified comb method.
1015 * So branches for these cases do not leak secret information.
1017 * We accept Q->Z being unset (saving memory in tables) as meaning 1.
1019 * Cost: 1A := 8M + 3S
1021 static int ecp_add_mixed( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*R
,
1022 const mbedtls_ecp_point
*P
, const mbedtls_ecp_point
*Q
)
1025 mbedtls_mpi T1
, T2
, T3
, T4
, X
, Y
, Z
;
1027 #if defined(MBEDTLS_SELF_TEST)
1031 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1032 if ( mbedtls_internal_ecp_grp_capable( grp
) )
1034 return mbedtls_internal_ecp_add_mixed( grp
, R
, P
, Q
);
1036 #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1039 * Trivial cases: P == 0 or Q == 0 (case 1)
1041 if( mbedtls_mpi_cmp_int( &P
->Z
, 0 ) == 0 )
1042 return( mbedtls_ecp_copy( R
, Q
) );
1044 if( Q
->Z
.p
!= NULL
&& mbedtls_mpi_cmp_int( &Q
->Z
, 0 ) == 0 )
1045 return( mbedtls_ecp_copy( R
, P
) );
1048 * Make sure Q coordinates are normalized
1050 if( Q
->Z
.p
!= NULL
&& mbedtls_mpi_cmp_int( &Q
->Z
, 1 ) != 0 )
1051 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
1053 mbedtls_mpi_init( &T1
); mbedtls_mpi_init( &T2
); mbedtls_mpi_init( &T3
); mbedtls_mpi_init( &T4
);
1054 mbedtls_mpi_init( &X
); mbedtls_mpi_init( &Y
); mbedtls_mpi_init( &Z
);
1056 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1
, &P
->Z
, &P
->Z
) ); MOD_MUL( T1
);
1057 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2
, &T1
, &P
->Z
) ); MOD_MUL( T2
);
1058 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1
, &T1
, &Q
->X
) ); MOD_MUL( T1
);
1059 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2
, &T2
, &Q
->Y
) ); MOD_MUL( T2
);
1060 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T1
, &T1
, &P
->X
) ); MOD_SUB( T1
);
1061 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T2
, &T2
, &P
->Y
) ); MOD_SUB( T2
);
1063 /* Special cases (2) and (3) */
1064 if( mbedtls_mpi_cmp_int( &T1
, 0 ) == 0 )
1066 if( mbedtls_mpi_cmp_int( &T2
, 0 ) == 0 )
1068 ret
= ecp_double_jac( grp
, R
, P
);
1073 ret
= mbedtls_ecp_set_zero( R
);
1078 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Z
, &P
->Z
, &T1
) ); MOD_MUL( Z
);
1079 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3
, &T1
, &T1
) ); MOD_MUL( T3
);
1080 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4
, &T3
, &T1
) ); MOD_MUL( T4
);
1081 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3
, &T3
, &P
->X
) ); MOD_MUL( T3
);
1082 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1
, &T3
, 2 ) ); MOD_ADD( T1
);
1083 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X
, &T2
, &T2
) ); MOD_MUL( X
);
1084 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X
, &X
, &T1
) ); MOD_SUB( X
);
1085 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X
, &X
, &T4
) ); MOD_SUB( X
);
1086 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T3
, &T3
, &X
) ); MOD_SUB( T3
);
1087 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3
, &T3
, &T2
) ); MOD_MUL( T3
);
1088 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4
, &T4
, &P
->Y
) ); MOD_MUL( T4
);
1089 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &Y
, &T3
, &T4
) ); MOD_SUB( Y
);
1091 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R
->X
, &X
) );
1092 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R
->Y
, &Y
) );
1093 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R
->Z
, &Z
) );
1097 mbedtls_mpi_free( &T1
); mbedtls_mpi_free( &T2
); mbedtls_mpi_free( &T3
); mbedtls_mpi_free( &T4
);
1098 mbedtls_mpi_free( &X
); mbedtls_mpi_free( &Y
); mbedtls_mpi_free( &Z
);
1104 * Randomize jacobian coordinates:
1105 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1106 * This is sort of the reverse operation of ecp_normalize_jac().
1108 * This countermeasure was first suggested in [2].
1110 static int ecp_randomize_jac( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*pt
,
1111 int (*f_rng
)(void *, unsigned char *, size_t), void *p_rng
)
1118 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1119 if ( mbedtls_internal_ecp_grp_capable( grp
) )
1121 return mbedtls_internal_ecp_randomize_jac( grp
, pt
, f_rng
, p_rng
);
1123 #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1125 p_size
= ( grp
->pbits
+ 7 ) / 8;
1126 mbedtls_mpi_init( &l
); mbedtls_mpi_init( &ll
);
1128 /* Generate l such that 1 < l < p */
1131 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l
, p_size
, f_rng
, p_rng
) );
1133 while( mbedtls_mpi_cmp_mpi( &l
, &grp
->P
) >= 0 )
1134 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l
, 1 ) );
1137 return( MBEDTLS_ERR_ECP_RANDOM_FAILED
);
1139 while( mbedtls_mpi_cmp_int( &l
, 1 ) <= 0 );
1142 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt
->Z
, &pt
->Z
, &l
) ); MOD_MUL( pt
->Z
);
1145 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll
, &l
, &l
) ); MOD_MUL( ll
);
1146 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt
->X
, &pt
->X
, &ll
) ); MOD_MUL( pt
->X
);
1149 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll
, &ll
, &l
) ); MOD_MUL( ll
);
1150 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt
->Y
, &pt
->Y
, &ll
) ); MOD_MUL( pt
->Y
);
1153 mbedtls_mpi_free( &l
); mbedtls_mpi_free( &ll
);
1159 * Check and define parameters used by the comb method (see below for details)
1161 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1162 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1165 /* d = ceil( n / w ) */
1166 #define COMB_MAX_D ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2
1168 /* number of precomputed points */
1169 #define COMB_MAX_PRE ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) )
1172 * Compute the representation of m that will be used with our comb method.
1174 * The basic comb method is described in GECC 3.44 for example. We use a
1175 * modified version that provides resistance to SPA by avoiding zero
1176 * digits in the representation as in [3]. We modify the method further by
1177 * requiring that all K_i be odd, which has the small cost that our
1178 * representation uses one more K_i, due to carries.
1180 * Also, for the sake of compactness, only the seven low-order bits of x[i]
1181 * are used to represent K_i, and the msb of x[i] encodes the the sign (s_i in
1182 * the paper): it is set if and only if if s_i == -1;
1184 * Calling conventions:
1185 * - x is an array of size d + 1
1186 * - w is the size, ie number of teeth, of the comb, and must be between
1187 * 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1188 * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1189 * (the result will be incorrect if these assumptions are not satisfied)
1191 static void ecp_comb_fixed( unsigned char x
[], size_t d
,
1192 unsigned char w
, const mbedtls_mpi
*m
)
1195 unsigned char c
, cc
, adjust
;
1197 memset( x
, 0, d
+1 );
1199 /* First get the classical comb values (except for x_d = 0) */
1200 for( i
= 0; i
< d
; i
++ )
1201 for( j
= 0; j
< w
; j
++ )
1202 x
[i
] |= mbedtls_mpi_get_bit( m
, i
+ d
* j
) << j
;
1204 /* Now make sure x_1 .. x_d are odd */
1206 for( i
= 1; i
<= d
; i
++ )
1208 /* Add carry and update it */
1213 /* Adjust if needed, avoiding branches */
1214 adjust
= 1 - ( x
[i
] & 0x01 );
1215 c
|= x
[i
] & ( x
[i
-1] * adjust
);
1216 x
[i
] = x
[i
] ^ ( x
[i
-1] * adjust
);
1217 x
[i
-1] |= adjust
<< 7;
1222 * Precompute points for the comb method
1224 * If i = i_{w-1} ... i_1 is the binary representation of i, then
1225 * T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P
1227 * T must be able to hold 2^{w - 1} elements
1229 * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1231 static int ecp_precompute_comb( const mbedtls_ecp_group
*grp
,
1232 mbedtls_ecp_point T
[], const mbedtls_ecp_point
*P
,
1233 unsigned char w
, size_t d
)
1238 mbedtls_ecp_point
*cur
, *TT
[COMB_MAX_PRE
- 1];
1242 * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1244 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T
[0], P
) );
1247 for( i
= 1; i
< ( 1U << ( w
- 1 ) ); i
<<= 1 )
1250 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur
, T
+ ( i
>> 1 ) ) );
1251 for( j
= 0; j
< d
; j
++ )
1252 MBEDTLS_MPI_CHK( ecp_double_jac( grp
, cur
, cur
) );
1257 MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp
, TT
, k
) );
1260 * Compute the remaining ones using the minimal number of additions
1261 * Be careful to update T[2^l] only after using it!
1264 for( i
= 1; i
< ( 1U << ( w
- 1 ) ); i
<<= 1 )
1269 MBEDTLS_MPI_CHK( ecp_add_mixed( grp
, &T
[i
+ j
], &T
[j
], &T
[i
] ) );
1270 TT
[k
++] = &T
[i
+ j
];
1274 MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp
, TT
, k
) );
1282 * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
1284 static int ecp_select_comb( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*R
,
1285 const mbedtls_ecp_point T
[], unsigned char t_len
,
1289 unsigned char ii
, j
;
1291 /* Ignore the "sign" bit and scale down */
1292 ii
= ( i
& 0x7Fu
) >> 1;
1294 /* Read the whole table to thwart cache-based timing attacks */
1295 for( j
= 0; j
< t_len
; j
++ )
1297 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R
->X
, &T
[j
].X
, j
== ii
) );
1298 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R
->Y
, &T
[j
].Y
, j
== ii
) );
1301 /* Safely invert result if i is "negative" */
1302 MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp
, R
, i
>> 7 ) );
1309 * Core multiplication algorithm for the (modified) comb method.
1310 * This part is actually common with the basic comb method (GECC 3.44)
1312 * Cost: d A + d D + 1 R
1314 static int ecp_mul_comb_core( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*R
,
1315 const mbedtls_ecp_point T
[], unsigned char t_len
,
1316 const unsigned char x
[], size_t d
,
1317 int (*f_rng
)(void *, unsigned char *, size_t),
1321 mbedtls_ecp_point Txi
;
1324 mbedtls_ecp_point_init( &Txi
);
1326 /* Start with a non-zero point and randomize its coordinates */
1328 MBEDTLS_MPI_CHK( ecp_select_comb( grp
, R
, T
, t_len
, x
[i
] ) );
1329 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R
->Z
, 1 ) );
1331 MBEDTLS_MPI_CHK( ecp_randomize_jac( grp
, R
, f_rng
, p_rng
) );
1335 MBEDTLS_MPI_CHK( ecp_double_jac( grp
, R
, R
) );
1336 MBEDTLS_MPI_CHK( ecp_select_comb( grp
, &Txi
, T
, t_len
, x
[i
] ) );
1337 MBEDTLS_MPI_CHK( ecp_add_mixed( grp
, R
, R
, &Txi
) );
1342 mbedtls_ecp_point_free( &Txi
);
1348 * Multiplication using the comb method,
1349 * for curves in short Weierstrass form
1351 static int ecp_mul_comb( mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*R
,
1352 const mbedtls_mpi
*m
, const mbedtls_ecp_point
*P
,
1353 int (*f_rng
)(void *, unsigned char *, size_t),
1357 unsigned char w
, m_is_odd
, p_eq_g
, pre_len
, i
;
1359 unsigned char k
[COMB_MAX_D
+ 1];
1360 mbedtls_ecp_point
*T
;
1363 mbedtls_mpi_init( &M
);
1364 mbedtls_mpi_init( &mm
);
1366 /* we need N to be odd to trnaform m in an odd number, check now */
1367 if( mbedtls_mpi_get_bit( &grp
->N
, 0 ) != 1 )
1368 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
1371 * Minimize the number of multiplications, that is minimize
1372 * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
1373 * (see costs of the various parts, with 1S = 1M)
1375 w
= grp
->nbits
>= 384 ? 5 : 4;
1378 * If P == G, pre-compute a bit more, since this may be re-used later.
1379 * Just adding one avoids upping the cost of the first mul too much,
1380 * and the memory cost too.
1382 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
1383 p_eq_g
= ( mbedtls_mpi_cmp_mpi( &P
->Y
, &grp
->G
.Y
) == 0 &&
1384 mbedtls_mpi_cmp_mpi( &P
->X
, &grp
->G
.X
) == 0 );
1392 * Make sure w is within bounds.
1393 * (The last test is useful only for very small curves in the test suite.)
1395 if( w
> MBEDTLS_ECP_WINDOW_SIZE
)
1396 w
= MBEDTLS_ECP_WINDOW_SIZE
;
1397 if( w
>= grp
->nbits
)
1400 /* Other sizes that depend on w */
1401 pre_len
= 1U << ( w
- 1 );
1402 d
= ( grp
->nbits
+ w
- 1 ) / w
;
1405 * Prepare precomputed points: if P == G we want to
1406 * use grp->T if already initialized, or initialize it.
1408 T
= p_eq_g
? grp
->T
: NULL
;
1412 T
= mbedtls_calloc( pre_len
, sizeof( mbedtls_ecp_point
) );
1415 ret
= MBEDTLS_ERR_ECP_ALLOC_FAILED
;
1419 MBEDTLS_MPI_CHK( ecp_precompute_comb( grp
, T
, P
, w
, d
) );
1424 grp
->T_size
= pre_len
;
1429 * Make sure M is odd (M = m or M = N - m, since N is odd)
1430 * using the fact that m * P = - (N - m) * P
1432 m_is_odd
= ( mbedtls_mpi_get_bit( m
, 0 ) == 1 );
1433 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M
, m
) );
1434 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm
, &grp
->N
, m
) );
1435 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M
, &mm
, ! m_is_odd
) );
1438 * Go for comb multiplication, R = M * P
1440 ecp_comb_fixed( k
, d
, w
, &M
);
1441 MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp
, R
, T
, pre_len
, k
, d
, f_rng
, p_rng
) );
1444 * Now get m * P from M * P and normalize it
1446 MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp
, R
, ! m_is_odd
) );
1447 MBEDTLS_MPI_CHK( ecp_normalize_jac( grp
, R
) );
1451 /* There are two cases where T is not stored in grp:
1453 * - An intermediate operation failed before setting grp->T
1454 * In either case, T must be freed.
1456 if( T
!= NULL
&& T
!= grp
->T
)
1458 for( i
= 0; i
< pre_len
; i
++ )
1459 mbedtls_ecp_point_free( &T
[i
] );
1463 mbedtls_mpi_free( &M
);
1464 mbedtls_mpi_free( &mm
);
1467 mbedtls_ecp_point_free( R
);
1472 #endif /* ECP_SHORTWEIERSTRASS */
1474 #if defined(ECP_MONTGOMERY)
1476 * For Montgomery curves, we do all the internal arithmetic in projective
1477 * coordinates. Import/export of points uses only the x coordinates, which is
1478 * internaly represented as X / Z.
1480 * For scalar multiplication, we'll use a Montgomery ladder.
1484 * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
1487 static int ecp_normalize_mxz( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*P
)
1491 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
1492 if ( mbedtls_internal_ecp_grp_capable( grp
) )
1494 return mbedtls_internal_ecp_normalize_mxz( grp
, P
);
1496 #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
1498 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P
->Z
, &P
->Z
, &grp
->P
) );
1499 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P
->X
, &P
->X
, &P
->Z
) ); MOD_MUL( P
->X
);
1500 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P
->Z
, 1 ) );
1507 * Randomize projective x/z coordinates:
1508 * (X, Z) -> (l X, l Z) for random l
1509 * This is sort of the reverse operation of ecp_normalize_mxz().
1511 * This countermeasure was first suggested in [2].
1514 static int ecp_randomize_mxz( const mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*P
,
1515 int (*f_rng
)(void *, unsigned char *, size_t), void *p_rng
)
1522 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
1523 if ( mbedtls_internal_ecp_grp_capable( grp
) )
1525 return mbedtls_internal_ecp_randomize_mxz( grp
, P
, f_rng
, p_rng
);
1527 #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
1529 p_size
= ( grp
->pbits
+ 7 ) / 8;
1530 mbedtls_mpi_init( &l
);
1532 /* Generate l such that 1 < l < p */
1535 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l
, p_size
, f_rng
, p_rng
) );
1537 while( mbedtls_mpi_cmp_mpi( &l
, &grp
->P
) >= 0 )
1538 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l
, 1 ) );
1541 return( MBEDTLS_ERR_ECP_RANDOM_FAILED
);
1543 while( mbedtls_mpi_cmp_int( &l
, 1 ) <= 0 );
1545 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P
->X
, &P
->X
, &l
) ); MOD_MUL( P
->X
);
1546 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P
->Z
, &P
->Z
, &l
) ); MOD_MUL( P
->Z
);
1549 mbedtls_mpi_free( &l
);
1555 * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
1556 * for Montgomery curves in x/z coordinates.
1558 * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
1565 * and eliminating temporary variables tO, ..., t4.
1569 static int ecp_double_add_mxz( const mbedtls_ecp_group
*grp
,
1570 mbedtls_ecp_point
*R
, mbedtls_ecp_point
*S
,
1571 const mbedtls_ecp_point
*P
, const mbedtls_ecp_point
*Q
,
1572 const mbedtls_mpi
*d
)
1575 mbedtls_mpi A
, AA
, B
, BB
, E
, C
, D
, DA
, CB
;
1577 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
1578 if ( mbedtls_internal_ecp_grp_capable( grp
) )
1580 return mbedtls_internal_ecp_double_add_mxz( grp
, R
, S
, P
, Q
, d
);
1582 #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
1584 mbedtls_mpi_init( &A
); mbedtls_mpi_init( &AA
); mbedtls_mpi_init( &B
);
1585 mbedtls_mpi_init( &BB
); mbedtls_mpi_init( &E
); mbedtls_mpi_init( &C
);
1586 mbedtls_mpi_init( &D
); mbedtls_mpi_init( &DA
); mbedtls_mpi_init( &CB
);
1588 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &A
, &P
->X
, &P
->Z
) ); MOD_ADD( A
);
1589 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &AA
, &A
, &A
) ); MOD_MUL( AA
);
1590 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &B
, &P
->X
, &P
->Z
) ); MOD_SUB( B
);
1591 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &BB
, &B
, &B
) ); MOD_MUL( BB
);
1592 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &E
, &AA
, &BB
) ); MOD_SUB( E
);
1593 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &C
, &Q
->X
, &Q
->Z
) ); MOD_ADD( C
);
1594 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &D
, &Q
->X
, &Q
->Z
) ); MOD_SUB( D
);
1595 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DA
, &D
, &A
) ); MOD_MUL( DA
);
1596 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &CB
, &C
, &B
) ); MOD_MUL( CB
);
1597 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &S
->X
, &DA
, &CB
) ); MOD_MUL( S
->X
);
1598 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
->X
, &S
->X
, &S
->X
) ); MOD_MUL( S
->X
);
1599 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S
->Z
, &DA
, &CB
) ); MOD_SUB( S
->Z
);
1600 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
->Z
, &S
->Z
, &S
->Z
) ); MOD_MUL( S
->Z
);
1601 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S
->Z
, d
, &S
->Z
) ); MOD_MUL( S
->Z
);
1602 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R
->X
, &AA
, &BB
) ); MOD_MUL( R
->X
);
1603 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R
->Z
, &grp
->A
, &E
) ); MOD_MUL( R
->Z
);
1604 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &R
->Z
, &BB
, &R
->Z
) ); MOD_ADD( R
->Z
);
1605 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R
->Z
, &E
, &R
->Z
) ); MOD_MUL( R
->Z
);
1608 mbedtls_mpi_free( &A
); mbedtls_mpi_free( &AA
); mbedtls_mpi_free( &B
);
1609 mbedtls_mpi_free( &BB
); mbedtls_mpi_free( &E
); mbedtls_mpi_free( &C
);
1610 mbedtls_mpi_free( &D
); mbedtls_mpi_free( &DA
); mbedtls_mpi_free( &CB
);
1616 * Multiplication with Montgomery ladder in x/z coordinates,
1617 * for curves in Montgomery form
1619 static int ecp_mul_mxz( mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*R
,
1620 const mbedtls_mpi
*m
, const mbedtls_ecp_point
*P
,
1621 int (*f_rng
)(void *, unsigned char *, size_t),
1627 mbedtls_ecp_point RP
;
1630 mbedtls_ecp_point_init( &RP
); mbedtls_mpi_init( &PX
);
1632 /* Save PX and read from P before writing to R, in case P == R */
1633 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX
, &P
->X
) );
1634 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP
, P
) );
1636 /* Set R to zero in modified x/z coordinates */
1637 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R
->X
, 1 ) );
1638 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R
->Z
, 0 ) );
1639 mbedtls_mpi_free( &R
->Y
);
1641 /* RP.X might be sligtly larger than P, so reduce it */
1644 /* Randomize coordinates of the starting point */
1646 MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp
, &RP
, f_rng
, p_rng
) );
1648 /* Loop invariant: R = result so far, RP = R + P */
1649 i
= mbedtls_mpi_bitlen( m
); /* one past the (zero-based) most significant bit */
1652 b
= mbedtls_mpi_get_bit( m
, i
);
1654 * if (b) R = 2R + P else R = 2R,
1656 * if (b) double_add( RP, R, RP, R )
1657 * else double_add( R, RP, R, RP )
1658 * but using safe conditional swaps to avoid leaks
1660 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R
->X
, &RP
.X
, b
) );
1661 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R
->Z
, &RP
.Z
, b
) );
1662 MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp
, R
, &RP
, R
, &RP
, &PX
) );
1663 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R
->X
, &RP
.X
, b
) );
1664 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R
->Z
, &RP
.Z
, b
) );
1667 MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp
, R
) );
1670 mbedtls_ecp_point_free( &RP
); mbedtls_mpi_free( &PX
);
1675 #endif /* ECP_MONTGOMERY */
1678 * Multiplication R = m * P
1680 int mbedtls_ecp_mul( mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*R
,
1681 const mbedtls_mpi
*m
, const mbedtls_ecp_point
*P
,
1682 int (*f_rng
)(void *, unsigned char *, size_t), void *p_rng
)
1684 int ret
= MBEDTLS_ERR_ECP_BAD_INPUT_DATA
;
1685 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1686 char is_grp_capable
= 0;
1689 /* Common sanity checks */
1690 if( mbedtls_mpi_cmp_int( &P
->Z
, 1 ) != 0 )
1691 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
1693 if( ( ret
= mbedtls_ecp_check_privkey( grp
, m
) ) != 0 ||
1694 ( ret
= mbedtls_ecp_check_pubkey( grp
, P
) ) != 0 )
1697 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1698 if ( is_grp_capable
= mbedtls_internal_ecp_grp_capable( grp
) )
1700 MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp
) );
1703 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
1704 #if defined(ECP_MONTGOMERY)
1705 if( ecp_get_type( grp
) == ECP_TYPE_MONTGOMERY
)
1706 ret
= ecp_mul_mxz( grp
, R
, m
, P
, f_rng
, p_rng
);
1709 #if defined(ECP_SHORTWEIERSTRASS)
1710 if( ecp_get_type( grp
) == ECP_TYPE_SHORT_WEIERSTRASS
)
1711 ret
= ecp_mul_comb( grp
, R
, m
, P
, f_rng
, p_rng
);
1714 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1717 if ( is_grp_capable
)
1719 mbedtls_internal_ecp_free( grp
);
1722 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
1726 #if defined(ECP_SHORTWEIERSTRASS)
1728 * Check that an affine point is valid as a public key,
1729 * short weierstrass curves (SEC1 3.2.3.1)
1731 static int ecp_check_pubkey_sw( const mbedtls_ecp_group
*grp
, const mbedtls_ecp_point
*pt
)
1734 mbedtls_mpi YY
, RHS
;
1736 /* pt coordinates must be normalized for our checks */
1737 if( mbedtls_mpi_cmp_int( &pt
->X
, 0 ) < 0 ||
1738 mbedtls_mpi_cmp_int( &pt
->Y
, 0 ) < 0 ||
1739 mbedtls_mpi_cmp_mpi( &pt
->X
, &grp
->P
) >= 0 ||
1740 mbedtls_mpi_cmp_mpi( &pt
->Y
, &grp
->P
) >= 0 )
1741 return( MBEDTLS_ERR_ECP_INVALID_KEY
);
1743 mbedtls_mpi_init( &YY
); mbedtls_mpi_init( &RHS
);
1747 * RHS = X (X^2 + A) + B = X^3 + A X + B
1749 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &YY
, &pt
->Y
, &pt
->Y
) ); MOD_MUL( YY
);
1750 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS
, &pt
->X
, &pt
->X
) ); MOD_MUL( RHS
);
1752 /* Special case for A = -3 */
1753 if( grp
->A
.p
== NULL
)
1755 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &RHS
, &RHS
, 3 ) ); MOD_SUB( RHS
);
1759 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS
, &RHS
, &grp
->A
) ); MOD_ADD( RHS
);
1762 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS
, &RHS
, &pt
->X
) ); MOD_MUL( RHS
);
1763 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS
, &RHS
, &grp
->B
) ); MOD_ADD( RHS
);
1765 if( mbedtls_mpi_cmp_mpi( &YY
, &RHS
) != 0 )
1766 ret
= MBEDTLS_ERR_ECP_INVALID_KEY
;
1770 mbedtls_mpi_free( &YY
); mbedtls_mpi_free( &RHS
);
1774 #endif /* ECP_SHORTWEIERSTRASS */
1777 * R = m * P with shortcuts for m == 1 and m == -1
1778 * NOT constant-time - ONLY for short Weierstrass!
1780 static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group
*grp
,
1781 mbedtls_ecp_point
*R
,
1782 const mbedtls_mpi
*m
,
1783 const mbedtls_ecp_point
*P
)
1787 if( mbedtls_mpi_cmp_int( m
, 1 ) == 0 )
1789 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R
, P
) );
1791 else if( mbedtls_mpi_cmp_int( m
, -1 ) == 0 )
1793 MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R
, P
) );
1794 if( mbedtls_mpi_cmp_int( &R
->Y
, 0 ) != 0 )
1795 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R
->Y
, &grp
->P
, &R
->Y
) );
1799 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp
, R
, m
, P
, NULL
, NULL
) );
1807 * Linear combination
1810 int mbedtls_ecp_muladd( mbedtls_ecp_group
*grp
, mbedtls_ecp_point
*R
,
1811 const mbedtls_mpi
*m
, const mbedtls_ecp_point
*P
,
1812 const mbedtls_mpi
*n
, const mbedtls_ecp_point
*Q
)
1815 mbedtls_ecp_point mP
;
1816 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1817 char is_grp_capable
= 0;
1820 if( ecp_get_type( grp
) != ECP_TYPE_SHORT_WEIERSTRASS
)
1821 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE
);
1823 mbedtls_ecp_point_init( &mP
);
1825 MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp
, &mP
, m
, P
) );
1826 MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp
, R
, n
, Q
) );
1828 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1829 if ( is_grp_capable
= mbedtls_internal_ecp_grp_capable( grp
) )
1831 MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp
) );
1834 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
1835 MBEDTLS_MPI_CHK( ecp_add_mixed( grp
, R
, &mP
, R
) );
1836 MBEDTLS_MPI_CHK( ecp_normalize_jac( grp
, R
) );
1840 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
1841 if ( is_grp_capable
)
1843 mbedtls_internal_ecp_free( grp
);
1846 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
1847 mbedtls_ecp_point_free( &mP
);
1853 #if defined(ECP_MONTGOMERY)
1855 * Check validity of a public key for Montgomery curves with x-only schemes
1857 static int ecp_check_pubkey_mx( const mbedtls_ecp_group
*grp
, const mbedtls_ecp_point
*pt
)
1859 /* [Curve25519 p. 5] Just check X is the correct number of bytes */
1860 /* Allow any public value, if it's too big then we'll just reduce it mod p
1861 * (RFC 7748 sec. 5 para. 3). */
1862 if( mbedtls_mpi_size( &pt
->X
) > ( grp
->nbits
+ 7 ) / 8 )
1863 return( MBEDTLS_ERR_ECP_INVALID_KEY
);
1867 #endif /* ECP_MONTGOMERY */
1870 * Check that a point is valid as a public key
1872 int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group
*grp
, const mbedtls_ecp_point
*pt
)
1874 /* Must use affine coordinates */
1875 if( mbedtls_mpi_cmp_int( &pt
->Z
, 1 ) != 0 )
1876 return( MBEDTLS_ERR_ECP_INVALID_KEY
);
1878 #if defined(ECP_MONTGOMERY)
1879 if( ecp_get_type( grp
) == ECP_TYPE_MONTGOMERY
)
1880 return( ecp_check_pubkey_mx( grp
, pt
) );
1882 #if defined(ECP_SHORTWEIERSTRASS)
1883 if( ecp_get_type( grp
) == ECP_TYPE_SHORT_WEIERSTRASS
)
1884 return( ecp_check_pubkey_sw( grp
, pt
) );
1886 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
1890 * Check that an mbedtls_mpi is valid as a private key
1892 int mbedtls_ecp_check_privkey( const mbedtls_ecp_group
*grp
, const mbedtls_mpi
*d
)
1894 #if defined(ECP_MONTGOMERY)
1895 if( ecp_get_type( grp
) == ECP_TYPE_MONTGOMERY
)
1897 /* see RFC 7748 sec. 5 para. 5 */
1898 if( mbedtls_mpi_get_bit( d
, 0 ) != 0 ||
1899 mbedtls_mpi_get_bit( d
, 1 ) != 0 ||
1900 mbedtls_mpi_bitlen( d
) - 1 != grp
->nbits
) /* mbedtls_mpi_bitlen is one-based! */
1901 return( MBEDTLS_ERR_ECP_INVALID_KEY
);
1903 /* see [Curve25519] page 5 */
1904 if( grp
->nbits
== 254 && mbedtls_mpi_get_bit( d
, 2 ) != 0 )
1905 return( MBEDTLS_ERR_ECP_INVALID_KEY
);
1909 #endif /* ECP_MONTGOMERY */
1910 #if defined(ECP_SHORTWEIERSTRASS)
1911 if( ecp_get_type( grp
) == ECP_TYPE_SHORT_WEIERSTRASS
)
1914 if( mbedtls_mpi_cmp_int( d
, 1 ) < 0 ||
1915 mbedtls_mpi_cmp_mpi( d
, &grp
->N
) >= 0 )
1916 return( MBEDTLS_ERR_ECP_INVALID_KEY
);
1920 #endif /* ECP_SHORTWEIERSTRASS */
1922 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
1926 * Generate a keypair with configurable base point
1928 int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group
*grp
,
1929 const mbedtls_ecp_point
*G
,
1930 mbedtls_mpi
*d
, mbedtls_ecp_point
*Q
,
1931 int (*f_rng
)(void *, unsigned char *, size_t),
1935 size_t n_size
= ( grp
->nbits
+ 7 ) / 8;
1937 #if defined(ECP_MONTGOMERY)
1938 if( ecp_get_type( grp
) == ECP_TYPE_MONTGOMERY
)
1944 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d
, n_size
, f_rng
, p_rng
) );
1945 } while( mbedtls_mpi_bitlen( d
) == 0);
1947 /* Make sure the most significant bit is nbits */
1948 b
= mbedtls_mpi_bitlen( d
) - 1; /* mbedtls_mpi_bitlen is one-based */
1949 if( b
> grp
->nbits
)
1950 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d
, b
- grp
->nbits
) );
1952 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d
, grp
->nbits
, 1 ) );
1954 /* Make sure the last two bits are unset for Curve448, three bits for
1956 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d
, 0, 0 ) );
1957 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d
, 1, 0 ) );
1958 if( grp
->nbits
== 254 )
1960 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d
, 2, 0 ) );
1964 #endif /* ECP_MONTGOMERY */
1965 #if defined(ECP_SHORTWEIERSTRASS)
1966 if( ecp_get_type( grp
) == ECP_TYPE_SHORT_WEIERSTRASS
)
1968 /* SEC1 3.2.1: Generate d such that 1 <= n < N */
1972 * Match the procedure given in RFC 6979 (deterministic ECDSA):
1973 * - use the same byte ordering;
1974 * - keep the leftmost nbits bits of the generated octet string;
1975 * - try until result is in the desired range.
1976 * This also avoids any biais, which is especially important for ECDSA.
1980 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d
, n_size
, f_rng
, p_rng
) );
1981 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d
, 8 * n_size
- grp
->nbits
) );
1984 * Each try has at worst a probability 1/2 of failing (the msb has
1985 * a probability 1/2 of being 0, and then the result will be < N),
1986 * so after 30 tries failure probability is a most 2**(-30).
1988 * For most curves, 1 try is enough with overwhelming probability,
1989 * since N starts with a lot of 1s in binary, but some curves
1990 * such as secp224k1 are actually very close to the worst case.
1993 return( MBEDTLS_ERR_ECP_RANDOM_FAILED
);
1995 while( mbedtls_mpi_cmp_int( d
, 1 ) < 0 ||
1996 mbedtls_mpi_cmp_mpi( d
, &grp
->N
) >= 0 );
1999 #endif /* ECP_SHORTWEIERSTRASS */
2000 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
2006 return( mbedtls_ecp_mul( grp
, Q
, d
, G
, f_rng
, p_rng
) );
2010 * Generate key pair, wrapper for conventional base point
2012 int mbedtls_ecp_gen_keypair( mbedtls_ecp_group
*grp
,
2013 mbedtls_mpi
*d
, mbedtls_ecp_point
*Q
,
2014 int (*f_rng
)(void *, unsigned char *, size_t),
2017 return( mbedtls_ecp_gen_keypair_base( grp
, &grp
->G
, d
, Q
, f_rng
, p_rng
) );
2021 * Generate a keypair, prettier wrapper
2023 int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id
, mbedtls_ecp_keypair
*key
,
2024 int (*f_rng
)(void *, unsigned char *, size_t), void *p_rng
)
2028 if( ( ret
= mbedtls_ecp_group_load( &key
->grp
, grp_id
) ) != 0 )
2031 return( mbedtls_ecp_gen_keypair( &key
->grp
, &key
->d
, &key
->Q
, f_rng
, p_rng
) );
2035 * Check a public-private key pair
2037 int mbedtls_ecp_check_pub_priv( const mbedtls_ecp_keypair
*pub
, const mbedtls_ecp_keypair
*prv
)
2040 mbedtls_ecp_point Q
;
2041 mbedtls_ecp_group grp
;
2043 if( pub
->grp
.id
== MBEDTLS_ECP_DP_NONE
||
2044 pub
->grp
.id
!= prv
->grp
.id
||
2045 mbedtls_mpi_cmp_mpi( &pub
->Q
.X
, &prv
->Q
.X
) ||
2046 mbedtls_mpi_cmp_mpi( &pub
->Q
.Y
, &prv
->Q
.Y
) ||
2047 mbedtls_mpi_cmp_mpi( &pub
->Q
.Z
, &prv
->Q
.Z
) )
2049 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA
);
2052 mbedtls_ecp_point_init( &Q
);
2053 mbedtls_ecp_group_init( &grp
);
2055 /* mbedtls_ecp_mul() needs a non-const group... */
2056 mbedtls_ecp_group_copy( &grp
, &prv
->grp
);
2058 /* Also checks d is valid */
2059 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp
, &Q
, &prv
->d
, &prv
->grp
.G
, NULL
, NULL
) );
2061 if( mbedtls_mpi_cmp_mpi( &Q
.X
, &prv
->Q
.X
) ||
2062 mbedtls_mpi_cmp_mpi( &Q
.Y
, &prv
->Q
.Y
) ||
2063 mbedtls_mpi_cmp_mpi( &Q
.Z
, &prv
->Q
.Z
) )
2065 ret
= MBEDTLS_ERR_ECP_BAD_INPUT_DATA
;
2070 mbedtls_ecp_point_free( &Q
);
2071 mbedtls_ecp_group_free( &grp
);
2076 #if defined(MBEDTLS_SELF_TEST)
2081 int mbedtls_ecp_self_test( int verbose
)
2085 mbedtls_ecp_group grp
;
2086 mbedtls_ecp_point R
, P
;
2088 unsigned long add_c_prev
, dbl_c_prev
, mul_c_prev
;
2089 /* exponents especially adapted for secp192r1 */
2090 const char *exponents
[] =
2092 "000000000000000000000000000000000000000000000001", /* one */
2093 "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */
2094 "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
2095 "400000000000000000000000000000000000000000000000", /* one and zeros */
2096 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
2097 "555555555555555555555555555555555555555555555555", /* 101010... */
2100 mbedtls_ecp_group_init( &grp
);
2101 mbedtls_ecp_point_init( &R
);
2102 mbedtls_ecp_point_init( &P
);
2103 mbedtls_mpi_init( &m
);
2105 /* Use secp192r1 if available, or any available curve */
2106 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
2107 MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp
, MBEDTLS_ECP_DP_SECP192R1
) );
2109 MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp
, mbedtls_ecp_curve_list()->grp_id
) );
2113 mbedtls_printf( " ECP test #1 (constant op_count, base point G): " );
2115 /* Do a dummy multiplication first to trigger precomputation */
2116 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m
, 2 ) );
2117 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp
, &P
, &m
, &grp
.G
, NULL
, NULL
) );
2122 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m
, 16, exponents
[0] ) );
2123 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp
, &R
, &m
, &grp
.G
, NULL
, NULL
) );
2125 for( i
= 1; i
< sizeof( exponents
) / sizeof( exponents
[0] ); i
++ )
2127 add_c_prev
= add_count
;
2128 dbl_c_prev
= dbl_count
;
2129 mul_c_prev
= mul_count
;
2134 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m
, 16, exponents
[i
] ) );
2135 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp
, &R
, &m
, &grp
.G
, NULL
, NULL
) );
2137 if( add_count
!= add_c_prev
||
2138 dbl_count
!= dbl_c_prev
||
2139 mul_count
!= mul_c_prev
)
2142 mbedtls_printf( "failed (%u)\n", (unsigned int) i
);
2150 mbedtls_printf( "passed\n" );
2153 mbedtls_printf( " ECP test #2 (constant op_count, other point): " );
2154 /* We computed P = 2G last time, use it */
2159 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m
, 16, exponents
[0] ) );
2160 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp
, &R
, &m
, &P
, NULL
, NULL
) );
2162 for( i
= 1; i
< sizeof( exponents
) / sizeof( exponents
[0] ); i
++ )
2164 add_c_prev
= add_count
;
2165 dbl_c_prev
= dbl_count
;
2166 mul_c_prev
= mul_count
;
2171 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m
, 16, exponents
[i
] ) );
2172 MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp
, &R
, &m
, &P
, NULL
, NULL
) );
2174 if( add_count
!= add_c_prev
||
2175 dbl_count
!= dbl_c_prev
||
2176 mul_count
!= mul_c_prev
)
2179 mbedtls_printf( "failed (%u)\n", (unsigned int) i
);
2187 mbedtls_printf( "passed\n" );
2191 if( ret
< 0 && verbose
!= 0 )
2192 mbedtls_printf( "Unexpected error, return code = %08X\n", ret
);
2194 mbedtls_ecp_group_free( &grp
);
2195 mbedtls_ecp_point_free( &R
);
2196 mbedtls_ecp_point_free( &P
);
2197 mbedtls_mpi_free( &m
);
2200 mbedtls_printf( "\n" );
2205 #endif /* MBEDTLS_SELF_TEST */
2207 #endif /* !MBEDTLS_ECP_ALT */
2209 #endif /* MBEDTLS_ECP_C */