1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
14 #include "proxmark3.h"
23 #include "lfsampling.h"
25 #include "mifareutil.h"
32 // Craig Young - 14a stand-alone code
33 #ifdef WITH_ISO14443a_StandAlone
34 #include "iso14443a.h"
35 #include "protocols.h"
38 //=============================================================================
39 // A buffer where we can queue things up to be sent through the FPGA, for
40 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
41 // is the order in which they go out on the wire.
42 //=============================================================================
44 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
45 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
48 struct common_area common_area
__attribute__((section(".commonarea")));
50 void ToSendReset(void)
56 void ToSendStuffBit(int b
) {
59 ToSend
[ToSendMax
] = 0;
64 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
68 if(ToSendMax
>= sizeof(ToSend
)) {
70 DbpString("ToSendStuffBit overflowed!");
74 void PrintToSendBuffer(void){
75 DbpString("Printing ToSendBuffer:");
76 Dbhexdump(ToSendMax
, ToSend
, 0);
79 //=============================================================================
80 // Debug print functions, to go out over USB, to the usual PC-side client.
81 //=============================================================================
83 void DbpStringEx(char *str
, uint32_t cmd
){
84 byte_t len
= strlen(str
);
85 cmd_send(CMD_DEBUG_PRINT_STRING
,len
, cmd
,0,(byte_t
*)str
,len
);
88 void DbpString(char *str
) {
93 void DbpIntegers(int x1
, int x2
, int x3
) {
94 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
97 void DbprintfEx(uint32_t cmd
, const char *fmt
, ...) {
98 // should probably limit size here; oh well, let's just use a big buffer
99 char output_string
[128] = {0x00};
103 kvsprintf(fmt
, output_string
, 10, ap
);
106 DbpStringEx(output_string
, cmd
);
109 void Dbprintf(const char *fmt
, ...) {
110 // should probably limit size here; oh well, let's just use a big buffer
111 char output_string
[128] = {0x00};
115 kvsprintf(fmt
, output_string
, 10, ap
);
118 DbpString(output_string
);
121 // prints HEX & ASCII
122 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
128 l
= (len
>8) ? 8 : len
;
135 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
138 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
140 Dbprintf("%*D",l
,d
," ");
147 //-----------------------------------------------------------------------------
148 // Read an ADC channel and block till it completes, then return the result
149 // in ADC units (0 to 1023). Also a routine to average 32 samples and
151 //-----------------------------------------------------------------------------
152 static int ReadAdc(int ch
)
156 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
157 AT91C_BASE_ADC
->ADC_MR
=
158 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
159 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
160 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
162 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
163 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
164 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
167 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
169 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
171 // Note: with the "historic" values in the comments above, the error was 34% !!!
173 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
175 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
177 while (!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) ;
179 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
183 int AvgAdc(int ch
) // was static - merlok
186 for(i
= 0; i
< 32; ++i
)
189 return (a
+ 15) >> 5;
193 void MeasureAntennaTuning(void) {
195 uint8_t LF_Results
[256];
196 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0;
197 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
199 memset(LF_Results
, 0, sizeof(LF_Results
));
203 * Sweeps the useful LF range of the proxmark from
204 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
205 * read the voltage in the antenna, the result left
206 * in the buffer is a graph which should clearly show
207 * the resonating frequency of your LF antenna
208 * ( hopefully around 95 if it is tuned to 125kHz!)
211 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
212 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
214 for (i
= 255; i
>= 19; i
--) {
216 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
218 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
219 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
220 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
222 LF_Results
[i
] = adcval
>> 8; // scale int to fit in byte for graphing purposes
223 if(LF_Results
[i
] > peak
) {
225 peak
= LF_Results
[i
];
231 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
232 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
233 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
235 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
237 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<< 16), vHf
, peakf
| (peakv
<< 16), LF_Results
, 256);
238 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
242 void MeasureAntennaTuningHf(void) {
243 int vHf
= 0; // in mV
244 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
245 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
246 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
248 while ( !BUTTON_PRESS() ){
250 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
251 //Dbprintf("%d mV",vHf);
252 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF
, "%d mV",vHf
);
254 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
255 DbpString("cancelled");
259 void ReadMem(int addr
) {
260 const uint8_t *data
= ((uint8_t *)addr
);
262 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
263 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
266 /* osimage version information is linked in */
267 extern struct version_information version_information
;
268 /* bootrom version information is pointed to from _bootphase1_version_pointer */
269 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
270 void SendVersion(void)
272 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
273 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
275 /* Try to find the bootrom version information. Expect to find a pointer at
276 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
277 * pointer, then use it.
279 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
281 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
282 strcat(VersionString
, "bootrom version information appears invalid\n");
284 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
285 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
288 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
289 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
291 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
292 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
294 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
295 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
297 // Send Chip ID and used flash memory
298 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
299 uint32_t compressed_data_section_size
= common_area
.arg1
;
300 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
303 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
304 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
305 void printUSBSpeed(void)
307 Dbprintf("USB Speed:");
308 Dbprintf(" Sending USB packets to client...");
310 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
311 uint8_t *test_data
= BigBuf_get_addr();
314 uint32_t start_time
= end_time
= GetTickCount();
315 uint32_t bytes_transferred
= 0;
318 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
319 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
320 end_time
= GetTickCount();
321 bytes_transferred
+= USB_CMD_DATA_SIZE
;
325 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
326 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
327 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
328 1000 * bytes_transferred
/ (end_time
- start_time
));
333 * Prints runtime information about the PM3.
335 void SendStatus(void) {
336 BigBuf_print_status();
338 printConfig(); //LF Sampling config
341 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
342 Dbprintf(" ToSendMax..........%d", ToSendMax
);
343 Dbprintf(" ToSendBit..........%d", ToSendBit
);
344 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE
);
346 cmd_send(CMD_ACK
,1,0,0,0,0);
349 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
352 void StandAloneMode()
354 DbpString("Stand-alone mode! No PC necessary.");
355 // Oooh pretty -- notify user we're in elite samy mode now
357 LED(LED_ORANGE
, 200);
359 LED(LED_ORANGE
, 200);
361 LED(LED_ORANGE
, 200);
363 LED(LED_ORANGE
, 200);
368 #ifdef WITH_ISO14443a_StandAlone
369 void StandAloneMode14a()
372 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
375 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
376 int cardRead
[OPTS
] = {0};
377 uint8_t readUID
[10] = {0};
378 uint32_t uid_1st
[OPTS
]={0};
379 uint32_t uid_2nd
[OPTS
]={0};
380 uint32_t uid_tmp1
= 0;
381 uint32_t uid_tmp2
= 0;
382 iso14a_card_select_t hi14a_card
[OPTS
];
384 uint8_t params
= (MAGIC_SINGLE
| MAGIC_DATAIN
);
386 LED(selected
+ 1, 0);
394 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
398 LED(selected
+ 1, 0);
402 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
403 /* need this delay to prevent catching some weird data */
405 /* Code for reading from 14a tag */
406 uint8_t uid
[10] = {0};
408 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
413 if (BUTTON_PRESS()) {
414 if (cardRead
[selected
]) {
415 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
418 else if (cardRead
[(selected
+1)%OPTS
]) {
419 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
420 selected
= (selected
+1)%OPTS
;
421 break; // playing = 1;
424 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
428 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0))
432 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
433 memcpy(readUID
,uid
,10*sizeof(uint8_t));
434 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
435 // Set UID byte order
436 for (int i
=0; i
<4; i
++)
438 dst
= (uint8_t *)&uid_tmp2
;
439 for (int i
=0; i
<4; i
++)
441 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
442 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
446 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
447 uid_1st
[selected
] = (uid_tmp1
)>>8;
448 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
451 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
452 uid_1st
[selected
] = uid_tmp1
;
453 uid_2nd
[selected
] = uid_tmp2
;
459 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
460 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
463 LED(LED_ORANGE
, 200);
465 LED(LED_ORANGE
, 200);
468 LED(selected
+ 1, 0);
470 // Next state is replay:
473 cardRead
[selected
] = 1;
475 /* MF Classic UID clone */
476 else if (iGotoClone
==1)
480 LED(selected
+ 1, 0);
481 LED(LED_ORANGE
, 250);
484 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
486 // wait for button to be released
487 // Delay cloning until card is in place
488 while(BUTTON_PRESS())
491 Dbprintf("Starting clone. [Bank: %u]", selected
);
492 // need this delay to prevent catching some weird data
494 // Begin clone function here:
495 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
496 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
497 memcpy(c.d.asBytes, data, 16);
500 Block read is similar:
501 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
502 We need to imitate that call with blockNo 0 to set a uid.
504 The get and set commands are handled in this file:
505 // Work with "magic Chinese" card
506 case CMD_MIFARE_CSETBLOCK:
507 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
509 case CMD_MIFARE_CGETBLOCK:
510 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
513 mfCSetUID provides example logic for UID set workflow:
514 -Read block0 from card in field with MifareCGetBlock()
515 -Configure new values without replacing reserved bytes
516 memcpy(block0, uid, 4); // Copy UID bytes from byte array
518 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
519 Bytes 5-7 are reserved SAK and ATQA for mifare classic
520 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
522 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
523 // arg0 = Flags, arg1=blockNo
524 MifareCGetBlock(params
, 0, oldBlock0
);
525 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
526 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
530 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
531 memcpy(newBlock0
,oldBlock0
,16);
532 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
534 newBlock0
[0] = uid_1st
[selected
]>>24;
535 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
536 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
537 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
538 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
540 // arg0 = workFlags, arg1 = blockNo, datain
541 MifareCSetBlock(params
, 0, newBlock0
);
542 MifareCGetBlock(params
, 0, testBlock0
);
544 if (memcmp(testBlock0
, newBlock0
, 16)==0) {
545 DbpString("Cloned successfull!");
546 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
549 selected
= (selected
+ 1) % OPTS
;
551 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
556 LED(selected
+ 1, 0);
558 // Change where to record (or begin playing)
559 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
562 LED(selected
+ 1, 0);
564 // Begin transmitting
568 DbpString("Playing");
571 int button_action
= BUTTON_HELD(1000);
572 if (button_action
== 0) { // No button action, proceed with sim
573 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
574 uint8_t flags
= ( uid_2nd
[selected
] > 0x00 ) ? FLAG_7B_UID_IN_DATA
: FLAG_4B_UID_IN_DATA
;
575 num_to_bytes(uid_1st
[selected
], 3, data
);
576 num_to_bytes(uid_2nd
[selected
], 4, data
);
578 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
579 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
580 DbpString("Mifare Classic");
581 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
583 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
584 DbpString("Mifare Ultralight");
585 SimulateIso14443aTag(2, flags
, data
); // Mifare Ultralight
587 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
588 DbpString("Mifare DESFire");
589 SimulateIso14443aTag(3, flags
, data
); // Mifare DESFire
592 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
593 SimulateIso14443aTag(1, flags
, data
);
596 else if (button_action
== BUTTON_SINGLE_CLICK
) {
597 selected
= (selected
+ 1) % OPTS
;
598 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
602 else if (button_action
== BUTTON_HOLD
) {
603 Dbprintf("Playtime over. Begin cloning...");
610 /* We pressed a button so ignore it here with a delay */
613 LED(selected
+ 1, 0);
616 while(BUTTON_PRESS())
622 // samy's sniff and repeat routine
626 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
628 int high
[OPTS
], low
[OPTS
];
633 // Turn on selected LED
634 LED(selected
+ 1, 0);
640 // Was our button held down or pressed?
641 int button_pressed
= BUTTON_HELD(1000);
644 // Button was held for a second, begin recording
645 if (button_pressed
> 0 && cardRead
== 0)
648 LED(selected
+ 1, 0);
652 DbpString("Starting recording");
654 // wait for button to be released
655 while(BUTTON_PRESS())
658 /* need this delay to prevent catching some weird data */
661 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
662 Dbprintf("Recorded %x %x %08x", selected
, high
[selected
], low
[selected
]);
665 LED(selected
+ 1, 0);
666 // Finished recording
667 // If we were previously playing, set playing off
668 // so next button push begins playing what we recorded
672 else if (button_pressed
> 0 && cardRead
== 1) {
674 LED(selected
+ 1, 0);
678 Dbprintf("Cloning %x %x %08x", selected
, high
[selected
], low
[selected
]);
680 // wait for button to be released
681 while(BUTTON_PRESS())
684 /* need this delay to prevent catching some weird data */
687 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
688 Dbprintf("Cloned %x %x %08x", selected
, high
[selected
], low
[selected
]);
691 LED(selected
+ 1, 0);
692 // Finished recording
694 // If we were previously playing, set playing off
695 // so next button push begins playing what we recorded
700 // Change where to record (or begin playing)
701 else if (button_pressed
) {
702 // Next option if we were previously playing
704 selected
= (selected
+ 1) % OPTS
;
708 LED(selected
+ 1, 0);
710 // Begin transmitting
714 DbpString("Playing");
715 // wait for button to be released
716 while(BUTTON_PRESS())
719 Dbprintf("%x %x %08x", selected
, high
[selected
], low
[selected
]);
720 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
721 DbpString("Done playing");
723 if (BUTTON_HELD(1000) > 0) {
724 DbpString("Exiting");
729 /* We pressed a button so ignore it here with a delay */
732 // when done, we're done playing, move to next option
733 selected
= (selected
+ 1) % OPTS
;
736 LED(selected
+ 1, 0);
739 while(BUTTON_PRESS())
748 Listen and detect an external reader. Determine the best location
752 Inside the ListenReaderField() function, there is two mode.
753 By default, when you call the function, you will enter mode 1.
754 If you press the PM3 button one time, you will enter mode 2.
755 If you press the PM3 button a second time, you will exit the function.
757 DESCRIPTION OF MODE 1:
758 This mode just listens for an external reader field and lights up green
759 for HF and/or red for LF. This is the original mode of the detectreader
762 DESCRIPTION OF MODE 2:
763 This mode will visually represent, using the LEDs, the actual strength of the
764 current compared to the maximum current detected. Basically, once you know
765 what kind of external reader is present, it will help you spot the best location to place
766 your antenna. You will probably not get some good results if there is a LF and a HF reader
767 at the same place! :-)
771 static const char LIGHT_SCHEME
[] = {
772 0x0, /* ---- | No field detected */
773 0x1, /* X--- | 14% of maximum current detected */
774 0x2, /* -X-- | 29% of maximum current detected */
775 0x4, /* --X- | 43% of maximum current detected */
776 0x8, /* ---X | 57% of maximum current detected */
777 0xC, /* --XX | 71% of maximum current detected */
778 0xE, /* -XXX | 86% of maximum current detected */
779 0xF, /* XXXX | 100% of maximum current detected */
781 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
783 void ListenReaderField(int limit
) {
786 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
788 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
789 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
790 int mode
=1, display_val
, display_max
, i
;
792 // switch off FPGA - we don't want to measure our own signal
793 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
794 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
798 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
800 if(limit
!= HF_ONLY
) {
801 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
805 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
807 if (limit
!= LF_ONLY
) {
808 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
813 if (BUTTON_PRESS()) {
818 DbpString("Signal Strength Mode");
822 DbpString("Stopped");
830 if (limit
!= HF_ONLY
) {
832 if (ABS(lf_av
- lf_baseline
) > REPORT_CHANGE
)
838 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
839 // see if there's a significant change
840 if(ABS(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
841 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
848 if (limit
!= LF_ONLY
) {
850 if (ABS(hf_av
- hf_baseline
) > REPORT_CHANGE
)
856 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
857 // see if there's a significant change
858 if(ABS(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
859 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
867 if (limit
== LF_ONLY
) {
869 display_max
= lf_max
;
870 } else if (limit
== HF_ONLY
) {
872 display_max
= hf_max
;
873 } else { /* Pick one at random */
874 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
876 display_max
= hf_max
;
879 display_max
= lf_max
;
882 for (i
=0; i
<LIGHT_LEN
; i
++) {
883 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
884 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
885 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
886 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
887 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
895 void UsbPacketReceived(uint8_t *packet
, int len
)
897 UsbCommand
*c
= (UsbCommand
*)packet
;
899 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
903 case CMD_SET_LF_SAMPLING_CONFIG
:
904 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
906 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
907 cmd_send(CMD_ACK
, SampleLF(c
->arg
[0]),0,0,0,0);
909 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
910 ModThenAcquireRawAdcSamples125k(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
912 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
913 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
915 case CMD_HID_DEMOD_FSK
:
916 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
918 case CMD_HID_SIM_TAG
:
919 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
921 case CMD_FSK_SIM_TAG
:
922 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
924 case CMD_ASK_SIM_TAG
:
925 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
927 case CMD_PSK_SIM_TAG
:
928 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
930 case CMD_HID_CLONE_TAG
:
931 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
933 case CMD_IO_DEMOD_FSK
:
934 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
936 case CMD_IO_CLONE_TAG
:
937 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
939 case CMD_EM410X_DEMOD
:
940 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
942 case CMD_EM410X_WRITE_TAG
:
943 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
945 case CMD_READ_TI_TYPE
:
948 case CMD_WRITE_TI_TYPE
:
949 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
951 case CMD_SIMULATE_TAG_125K
:
953 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
956 case CMD_LF_SIMULATE_BIDIR
:
957 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
959 case CMD_INDALA_CLONE_TAG
:
960 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
962 case CMD_INDALA_CLONE_TAG_L
:
963 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
965 case CMD_T55XX_READ_BLOCK
:
966 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
968 case CMD_T55XX_WRITE_BLOCK
:
969 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
971 case CMD_T55XX_WAKEUP
:
972 T55xxWakeUp(c
->arg
[0]);
974 case CMD_T55XX_RESET_READ
:
977 case CMD_PCF7931_READ
:
980 case CMD_PCF7931_WRITE
:
981 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
983 case CMD_EM4X_READ_WORD
:
984 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
986 case CMD_EM4X_WRITE_WORD
:
987 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
989 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
990 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
992 case CMD_VIKING_CLONE_TAG
:
993 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
998 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
999 SnoopHitag(c
->arg
[0]);
1001 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1002 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1004 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1005 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1007 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1008 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1010 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1011 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1013 case CMD_READ_HITAG_S
: //Reader for only Hitag S tags, args = key or challenge
1014 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1016 case CMD_WR_HITAG_S
: //writer for Hitag tags args=data to write,page and key or challenge
1017 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1021 #ifdef WITH_ISO15693
1022 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1023 AcquireRawAdcSamplesIso15693();
1025 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1026 RecordRawAdcSamplesIso15693();
1029 case CMD_ISO_15693_COMMAND
:
1030 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1033 case CMD_ISO_15693_FIND_AFI
:
1034 BruteforceIso15693Afi(c
->arg
[0]);
1037 case CMD_ISO_15693_DEBUG
:
1038 SetDebugIso15693(c
->arg
[0]);
1041 case CMD_READER_ISO_15693
:
1042 ReaderIso15693(c
->arg
[0]);
1044 case CMD_SIMTAG_ISO_15693
:
1045 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1050 case CMD_SIMULATE_TAG_LEGIC_RF
:
1051 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1053 case CMD_WRITER_LEGIC_RF
:
1054 LegicRfWriter( c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1056 case CMD_READER_LEGIC_RF
:
1057 LegicRfReader(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1059 case CMD_LEGIC_INFO
:
1062 case CMD_LEGIC_ESET
:
1063 LegicEMemSet(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1067 #ifdef WITH_ISO14443b
1068 case CMD_READ_SRI_TAG
:
1069 ReadSTMemoryIso14443b(c
->arg
[0]);
1071 case CMD_SNOOP_ISO_14443B
:
1074 case CMD_SIMULATE_TAG_ISO_14443B
:
1075 SimulateIso14443bTag(c
->arg
[0]);
1077 case CMD_ISO_14443B_COMMAND
:
1078 //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1079 SendRawCommand14443B_Ex(c
);
1083 #ifdef WITH_ISO14443a
1084 case CMD_SNOOP_ISO_14443a
:
1085 SniffIso14443a(c
->arg
[0]);
1087 case CMD_READER_ISO_14443a
:
1090 case CMD_SIMULATE_TAG_ISO_14443a
:
1091 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1093 case CMD_EPA_PACE_COLLECT_NONCE
:
1094 EPA_PACE_Collect_Nonce(c
);
1096 case CMD_EPA_PACE_REPLAY
:
1099 case CMD_READER_MIFARE
:
1100 ReaderMifare(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1102 case CMD_MIFARE_READBL
:
1103 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1105 case CMD_MIFAREU_READBL
:
1106 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1108 case CMD_MIFAREUC_AUTH
:
1109 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1111 case CMD_MIFAREU_READCARD
:
1112 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1114 case CMD_MIFAREUC_SETPWD
:
1115 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1117 case CMD_MIFARE_READSC
:
1118 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1120 case CMD_MIFARE_WRITEBL
:
1121 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1123 //case CMD_MIFAREU_WRITEBL_COMPAT:
1124 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1126 case CMD_MIFAREU_WRITEBL
:
1127 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1129 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1130 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1132 case CMD_MIFARE_NESTED
:
1133 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1135 case CMD_MIFARE_CHKKEYS
:
1136 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1138 case CMD_SIMULATE_MIFARE_CARD
:
1139 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1143 case CMD_MIFARE_SET_DBGMODE
:
1144 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1146 case CMD_MIFARE_EML_MEMCLR
:
1147 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1149 case CMD_MIFARE_EML_MEMSET
:
1150 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1152 case CMD_MIFARE_EML_MEMGET
:
1153 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1155 case CMD_MIFARE_EML_CARDLOAD
:
1156 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1159 // Work with "magic Chinese" card
1160 case CMD_MIFARE_CSETBLOCK
:
1161 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1163 case CMD_MIFARE_CGETBLOCK
:
1164 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1166 case CMD_MIFARE_CIDENT
:
1171 case CMD_MIFARE_SNIFFER
:
1172 SniffMifare(c
->arg
[0]);
1176 case CMD_MIFARE_DESFIRE_READBL
: break;
1177 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1178 case CMD_MIFARE_DESFIRE_AUTH1
:
1179 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1181 case CMD_MIFARE_DESFIRE_AUTH2
:
1182 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1184 case CMD_MIFARE_DES_READER
:
1185 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1187 case CMD_MIFARE_DESFIRE_INFO
:
1188 MifareDesfireGetInformation();
1190 case CMD_MIFARE_DESFIRE
:
1191 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1193 case CMD_MIFARE_COLLECT_NONCES
:
1197 case CMD_EMV_TRANSACTION
:
1200 case CMD_EMV_GET_RANDOM_NUM
:
1203 case CMD_EMV_LOAD_VALUE
:
1204 EMVloadvalue(c
->arg
[0], c
->d
.asBytes
);
1206 case CMD_EMV_DUMP_CARD
:
1210 // Makes use of ISO14443a FPGA Firmware
1211 case CMD_SNOOP_ICLASS
:
1214 case CMD_SIMULATE_TAG_ICLASS
:
1215 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1217 case CMD_READER_ICLASS
:
1218 ReaderIClass(c
->arg
[0]);
1220 case CMD_READER_ICLASS_REPLAY
:
1221 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1223 case CMD_ICLASS_EML_MEMSET
:
1224 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1226 case CMD_ICLASS_WRITEBLOCK
:
1227 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1229 case CMD_ICLASS_READCHECK
: // auth step 1
1230 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1232 case CMD_ICLASS_READBLOCK
:
1233 iClass_ReadBlk(c
->arg
[0]);
1235 case CMD_ICLASS_AUTHENTICATION
: //check
1236 iClass_Authentication(c
->d
.asBytes
);
1238 case CMD_ICLASS_DUMP
:
1239 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1241 case CMD_ICLASS_CLONE
:
1242 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1246 case CMD_HF_SNIFFER
:
1247 HfSnoop(c
->arg
[0], c
->arg
[1]);
1251 case CMD_BUFF_CLEAR
:
1255 case CMD_MEASURE_ANTENNA_TUNING
:
1256 MeasureAntennaTuning();
1259 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1260 MeasureAntennaTuningHf();
1263 case CMD_LISTEN_READER_FIELD
:
1264 ListenReaderField(c
->arg
[0]);
1267 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1268 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1270 LED_D_OFF(); // LED D indicates field ON or OFF
1273 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
: {
1275 uint8_t *BigBuf
= BigBuf_get_addr();
1277 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1278 len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1279 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1281 // Trigger a finish downloading signal with an ACK frame
1282 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1286 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1287 uint8_t *b
= BigBuf_get_addr();
1288 memcpy( b
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1289 cmd_send(CMD_ACK
,0,0,0,0,0);
1292 case CMD_DOWNLOAD_EML_BIGBUF
: {
1294 uint8_t *cardmem
= BigBuf_get_EM_addr();
1296 for(size_t i
=0; i
< c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1297 len
= MIN((c
->arg
[1] - i
), USB_CMD_DATA_SIZE
);
1298 cmd_send(CMD_DOWNLOADED_EML_BIGBUF
, i
, len
, CARD_MEMORY_SIZE
, cardmem
+ c
->arg
[0] + i
, len
);
1300 // Trigger a finish downloading signal with an ACK frame
1301 cmd_send(CMD_ACK
, 1, 0, CARD_MEMORY_SIZE
, 0, 0);
1309 case CMD_SET_LF_DIVISOR
:
1310 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1311 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1314 case CMD_SET_ADC_MUX
:
1316 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1317 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1318 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1319 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1330 cmd_send(CMD_ACK
,0,0,0,0,0);
1340 case CMD_SETUP_WRITE
:
1341 case CMD_FINISH_WRITE
:
1342 case CMD_HARDWARE_RESET
:
1345 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1347 // We're going to reset, and the bootrom will take control.
1351 case CMD_START_FLASH
:
1352 if(common_area
.flags
.bootrom_present
) {
1353 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1356 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1360 case CMD_DEVICE_INFO
: {
1361 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1362 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1363 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1367 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1372 void __attribute__((noreturn
)) AppMain(void)
1376 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1377 /* Initialize common area */
1378 memset(&common_area
, 0, sizeof(common_area
));
1379 common_area
.magic
= COMMON_AREA_MAGIC
;
1380 common_area
.version
= 1;
1382 common_area
.flags
.osimage_present
= 1;
1389 // The FPGA gets its clock from us from PCK0 output, so set that up.
1390 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1391 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1392 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1393 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1394 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
| AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1395 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1398 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1400 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1402 // Load the FPGA image, which we have stored in our flash.
1403 // (the HF version by default)
1404 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1412 byte_t rx
[sizeof(UsbCommand
)];
1416 if ( usb_poll_validate_length() ) {
1417 rx_len
= usb_read(rx
, sizeof(UsbCommand
));
1420 UsbPacketReceived(rx
, rx_len
);
1425 #ifndef WITH_ISO14443a_StandAlone
1426 if (BUTTON_HELD(1000) > 0)
1430 #ifdef WITH_ISO14443a
1431 #ifdef WITH_ISO14443a_StandAlone
1432 if (BUTTON_HELD(1000) > 0)
1433 StandAloneMode14a();