1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Routines to support ISO 14443. This includes both the reader software and
9 // the `fake tag' modes. At the moment only the Type B modulation is
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
18 #include "iso14443crc.h"
20 //static void GetSamplesFor14443(int weTx, int n);
22 #define DEMOD_TRACE_SIZE 4096
23 #define READER_TAG_BUFFER_SIZE 2048
24 #define TAG_READER_BUFFER_SIZE 2048
25 #define DEMOD_DMA_BUFFER_SIZE 1024
27 //=============================================================================
28 // An ISO 14443 Type B tag. We listen for commands from the reader, using
29 // a UART kind of thing that's implemented in software. When we get a
30 // frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
31 // If it's good, then we can do something appropriate with it, and send
33 //=============================================================================
35 //-----------------------------------------------------------------------------
36 // Code up a string of octets at layer 2 (including CRC, we don't generate
37 // that here) so that they can be transmitted to the reader. Doesn't transmit
38 // them yet, just leaves them ready to send in ToSend[].
39 //-----------------------------------------------------------------------------
40 static void CodeIso14443bAsTag(const uint8_t *cmd
, int len
)
46 // Transmit a burst of ones, as the initial thing that lets the
47 // reader get phase sync. This (TR1) must be > 80/fs, per spec,
48 // but tag that I've tried (a Paypass) exceeds that by a fair bit,
50 for(i
= 0; i
< 20; i
++) {
58 for(i
= 0; i
< 10; i
++) {
64 for(i
= 0; i
< 2; i
++) {
71 for(i
= 0; i
< len
; i
++) {
82 for(j
= 0; j
< 8; j
++) {
105 for(i
= 0; i
< 10; i
++) {
111 for(i
= 0; i
< 10; i
++) {
118 // Convert from last byte pos to length
121 // Add a few more for slop
125 //-----------------------------------------------------------------------------
126 // The software UART that receives commands from the reader, and its state
128 //-----------------------------------------------------------------------------
132 STATE_GOT_FALLING_EDGE_OF_SOF
,
133 STATE_AWAITING_START_BIT
,
134 STATE_RECEIVING_DATA
,
145 /* Receive & handle a bit coming from the reader.
148 * LED A -> ON once we have received the SOF and are expecting the rest.
149 * LED A -> OFF once we have received EOF or are in error state or unsynced
151 * Returns: true if we received a EOF
152 * false if we are still waiting for some more
154 static int Handle14443UartBit(int bit
)
160 // we went low, so this could be the beginning
162 Uart
.state
= STATE_GOT_FALLING_EDGE_OF_SOF
;
168 case STATE_GOT_FALLING_EDGE_OF_SOF
:
170 if(Uart
.posCnt
== 2) {
172 if(Uart
.bitCnt
>= 10) {
173 // we've seen enough consecutive
174 // zeros that it's a valid SOF
177 Uart
.state
= STATE_AWAITING_START_BIT
;
178 LED_A_ON(); // Indicate we got a valid SOF
180 // didn't stay down long enough
181 // before going high, error
182 Uart
.state
= STATE_ERROR_WAIT
;
185 // do nothing, keep waiting
189 if(Uart
.posCnt
>= 4) Uart
.posCnt
= 0;
190 if(Uart
.bitCnt
> 14) {
191 // Give up if we see too many zeros without
193 Uart
.state
= STATE_ERROR_WAIT
;
197 case STATE_AWAITING_START_BIT
:
200 if(Uart
.posCnt
> 25) {
201 // stayed high for too long between
203 Uart
.state
= STATE_ERROR_WAIT
;
206 // falling edge, this starts the data byte
210 Uart
.state
= STATE_RECEIVING_DATA
;
211 LED_A_ON(); // Indicate we're receiving
215 case STATE_RECEIVING_DATA
:
217 if(Uart
.posCnt
== 2) {
218 // time to sample a bit
221 Uart
.shiftReg
|= 0x200;
225 if(Uart
.posCnt
>= 4) {
228 if(Uart
.bitCnt
== 10) {
229 if((Uart
.shiftReg
& 0x200) && !(Uart
.shiftReg
& 0x001))
231 // this is a data byte, with correct
232 // start and stop bits
233 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
>> 1) & 0xff;
236 if(Uart
.byteCnt
>= Uart
.byteCntMax
) {
237 // Buffer overflowed, give up
239 Uart
.state
= STATE_ERROR_WAIT
;
241 // so get the next byte now
243 Uart
.state
= STATE_AWAITING_START_BIT
;
245 } else if(Uart
.shiftReg
== 0x000) {
246 // this is an EOF byte
247 LED_A_OFF(); // Finished receiving
252 Uart
.state
= STATE_ERROR_WAIT
;
257 case STATE_ERROR_WAIT
:
258 // We're all screwed up, so wait a little while
259 // for whatever went wrong to finish, and then
262 if(Uart
.posCnt
> 10) {
263 Uart
.state
= STATE_UNSYNCD
;
268 Uart
.state
= STATE_UNSYNCD
;
272 // This row make the error blew circular buffer in hf 14b snoop
273 //if (Uart.state == STATE_ERROR_WAIT) LED_A_OFF(); // Error
278 //-----------------------------------------------------------------------------
279 // Receive a command (from the reader to us, where we are the simulated tag),
280 // and store it in the given buffer, up to the given maximum length. Keeps
281 // spinning, waiting for a well-framed command, until either we get one
282 // (returns TRUE) or someone presses the pushbutton on the board (FALSE).
284 // Assume that we're called with the SSC (to the FPGA) and ADC path set
286 //-----------------------------------------------------------------------------
287 static int GetIso14443CommandFromReader(uint8_t *received
, int *len
, int maxLen
)
292 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
293 // only, since we are receiving, not transmitting).
294 // Signal field is off with the appropriate LED
297 FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
300 // Now run a `software UART' on the stream of incoming samples.
301 Uart
.output
= received
;
302 Uart
.byteCntMax
= maxLen
;
303 Uart
.state
= STATE_UNSYNCD
;
308 if(BUTTON_PRESS()) return FALSE
;
310 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
311 AT91C_BASE_SSC
->SSC_THR
= 0x00;
313 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
314 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
317 for(i
= 0; i
< 8; i
++, mask
>>= 1) {
319 if(Handle14443UartBit(bit
)) {
328 //-----------------------------------------------------------------------------
329 // Main loop of simulated tag: receive commands from reader, decide what
330 // response to send, and send it.
331 //-----------------------------------------------------------------------------
332 void SimulateIso14443Tag(void)
334 static const uint8_t cmd1
[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
335 static const uint8_t response1
[] = {
336 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
337 0x00, 0x21, 0x85, 0x5e, 0xd7
343 uint8_t *resp1
= (((uint8_t *)BigBuf
) + 800);
346 uint8_t *receivedCmd
= (uint8_t *)BigBuf
;
353 memset(receivedCmd
, 0x44, 400);
355 CodeIso14443bAsTag(response1
, sizeof(response1
));
356 memcpy(resp1
, ToSend
, ToSendMax
); resp1Len
= ToSendMax
;
358 // We need to listen to the high-frequency, peak-detected path.
359 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
367 if(!GetIso14443CommandFromReader(receivedCmd
, &len
, 100)) {
368 Dbprintf("button pressed, received %d commands", cmdsRecvd
);
372 // Good, look at the command now.
374 if(len
== sizeof(cmd1
) && memcmp(receivedCmd
, cmd1
, len
)==0) {
375 resp
= resp1
; respLen
= resp1Len
;
377 Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len
, cmdsRecvd
);
378 // And print whether the CRC fails, just for good measure
379 ComputeCrc14443(CRC_14443_B
, receivedCmd
, len
-2, &b1
, &b2
);
380 if(b1
!= receivedCmd
[len
-2] || b2
!= receivedCmd
[len
-1]) {
381 // Not so good, try again.
382 DbpString("+++CRC fail");
384 DbpString("CRC passes");
389 memset(receivedCmd
, 0x44, 32);
393 if(cmdsRecvd
> 0x30) {
394 DbpString("many commands later...");
398 if(respLen
<= 0) continue;
401 // Signal field is off with the appropriate LED
404 FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_BPSK
);
405 AT91C_BASE_SSC
->SSC_THR
= 0xff;
408 // Transmit the response.
411 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
414 AT91C_BASE_SSC
->SSC_THR
= b
;
421 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
422 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
429 //=============================================================================
430 // An ISO 14443 Type B reader. We take layer two commands, code them
431 // appropriately, and then send them to the tag. We then listen for the
432 // tag's response, which we leave in the buffer to be demodulated on the
434 //=============================================================================
439 DEMOD_PHASE_REF_TRAINING
,
440 DEMOD_AWAITING_FALLING_EDGE_OF_SOF
,
441 DEMOD_GOT_FALLING_EDGE_OF_SOF
,
442 DEMOD_AWAITING_START_BIT
,
443 DEMOD_RECEIVING_DATA
,
459 * Handles reception of a bit from the tag
462 * LED C -> ON once we have received the SOF and are expecting the rest.
463 * LED C -> OFF once we have received EOF or are unsynced
465 * Returns: true if we received a EOF
466 * false if we are still waiting for some more
469 static RAMFUNC
int Handle14443SamplesDemod(int ci
, int cq
)
473 // The soft decision on the bit uses an estimate of just the
474 // quadrant of the reference angle, not the exact angle.
475 #define MAKE_SOFT_DECISION() { \
476 if(Demod.sumI > 0) { \
481 if(Demod.sumQ > 0) { \
488 switch(Demod
.state
) {
499 Demod
.state
= DEMOD_PHASE_REF_TRAINING
;
505 case DEMOD_PHASE_REF_TRAINING
:
506 if(Demod
.posCount
< 8) {
509 } else if(Demod
.posCount
> 100) {
510 // error, waited too long
511 Demod
.state
= DEMOD_UNSYNCD
;
513 MAKE_SOFT_DECISION();
515 Demod
.state
= DEMOD_AWAITING_FALLING_EDGE_OF_SOF
;
522 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF
:
523 MAKE_SOFT_DECISION();
525 Demod
.state
= DEMOD_GOT_FALLING_EDGE_OF_SOF
;
528 if(Demod
.posCount
> 100) {
529 Demod
.state
= DEMOD_UNSYNCD
;
535 case DEMOD_GOT_FALLING_EDGE_OF_SOF
:
536 MAKE_SOFT_DECISION();
538 if(Demod
.posCount
< 12) {
539 Demod
.state
= DEMOD_UNSYNCD
;
541 LED_C_ON(); // Got SOF
542 Demod
.state
= DEMOD_AWAITING_START_BIT
;
549 if(Demod
.posCount
> 100) {
550 Demod
.state
= DEMOD_UNSYNCD
;
556 case DEMOD_AWAITING_START_BIT
:
557 MAKE_SOFT_DECISION();
559 if(Demod
.posCount
> 10) {
560 Demod
.state
= DEMOD_UNSYNCD
;
567 Demod
.state
= DEMOD_RECEIVING_DATA
;
571 case DEMOD_RECEIVING_DATA
:
572 MAKE_SOFT_DECISION();
573 if(Demod
.posCount
== 0) {
579 if(Demod
.thisBit
> 0) {
580 Demod
.metric
+= Demod
.thisBit
;
582 Demod
.metric
-= Demod
.thisBit
;
586 Demod
.shiftReg
>>= 1;
587 if(Demod
.thisBit
> 0) {
588 Demod
.shiftReg
|= 0x200;
592 if(Demod
.bitCount
== 10) {
593 uint16_t s
= Demod
.shiftReg
;
594 if((s
& 0x200) && !(s
& 0x001)) {
595 uint8_t b
= (s
>> 1);
596 Demod
.output
[Demod
.len
] = b
;
598 Demod
.state
= DEMOD_AWAITING_START_BIT
;
599 } else if(s
== 0x000) {
602 Demod
.state
= DEMOD_UNSYNCD
;
605 Demod
.state
= DEMOD_UNSYNCD
;
613 Demod
.state
= DEMOD_UNSYNCD
;
617 if (Demod
.state
== DEMOD_UNSYNCD
) LED_C_OFF(); // Not synchronized...
622 * Demodulate the samples we received from the tag
623 * weTx: set to 'TRUE' if we behave like a reader
624 * set to 'FALSE' if we behave like a snooper
625 * quiet: set to 'TRUE' to disable debug output
627 static void GetSamplesFor14443Demod(int weTx
, int n
, int quiet
)
630 int gotFrame
= FALSE
;
632 //# define DMA_BUFFER_SIZE 8
642 // Clear out the state of the "UART" that receives from the tag.
643 memset(BigBuf
, 0x00, 400);
644 Demod
.output
= (uint8_t *)BigBuf
;
646 Demod
.state
= DEMOD_UNSYNCD
;
648 // And the UART that receives from the reader
649 Uart
.output
= (((uint8_t *)BigBuf
) + 1024);
650 Uart
.byteCntMax
= 100;
651 Uart
.state
= STATE_UNSYNCD
;
653 // Setup for the DMA.
654 dmaBuf
= (int8_t *)(BigBuf
+ 32);
656 lastRxCounter
= DEMOD_DMA_BUFFER_SIZE
;
657 FpgaSetupSscDma((uint8_t *)dmaBuf
, DEMOD_DMA_BUFFER_SIZE
);
659 // Signal field is ON with the appropriate LED:
660 if (weTx
) LED_D_ON(); else LED_D_OFF();
661 // And put the FPGA in the appropriate mode
663 FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
|
664 (weTx
? 0 : FPGA_HF_READER_RX_XCORR_SNOOP
));
667 int behindBy
= lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
668 if(behindBy
> max
) max
= behindBy
;
670 while(((lastRxCounter
-AT91C_BASE_PDC_SSC
->PDC_RCR
) & (DEMOD_DMA_BUFFER_SIZE
-1))
676 if(upTo
- dmaBuf
> DEMOD_DMA_BUFFER_SIZE
) {
677 upTo
-= DEMOD_DMA_BUFFER_SIZE
;
678 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
679 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DEMOD_DMA_BUFFER_SIZE
;
682 if(lastRxCounter
<= 0) {
683 lastRxCounter
+= DEMOD_DMA_BUFFER_SIZE
;
688 Handle14443UartBit(1);
689 Handle14443UartBit(1);
691 if(Handle14443SamplesDemod(ci
, cq
)) {
700 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
701 if (!quiet
) Dbprintf("%x %x %x", max
, gotFrame
, Demod
.len
);
704 //-----------------------------------------------------------------------------
705 // Read the tag's response. We just receive a stream of slightly-processed
706 // samples from the FPGA, which we will later do some signal processing on,
708 //-----------------------------------------------------------------------------
709 /*static void GetSamplesFor14443(int weTx, int n)
711 uint8_t *dest = (uint8_t *)BigBuf;
715 FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
716 (weTx ? 0 : FPGA_HF_READER_RX_XCORR_SNOOP));
720 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
721 AT91C_BASE_SSC->SSC_THR = 0x43;
723 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
725 b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
727 dest[c++] = (uint8_t)b;
736 //-----------------------------------------------------------------------------
737 // Transmit the command (to the tag) that was placed in ToSend[].
738 //-----------------------------------------------------------------------------
739 static void TransmitFor14443(void)
745 while(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
746 AT91C_BASE_SSC
->SSC_THR
= 0xff;
749 // Signal field is ON with the appropriate Red LED
751 // Signal we are transmitting with the Green LED
754 FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
756 for(c
= 0; c
< 10;) {
757 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
758 AT91C_BASE_SSC
->SSC_THR
= 0xff;
761 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
762 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
770 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
771 AT91C_BASE_SSC
->SSC_THR
= ToSend
[c
];
777 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
778 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
783 LED_B_OFF(); // Finished sending
786 //-----------------------------------------------------------------------------
787 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
788 // so that it is ready to transmit to the tag using TransmitFor14443().
789 //-----------------------------------------------------------------------------
790 static void CodeIso14443bAsReader(const uint8_t *cmd
, int len
)
797 // Establish initial reference level
798 for(i
= 0; i
< 40; i
++) {
802 for(i
= 0; i
< 10; i
++) {
806 for(i
= 0; i
< len
; i
++) {
814 for(j
= 0; j
< 8; j
++) {
825 for(i
= 0; i
< 10; i
++) {
828 for(i
= 0; i
< 8; i
++) {
832 // And then a little more, to make sure that the last character makes
833 // it out before we switch to rx mode.
834 for(i
= 0; i
< 24; i
++) {
838 // Convert from last character reference to length
842 //-----------------------------------------------------------------------------
843 // Read an ISO 14443 tag. We send it some set of commands, and record the
845 // The command name is misleading, it actually decodes the reponse in HEX
846 // into the output buffer (read the result using hexsamples, not hisamples)
848 // obsolete function only for test
849 //-----------------------------------------------------------------------------
850 void AcquireRawAdcSamplesIso14443(uint32_t parameter
)
852 uint8_t cmd1
[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
854 SendRawCommand14443B(sizeof(cmd1
),1,1,cmd1
);
857 //-----------------------------------------------------------------------------
858 // Read a SRI512 ISO 14443 tag.
860 // SRI512 tags are just simple memory tags, here we're looking at making a dump
861 // of the contents of the memory. No anticollision algorithm is done, we assume
862 // we have a single tag in the field.
864 // I tried to be systematic and check every answer of the tag, every CRC, etc...
865 //-----------------------------------------------------------------------------
866 void ReadSTMemoryIso14443(uint32_t dwLast
)
870 // Make sure that we start from off, since the tags are stateful;
871 // confusing things will happen if we don't reset them between reads.
873 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
876 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
879 // Now give it time to spin up.
880 // Signal field is on with the appropriate LED
883 FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
);
886 // First command: wake up the tag using the INITIATE command
887 uint8_t cmd1
[] = { 0x06, 0x00, 0x97, 0x5b};
888 CodeIso14443bAsReader(cmd1
, sizeof(cmd1
));
891 GetSamplesFor14443Demod(TRUE
, 2000,TRUE
);
894 if (Demod
.len
== 0) {
895 DbpString("No response from tag");
898 Dbprintf("Randomly generated UID from tag (+ 2 byte CRC): %x %x %x",
899 Demod
.output
[0], Demod
.output
[1],Demod
.output
[2]);
901 // There is a response, SELECT the uid
902 DbpString("Now SELECT tag:");
903 cmd1
[0] = 0x0E; // 0x0E is SELECT
904 cmd1
[1] = Demod
.output
[0];
905 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
906 CodeIso14443bAsReader(cmd1
, sizeof(cmd1
));
909 GetSamplesFor14443Demod(TRUE
, 2000,TRUE
);
911 if (Demod
.len
!= 3) {
912 Dbprintf("Expected 3 bytes from tag, got %d", Demod
.len
);
915 // Check the CRC of the answer:
916 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 1 , &cmd1
[2], &cmd1
[3]);
917 if(cmd1
[2] != Demod
.output
[1] || cmd1
[3] != Demod
.output
[2]) {
918 DbpString("CRC Error reading select response.");
921 // Check response from the tag: should be the same UID as the command we just sent:
922 if (cmd1
[1] != Demod
.output
[0]) {
923 Dbprintf("Bad response to SELECT from Tag, aborting: %x %x", cmd1
[1], Demod
.output
[0]);
926 // Tag is now selected,
927 // First get the tag's UID:
929 ComputeCrc14443(CRC_14443_B
, cmd1
, 1 , &cmd1
[1], &cmd1
[2]);
930 CodeIso14443bAsReader(cmd1
, 3); // Only first three bytes for this one
933 GetSamplesFor14443Demod(TRUE
, 2000,TRUE
);
935 if (Demod
.len
!= 10) {
936 Dbprintf("Expected 10 bytes from tag, got %d", Demod
.len
);
939 // The check the CRC of the answer (use cmd1 as temporary variable):
940 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 8, &cmd1
[2], &cmd1
[3]);
941 if(cmd1
[2] != Demod
.output
[8] || cmd1
[3] != Demod
.output
[9]) {
942 Dbprintf("CRC Error reading block! - Below: expected, got %x %x",
943 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[8]<<8)+Demod
.output
[9]);
944 // Do not return;, let's go on... (we should retry, maybe ?)
946 Dbprintf("Tag UID (64 bits): %08x %08x",
947 (Demod
.output
[7]<<24) + (Demod
.output
[6]<<16) + (Demod
.output
[5]<<8) + Demod
.output
[4],
948 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0]);
950 // Now loop to read all 16 blocks, address from 0 to last block
951 Dbprintf("Tag memory dump, block 0 to %d",dwLast
);
957 DbpString("System area block (0xff):");
961 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
962 CodeIso14443bAsReader(cmd1
, sizeof(cmd1
));
965 GetSamplesFor14443Demod(TRUE
, 2000,TRUE
);
967 if (Demod
.len
!= 6) { // Check if we got an answer from the tag
968 DbpString("Expected 6 bytes from tag, got less...");
971 // The check the CRC of the answer (use cmd1 as temporary variable):
972 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 4, &cmd1
[2], &cmd1
[3]);
973 if(cmd1
[2] != Demod
.output
[4] || cmd1
[3] != Demod
.output
[5]) {
974 Dbprintf("CRC Error reading block! - Below: expected, got %x %x",
975 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[4]<<8)+Demod
.output
[5]);
976 // Do not return;, let's go on... (we should retry, maybe ?)
978 // Now print out the memory location:
979 Dbprintf("Address=%x, Contents=%x, CRC=%x", i
,
980 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0],
981 (Demod
.output
[4]<<8)+Demod
.output
[5]);
990 //=============================================================================
991 // Finally, the `sniffer' combines elements from both the reader and
992 // simulated tag, to show both sides of the conversation.
993 //=============================================================================
995 //-----------------------------------------------------------------------------
996 // Record the sequence of commands sent by the reader to the tag, with
997 // triggering so that we start recording at the point that the tag is moved
999 //-----------------------------------------------------------------------------
1001 * Memory usage for this function, (within BigBuf)
1002 * 0-4095 : Demodulated samples receive (4096 bytes) - DEMOD_TRACE_SIZE
1003 * 4096-6143 : Last Received command, 2048 bytes (reader->tag) - READER_TAG_BUFFER_SIZE
1004 * 6144-8191 : Last Received command, 2048 bytes(tag->reader) - TAG_READER_BUFFER_SIZE
1005 * 8192-9215 : DMA Buffer, 1024 bytes (samples) - DEMOD_DMA_BUFFER_SIZE
1007 void RAMFUNC
SnoopIso14443(void)
1009 // We won't start recording the frames that we acquire until we trigger;
1010 // a good trigger condition to get started is probably when we see a
1011 // response from the tag.
1012 int triggered
= TRUE
;
1014 // The command (reader -> tag) that we're working on receiving.
1015 uint8_t *receivedCmd
= (uint8_t *)(BigBuf
) + DEMOD_TRACE_SIZE
;
1016 // The response (tag -> reader) that we're working on receiving.
1017 uint8_t *receivedResponse
= (uint8_t *)(BigBuf
) + DEMOD_TRACE_SIZE
+ READER_TAG_BUFFER_SIZE
;
1019 // As we receive stuff, we copy it from receivedCmd or receivedResponse
1020 // into trace, along with its length and other annotations.
1021 uint8_t *trace
= (uint8_t *)BigBuf
;
1024 // The DMA buffer, used to stream samples from the FPGA.
1025 int8_t *dmaBuf
= (int8_t *)(BigBuf
) + DEMOD_TRACE_SIZE
+ READER_TAG_BUFFER_SIZE
+ TAG_READER_BUFFER_SIZE
;
1029 int maxBehindBy
= 0;
1031 // Count of samples received so far, so that we can include timing
1032 // information in the trace buffer.
1035 // Initialize the trace buffer
1036 memset(trace
, 0x44, DEMOD_TRACE_SIZE
);
1038 // Set up the demodulator for tag -> reader responses.
1039 Demod
.output
= receivedResponse
;
1041 Demod
.state
= DEMOD_UNSYNCD
;
1043 // And the reader -> tag commands
1044 memset(&Uart
, 0, sizeof(Uart
));
1045 Uart
.output
= receivedCmd
;
1046 Uart
.byteCntMax
= 100;
1047 Uart
.state
= STATE_UNSYNCD
;
1049 // Print some debug information about the buffer sizes
1050 Dbprintf("Snooping buffers initialized:");
1051 Dbprintf(" Trace: %i bytes", DEMOD_TRACE_SIZE
);
1052 Dbprintf(" Reader -> tag: %i bytes", READER_TAG_BUFFER_SIZE
);
1053 Dbprintf(" tag -> Reader: %i bytes", TAG_READER_BUFFER_SIZE
);
1054 Dbprintf(" DMA: %i bytes", DEMOD_DMA_BUFFER_SIZE
);
1056 // And put the FPGA in the appropriate mode
1057 // Signal field is off with the appropriate LED
1060 FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
|
1061 FPGA_HF_READER_RX_XCORR_SNOOP
);
1062 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1064 // Setup for the DMA.
1067 lastRxCounter
= DEMOD_DMA_BUFFER_SIZE
;
1068 FpgaSetupSscDma((uint8_t *)dmaBuf
, DEMOD_DMA_BUFFER_SIZE
);
1072 // And now we loop, receiving samples.
1074 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
1075 (DEMOD_DMA_BUFFER_SIZE
-1);
1076 if(behindBy
> maxBehindBy
) {
1077 maxBehindBy
= behindBy
;
1078 if(behindBy
> (DEMOD_DMA_BUFFER_SIZE
-2)) { // TODO: understand whether we can increase/decrease as we want or not?
1079 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
1083 if(behindBy
< 2) continue;
1089 if(upTo
- dmaBuf
> DEMOD_DMA_BUFFER_SIZE
) {
1090 upTo
-= DEMOD_DMA_BUFFER_SIZE
;
1091 lastRxCounter
+= DEMOD_DMA_BUFFER_SIZE
;
1092 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
1093 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DEMOD_DMA_BUFFER_SIZE
;
1098 #define HANDLE_BIT_IF_BODY \
1100 trace[traceLen++] = ((samples >> 0) & 0xff); \
1101 trace[traceLen++] = ((samples >> 8) & 0xff); \
1102 trace[traceLen++] = ((samples >> 16) & 0xff); \
1103 trace[traceLen++] = ((samples >> 24) & 0xff); \
1104 trace[traceLen++] = 0; \
1105 trace[traceLen++] = 0; \
1106 trace[traceLen++] = 0; \
1107 trace[traceLen++] = 0; \
1108 trace[traceLen++] = Uart.byteCnt; \
1109 memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \
1110 traceLen += Uart.byteCnt; \
1111 if(traceLen > 1000) break; \
1113 /* And ready to receive another command. */ \
1114 memset(&Uart, 0, sizeof(Uart)); \
1115 Uart.output = receivedCmd; \
1116 Uart.byteCntMax = 100; \
1117 Uart.state = STATE_UNSYNCD; \
1118 /* And also reset the demod code, which might have been */ \
1119 /* false-triggered by the commands from the reader. */ \
1120 memset(&Demod, 0, sizeof(Demod)); \
1121 Demod.output = receivedResponse; \
1122 Demod.state = DEMOD_UNSYNCD; \
1124 if(Handle14443UartBit(ci & 1)) {
1127 if(Handle14443UartBit(cq
& 1)) {
1131 if(Handle14443SamplesDemod(ci
, cq
)) {
1132 // timestamp, as a count of samples
1133 trace
[traceLen
++] = ((samples
>> 0) & 0xff);
1134 trace
[traceLen
++] = ((samples
>> 8) & 0xff);
1135 trace
[traceLen
++] = ((samples
>> 16) & 0xff);
1136 trace
[traceLen
++] = 0x80 | ((samples
>> 24) & 0xff);
1137 // correlation metric (~signal strength estimate)
1138 if(Demod
.metricN
!= 0) {
1139 Demod
.metric
/= Demod
.metricN
;
1141 trace
[traceLen
++] = ((Demod
.metric
>> 0) & 0xff);
1142 trace
[traceLen
++] = ((Demod
.metric
>> 8) & 0xff);
1143 trace
[traceLen
++] = ((Demod
.metric
>> 16) & 0xff);
1144 trace
[traceLen
++] = ((Demod
.metric
>> 24) & 0xff);
1146 trace
[traceLen
++] = Demod
.len
;
1147 memcpy(trace
+traceLen
, receivedResponse
, Demod
.len
);
1148 traceLen
+= Demod
.len
;
1149 if(traceLen
> DEMOD_TRACE_SIZE
) {
1150 DbpString("Reached trace limit");
1158 // And ready to receive another response.
1159 memset(&Demod
, 0, sizeof(Demod
));
1160 Demod
.output
= receivedResponse
;
1161 Demod
.state
= DEMOD_UNSYNCD
;
1165 if(BUTTON_PRESS()) {
1166 DbpString("cancelled");
1175 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
1176 DbpString("Snoop statistics:");
1177 Dbprintf(" Max behind by: %i", maxBehindBy
);
1178 Dbprintf(" Uart State: %x", Uart
.state
);
1179 Dbprintf(" Uart ByteCnt: %i", Uart
.byteCnt
);
1180 Dbprintf(" Uart ByteCntMax: %i", Uart
.byteCntMax
);
1181 Dbprintf(" Trace length: %i", traceLen
);
1185 * Send raw command to tag ISO14443B
1187 * datalen len of buffer data
1188 * recv bool when true wait for data from tag and send to client
1189 * powerfield bool leave the field on when true
1190 * data buffer with byte to send
1197 void SendRawCommand14443B(uint32_t datalen
, uint32_t recv
,uint8_t powerfield
, uint8_t data
[])
1201 // Make sure that we start from off, since the tags are stateful;
1202 // confusing things will happen if we don't reset them between reads.
1203 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1208 if(!GETBIT(GPIO_LED_D
))
1210 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1213 // Now give it time to spin up.
1214 // Signal field is on with the appropriate LED
1217 FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
);
1221 CodeIso14443bAsReader(data
, datalen
);
1225 uint16_t iLen
= MIN(Demod
.len
,USB_CMD_DATA_SIZE
);
1226 GetSamplesFor14443Demod(TRUE
, 2000, TRUE
);
1227 cmd_send(CMD_ACK
,iLen
,0,0,Demod
.output
,iLen
);
1231 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);