AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
AT91C_BASE_ADC->ADC_MR =
- ADC_MODE_PRESCALE(32) |
- ADC_MODE_STARTUP_TIME(16) |
- ADC_MODE_SAMPLE_HOLD_TIME(8);
+ ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
+ ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
+ ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
+
+ // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
+ // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
+ // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
+ //
+ // The maths are:
+ // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
+ //
+ // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
+ //
+ // Note: with the "historic" values in the comments above, the error was 34% !!!
+
AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+
while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
;
d = AT91C_BASE_ADC->ADC_CDR[ch];
WDT_HIT();
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
SpinDelay(20);
- // Vref = 3.3V, and a 10000:240 voltage divider on the input
- // can measure voltages up to 137500 mV
- adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
+ adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
if (i==95) vLf125 = adcval; // voltage at 125Khz
if (i==89) vLf134 = adcval; // voltage at 134Khz
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(20);
- // Vref = 3300mV, and an 10:1 voltage divider on the input
- // can measure voltages up to 33000 mV
- vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+ vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
- cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),LF_Results,256);
+ cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_A_OFF();
LED_B_OFF();
DbpString("Measuring HF antenna, press button to exit");
+ // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+
for (;;) {
- // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(20);
- // Vref = 3300mV, and an 10:1 voltage divider on the input
- // can measure voltages up to 33000 mV
- vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+ vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
Dbprintf("%d mV",vHf);
if (BUTTON_PRESS()) break;
}
DbpString("cancelled");
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+
}
void ListenReaderField(int limit)
{
- int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
- int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
+ int lf_av, lf_av_new, lf_baseline= 0, lf_max;
+ int hf_av, hf_av_new, hf_baseline= 0, hf_max;
int mode=1, display_val, display_max, i;
-#define LF_ONLY 1
-#define HF_ONLY 2
+#define LF_ONLY 1
+#define HF_ONLY 2
+#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
+
+
+ // switch off FPGA - we don't want to measure our own signal
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
- lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
+ lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
if(limit != HF_ONLY) {
- Dbprintf("LF 125/134 Baseline: %d", lf_av);
+ Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
lf_baseline = lf_av;
}
- hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
+ hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
if (limit != LF_ONLY) {
- Dbprintf("HF 13.56 Baseline: %d", hf_av);
+ Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
hf_baseline = hf_av;
}
WDT_HIT();
if (limit != HF_ONLY) {
- if(mode==1) {
- if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
- else LED_D_OFF();
+ if(mode == 1) {
+ if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
+ LED_D_ON();
+ else
+ LED_D_OFF();
}
- ++lf_count;
- lf_av_new= ReadAdc(ADC_CHAN_LF);
+ lf_av_new = AvgAdc(ADC_CHAN_LF);
// see if there's a significant change
- if(abs(lf_av - lf_av_new) > 10) {
- Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
+ if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
+ Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
lf_av = lf_av_new;
if (lf_av > lf_max)
lf_max = lf_av;
- lf_count= 0;
}
}
if (limit != LF_ONLY) {
if (mode == 1){
- if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
- else LED_B_OFF();
+ if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
+ LED_B_ON();
+ else
+ LED_B_OFF();
}
- ++hf_count;
- hf_av_new= ReadAdc(ADC_CHAN_HF);
+ hf_av_new = AvgAdc(ADC_CHAN_HF);
// see if there's a significant change
- if(abs(hf_av - hf_av_new) > 10) {
- Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
+ if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
+ Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
hf_av = hf_av_new;
if (hf_av > hf_max)
hf_max = hf_av;
- hf_count= 0;
}
}
void Dbprintf(const char *fmt, ...);
void Dbhexdump(int len, uint8_t *d, bool bAsci);
+// ADC Vref = 3300mV, and an (10M+1M):1M voltage divider on the HF input can measure voltages up to 36300 mV
+#define MAX_ADC_HF_VOLTAGE 36300
+// ADC Vref = 3300mV, and an (10000k+240k):240k voltage divider on the LF input can measure voltages up to 140800 mV
+#define MAX_ADC_LF_VOLTAGE 140800
int AvgAdc(int ch);
void ToSendStuffBit(int b);
Uart.twoBits = (Uart.twoBits << 8) | bit;
- if (Uart.state == STATE_UNSYNCD) { // not yet synced
+ if (Uart.state == STATE_UNSYNCD) { // not yet synced
- if (Uart.highCnt < 7) { // wait for a stable unmodulated signal
+ if (Uart.highCnt < 2) { // wait for a stable unmodulated signal
if (Uart.twoBits == 0xffff) {
Uart.highCnt++;
} else {
Uart.highCnt = 0;
}
} else {
- Uart.syncBit = 0xFFFF; // not set
- // look for 00xx1111 (the start bit)
- if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7;
- else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
- else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
- else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
- else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
- else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
- else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
- else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
- if (Uart.syncBit != 0xFFFF) {
+ Uart.syncBit = 0xFFFF; // not set
+ // we look for a ...1111111100x11111xxxxxx pattern (the start bit)
+ if ((Uart.twoBits & 0xDF00) == 0x1F00) Uart.syncBit = 8; // mask is 11x11111 xxxxxxxx,
+ // check for 00x11111 xxxxxxxx
+ else if ((Uart.twoBits & 0xEF80) == 0x8F80) Uart.syncBit = 7; // both masks shifted right one bit, left padded with '1'
+ else if ((Uart.twoBits & 0xF7C0) == 0xC7C0) Uart.syncBit = 6; // ...
+ else if ((Uart.twoBits & 0xFBE0) == 0xE3E0) Uart.syncBit = 5;
+ else if ((Uart.twoBits & 0xFDF0) == 0xF1F0) Uart.syncBit = 4;
+ else if ((Uart.twoBits & 0xFEF8) == 0xF8F8) Uart.syncBit = 3;
+ else if ((Uart.twoBits & 0xFF7C) == 0xFC7C) Uart.syncBit = 2;
+ else if ((Uart.twoBits & 0xFFBE) == 0xFE3E) Uart.syncBit = 1;
+ if (Uart.syncBit != 0xFFFF) { // found a sync bit
Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
Uart.startTime -= Uart.syncBit;
Uart.endTime = Uart.startTime;
if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
UartReset();
- Uart.highCnt = 6;
} else { // Modulation in first half = Sequence Z = logic "0"
if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
UartReset();
- Uart.highCnt = 6;
} else {
Uart.bitCount++;
Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
if (Uart.len) {
return TRUE; // we are finished with decoding the raw data sequence
} else {
- UartReset(); // Nothing receiver - start over
+ UartReset(); // Nothing received - start over
+ Uart.highCnt = 1;
}
}
if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
UartReset();
- Uart.highCnt = 6;
+ Uart.highCnt = 1;
} else { // a logic "0"
Uart.bitCount++;
Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
}
+
//-----------------------------------------------------------------------------
// Wait for commands from reader
// Stop when button is pressed (return 1) or field was gone (return 2)
// Set ADC to read field strength
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
AT91C_BASE_ADC->ADC_MR =
- ADC_MODE_PRESCALE(32) |
- ADC_MODE_STARTUP_TIME(16) |
- ADC_MODE_SAMPLE_HOLD_TIME(8);
+ ADC_MODE_PRESCALE(63) |
+ ADC_MODE_STARTUP_TIME(1) |
+ ADC_MODE_SAMPLE_HOLD_TIME(15);
AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
// start ADC
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
// Clear RXRDY:
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-
+
for(;;) {
WDT_HIT();
analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
if (analogCnt >= 32) {
- if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
+ if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
vtime = GetTickCount();
if (!timer) timer = vtime;
// 50ms no field --> card to idle state
}
// Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
- for (i = 0; i < 2 ; ) {
+ uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
+ for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = SEC_F;
FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
i++;
}
}
-
+
LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
return 0;
// clear RXRDY:
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-
+
c = 0;
for(;;) {
WDT_HIT();
// free eventually allocated BigBuf memory but keep Emulator Memory
BigBuf_free_keep_EM();
+
// clear trace
iso14a_clear_trace();
iso14a_set_tracing(TRUE);
WDT_HIT();
// find reader field
- // Vref = 3300mV, and an 10:1 voltage divider on the input
- // can measure voltages up to 33000 mV
if (cardSTATE == MFEMUL_NOFIELD) {
- vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+ vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
if (vHf > MF_MINFIELDV) {
cardSTATE_TO_IDLE();
LED_A_ON();
LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
+
uint32_t ar = bytes_to_num(receivedCmd, 4);
uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
num_to_bytes(ans, 4, rAUTH_AT);
}
+
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
//Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
cardSTATE = MFEMUL_AUTH1;
if(ar_nr_collected > 1) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
- ar_nr_responses[0], // UID
+ ar_nr_responses[0], // UID
ar_nr_responses[1], //NT
ar_nr_responses[2], //AR1
ar_nr_responses[3], //NR1
}
}
if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen);
+
}
uint8_t *dest = BigBuf_get_addr();
size_t size=0, idx=0;
- int clk=0, invert=0, errCnt=0;
+ int clk=0, invert=0, errCnt=0, maxErr=20;
uint64_t lo=0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
size = BigBuf_max_traceLen();
//Dbprintf("DEBUG: Buffer got");
//askdemod and manchester decode
- errCnt = askmandemod(dest, &size, &clk, &invert);
+ errCnt = askmandemod(dest, &size, &clk, &invert, maxErr);
//Dbprintf("DEBUG: ASK Got");
WDT_HIT();
if (bitLen>512) bitLen=512; //max output to 512 bits if we have more - should be plenty
// ensure equally divided by 16
- bitLen &= 0xfff0;
+ bitLen &= 0xfff0;
for (i = 0; i <= (bitLen-16); i+=16) {
PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i",
//by marshmellow
void printBitStream(uint8_t BitStream[], uint32_t bitLen)
{
- uint32_t i = 0;
- if (bitLen<16) {
- PrintAndLog("Too few bits found: %d",bitLen);
- return;
- }
- if (bitLen>512) bitLen=512;
-
- // ensure equally divided by 16
- bitLen &= 0xfff0;
+ uint32_t i = 0;
+ if (bitLen<16) {
+ PrintAndLog("Too few bits found: %d",bitLen);
+ return;
+ }
+ if (bitLen>512) bitLen=512;
+ // ensure equally divided by 16
+ bitLen &= 0xfff0;
- for (i = 0; i <= (bitLen-16); i+=16) {
- PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i",
- BitStream[i],
- BitStream[i+1],
- BitStream[i+2],
- BitStream[i+3],
- BitStream[i+4],
- BitStream[i+5],
- BitStream[i+6],
- BitStream[i+7],
- BitStream[i+8],
- BitStream[i+9],
- BitStream[i+10],
- BitStream[i+11],
- BitStream[i+12],
- BitStream[i+13],
- BitStream[i+14],
- BitStream[i+15]);
- }
+
+ for (i = 0; i <= (bitLen-16); i+=16) {
+ PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i",
+ BitStream[i],
+ BitStream[i+1],
+ BitStream[i+2],
+ BitStream[i+3],
+ BitStream[i+4],
+ BitStream[i+5],
+ BitStream[i+6],
+ BitStream[i+7],
+ BitStream[i+8],
+ BitStream[i+9],
+ BitStream[i+10],
+ BitStream[i+11],
+ BitStream[i+12],
+ BitStream[i+13],
+ BitStream[i+14],
+ BitStream[i+15]);
+ }
return;
}
//by marshmellow
void printEM410x(uint64_t id)
{
if (id !=0){
- uint64_t iii=1;
- uint64_t id2lo=0;
- uint32_t ii=0;
- uint32_t i=0;
- for (ii=5; ii>0;ii--){
- for (i=0;i<8;i++){
- id2lo=(id2lo<<1LL) | ((id & (iii << (i+((ii-1)*8)))) >> (i+((ii-1)*8)));
- }
+ uint64_t iii=1;
+ uint64_t id2lo=0;
+ uint32_t ii=0;
+ uint32_t i=0;
+ for (ii=5; ii>0;ii--){
+ for (i=0;i<8;i++){
+ id2lo=(id2lo<<1LL) | ((id & (iii << (i+((ii-1)*8)))) >> (i+((ii-1)*8)));
}
- //output em id
- PrintAndLog("EM TAG ID : %010llx", id);
- PrintAndLog("Unique TAG ID: %010llx", id2lo);
- PrintAndLog("DEZ 8 : %08lld",id & 0xFFFFFF);
- PrintAndLog("DEZ 10 : %010lld",id & 0xFFFFFF);
- PrintAndLog("DEZ 5.5 : %05lld.%05lld",(id>>16LL) & 0xFFFF,(id & 0xFFFF));
- PrintAndLog("DEZ 3.5A : %03lld.%05lld",(id>>32ll),(id & 0xFFFF));
- PrintAndLog("DEZ 14/IK2 : %014lld",id);
- PrintAndLog("DEZ 15/IK3 : %015lld",id2lo);
- PrintAndLog("Other : %05lld_%03lld_%08lld",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF));
- }
- return;
+ }
+ //output em id
+ PrintAndLog("EM TAG ID : %010llx", id);
+ PrintAndLog("Unique TAG ID: %010llx", id2lo);
+ PrintAndLog("DEZ 8 : %08lld",id & 0xFFFFFF);
+ PrintAndLog("DEZ 10 : %010lld",id & 0xFFFFFF);
+ PrintAndLog("DEZ 5.5 : %05lld.%05lld",(id>>16LL) & 0xFFFF,(id & 0xFFFF));
+ PrintAndLog("DEZ 3.5A : %03lld.%05lld",(id>>32ll),(id & 0xFFFF));
+ PrintAndLog("DEZ 14/IK2 : %014lld",id);
+ PrintAndLog("DEZ 15/IK3 : %015lld",id2lo);
+ PrintAndLog("Other : %05lld_%03lld_%08lld",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF));
+ }
+ return;
}
//by marshmellow
-//take binary from demod buffer and see if we can find an EM410x ID
-int CmdEm410xDecode(const char *Cmd)
+//takes 3 arguments - clock, invert and maxErr as integers
+//attempts to demodulate ask while decoding manchester
+//prints binary found and saves in graphbuffer for further commands
+int CmdAskEM410xDemod(const char *Cmd)
{
- uint64_t id=0;
- size_t size = DemodBufferLen, idx=0;
- id = Em410xDecode(DemodBuffer, &size, &idx);
- if (id>0){
- setDemodBuf(DemodBuffer, size, idx);
+ int invert=0;
+ int clk=0;
+ int maxErr=100;
+ char cmdp = param_getchar(Cmd, 0);
+ if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
+ PrintAndLog("Usage: data askem410xdemod [clock] <0|1> [maxError]");
+ PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
+ PrintAndLog(" <invert>, 1 for invert output");
+ PrintAndLog(" [set maximum allowed errors], default = 100.");
+ PrintAndLog("");
+ PrintAndLog(" sample: data askem410xdemod = demod an EM410x Tag ID from GraphBuffer");
+ PrintAndLog(" : data askem410xdemod 32 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32");
+ PrintAndLog(" : data askem410xdemod 32 1 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32 and inverting data");
+ PrintAndLog(" : data askem410xdemod 1 = demod an EM410x Tag ID from GraphBuffer while inverting data");
+ PrintAndLog(" : data askem410xdemod 64 1 0 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/64 and inverting data and allowing 0 demod errors");
+
+ return 0;
+ }
+
+
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
+ sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr);
+ if (invert != 0 && invert != 1) {
+ PrintAndLog("Invalid argument: %s", Cmd);
+ return 0;
+ }
+ size_t BitLen = getFromGraphBuf(BitStream);
+
+ if (g_debugMode==1) PrintAndLog("DEBUG: Bitlen from grphbuff: %d",BitLen);
+ if (BitLen==0) return 0;
+ int errCnt=0;
+ errCnt = askmandemod(BitStream, &BitLen, &clk, &invert, maxErr);
+ if (errCnt<0||BitLen<16){ //if fatal error (or -1)
+ if (g_debugMode==1) PrintAndLog("no data found %d, errors:%d, bitlen:%d, clock:%d",errCnt,invert,BitLen,clk);
+ return 0;
+ }
+ PrintAndLog("\nUsing Clock: %d - Invert: %d - Bits Found: %d",clk,invert,BitLen);
+
+ //output
+ if (errCnt>0){
+ PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
+ }
+ //PrintAndLog("ASK/Manchester decoded bitstream:");
+ // Now output the bitstream to the scrollback by line of 16 bits
+ setDemodBuf(BitStream,BitLen,0);
+ //printDemodBuff();
+ uint64_t lo =0;
+ size_t idx=0;
+ lo = Em410xDecode(BitStream, &BitLen, &idx);
+ if (lo>0){
+ //set GraphBuffer for clone or sim command
+ setDemodBuf(BitStream, BitLen, idx);
if (g_debugMode){
- PrintAndLog("DEBUG: Printing demod buffer:");
+ PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen);
printDemodBuff();
}
- printEM410x(id);
- return 1;
+ PrintAndLog("EM410x pattern found: ");
+ printEM410x(lo);
+ return 1;
}
return 0;
}
-
//by marshmellow
-//takes 2 arguments - clock and invert both as integers
+//takes 3 arguments - clock, invert, maxErr as integers
//attempts to demodulate ask while decoding manchester
//prints binary found and saves in graphbuffer for further commands
int Cmdaskmandemod(const char *Cmd)
{
int invert=0;
- int clk=0;
+ int clk=0;
+ int maxErr=100;
+ char cmdp = param_getchar(Cmd, 0);
+ if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
+ PrintAndLog("Usage: data askmandemod [clock] <0|1> [maxError]");
+ PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
+ PrintAndLog(" <invert>, 1 for invert output");
+ PrintAndLog(" [set maximum allowed errors], default = 100.");
+ PrintAndLog("");
+ PrintAndLog(" sample: data askmandemod = demod an ask/manchester tag from GraphBuffer");
+ PrintAndLog(" : data askmandemod 32 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32");
+ PrintAndLog(" : data askmandemod 32 1 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32 and inverting data");
+ PrintAndLog(" : data askmandemod 1 = demod an ask/manchester tag from GraphBuffer while inverting data");
+ PrintAndLog(" : data askmandemod 64 1 0 = demod an ask/manchester tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
+
+ return 0;
+ }
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
- sscanf(Cmd, "%i %i", &clk, &invert);
+ sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr);
if (invert != 0 && invert != 1) {
PrintAndLog("Invalid argument: %s", Cmd);
return 0;
}
-
- size_t BitLen = getFromGraphBuf(BitStream);
+ if (clk==1){
+ invert=1;
+ clk=0;
+ }
+ size_t BitLen = getFromGraphBuf(BitStream);
if (g_debugMode==1) PrintAndLog("DEBUG: Bitlen from grphbuff: %d",BitLen);
+ if (BitLen==0) return 0;
int errCnt=0;
- errCnt = askmandemod(BitStream, &BitLen,&clk,&invert);
- if (errCnt<0||BitLen<16){ //if fatal error (or -1)
- if (g_debugMode==1) PrintAndLog("no data found %d, errors:%d, bitlen:%d, clock:%d",errCnt,invert,BitLen,clk);
+ errCnt = askmandemod(BitStream, &BitLen, &clk, &invert, maxErr);
+ if (errCnt<0||BitLen<16){ //if fatal error (or -1)
+ if (g_debugMode==1) PrintAndLog("no data found %d, errors:%d, bitlen:%d, clock:%d",errCnt,invert,BitLen,clk);
return 0;
- }
+ }
PrintAndLog("\nUsing Clock: %d - Invert: %d - Bits Found: %d",clk,invert,BitLen);
//output
}
PrintAndLog("ASK/Manchester decoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
- setDemodBuf(BitStream,BitLen,0);
- printDemodBuff();
+ setDemodBuf(BitStream,BitLen,0);
+ printDemodBuff();
uint64_t lo =0;
size_t idx=0;
lo = Em410xDecode(BitStream, &BitLen, &idx);
printEM410x(lo);
return 1;
}
- return 0;
+ return 1;
}
//by marshmellow
{
int i =0;
int errCnt=0;
- size_t size=0;
+ size_t size=0;
+ size_t maxErr = 20;
+ char cmdp = param_getchar(Cmd, 0);
+ if (strlen(Cmd) > 1 || cmdp == 'h' || cmdp == 'H') {
+ PrintAndLog("Usage: data manrawdecode");
+ PrintAndLog(" Takes 10 and 01 and converts to 0 and 1 respectively");
+ PrintAndLog(" --must have binary sequence in demodbuffer (run data askrawdemod first)");
+ PrintAndLog("");
+ PrintAndLog(" sample: data manrawdecode = decode manchester bitstream from the demodbuffer");
+ return 0;
+ }
+ if (DemodBufferLen==0) return 0;
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
int high=0,low=0;
- for (;i<DemodBufferLen;++i){
- if (DemodBuffer[i]>high) high=DemodBuffer[i];
- else if(DemodBuffer[i]<low) low=DemodBuffer[i];
- BitStream[i]=DemodBuffer[i];
+ for (;i<DemodBufferLen;++i){
+ if (DemodBuffer[i]>high) high=DemodBuffer[i];
+ else if(DemodBuffer[i]<low) low=DemodBuffer[i];
+ BitStream[i]=DemodBuffer[i];
}
if (high>1 || low <0 ){
PrintAndLog("Error: please raw demod the wave first then mancheseter raw decode");
return 0;
}
- size=i;
- errCnt=manrawdecode(BitStream, &size);
- if (errCnt>=20){
+ size=i;
+ errCnt=manrawdecode(BitStream, &size);
+ if (errCnt>=maxErr){
PrintAndLog("Too many errors: %d",errCnt);
return 0;
}
PrintAndLog("Manchester Decoded - # errors:%d - data:",errCnt);
- printBitStream(BitStream, size);
+ printBitStream(BitStream, size);
if (errCnt==0){
- uint64_t id = 0;
+ uint64_t id = 0;
size_t idx=0;
- id = Em410xDecode(BitStream, &size, &idx);
- if (id>0){
+ id = Em410xDecode(BitStream, &size, &idx);
+ if (id>0){
//need to adjust to set bitstream back to manchester encoded data
//setDemodBuf(BitStream, size, idx);
// width waves vs small width waves to help the decode positioning) or askbiphdemod
int CmdBiphaseDecodeRaw(const char *Cmd)
{
- int i = 0;
- int errCnt=0;
+ int i = 0;
+ int errCnt=0;
size_t size=0;
- int offset=0;
- int invert=0;
- int high=0, low=0;
+ int offset=0;
+ int invert=0;
+ int high=0, low=0;
+ char cmdp = param_getchar(Cmd, 0);
+ if (strlen(Cmd) > 3 || cmdp == 'h' || cmdp == 'H') {
+ PrintAndLog("Usage: data biphaserawdecode [offset] <invert>");
+ PrintAndLog(" Converts 10 or 01 to 0 and 11 or 00 to 1");
+ PrintAndLog(" --must have binary sequence in demodbuffer (run data askrawdemod first)");
+ PrintAndLog("");
+ PrintAndLog(" [offset <0|1>], set to 0 not to adjust start position or to 1 to adjust decode start position");
+ PrintAndLog(" [invert <0|1>], set to 1 to invert output");
+ PrintAndLog("");
+ PrintAndLog(" sample: data biphaserawdecode = decode biphase bitstream from the demodbuffer");
+ PrintAndLog(" sample: data biphaserawdecode 1 1 = decode biphase bitstream from the demodbuffer, set offset, and invert output");
+ return 0;
+ }
sscanf(Cmd, "%i %i", &offset, &invert);
- uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
- //get graphbuffer & high and low
+ if (DemodBufferLen==0) return 0;
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
+ //get graphbuffer & high and low
for (;i<DemodBufferLen;++i){
if(DemodBuffer[i]>high)high=DemodBuffer[i];
else if(DemodBuffer[i]<low)low=DemodBuffer[i];
BitStream[i]=DemodBuffer[i];
- }
- if (high>1 || low <0){
- PrintAndLog("Error: please raw demod the wave first then decode");
- return 0;
- }
+ }
+ if (high>1 || low <0){
+ PrintAndLog("Error: please raw demod the wave first then decode");
+ return 0;
+ }
size=i;
errCnt=BiphaseRawDecode(BitStream, &size, offset, invert);
- if (errCnt>=20){
- PrintAndLog("Too many errors attempting to decode: %d",errCnt);
- return 0;
- }
- PrintAndLog("Biphase Decoded using offset: %d - # errors:%d - data:",offset,errCnt);
+ if (errCnt>=20){
+ PrintAndLog("Too many errors attempting to decode: %d",errCnt);
+ return 0;
+ }
+ PrintAndLog("Biphase Decoded using offset: %d - # errors:%d - data:",offset,errCnt);
printBitStream(BitStream, size);
- PrintAndLog("\nif bitstream does not look right try offset=1");
- return 1;
+ PrintAndLog("\nif bitstream does not look right try offset=1");
+ return 1;
}
//by marshmellow
-//takes 2 arguments - clock and invert both as integers
+//takes 4 arguments - clock, invert, maxErr as integers and amplify as char
//attempts to demodulate ask only
//prints binary found and saves in graphbuffer for further commands
int Cmdaskrawdemod(const char *Cmd)
{
- int invert=0;
- int clk=0;
+ int invert=0;
+ int clk=0;
+ int maxErr=100;
+ uint8_t askAmp = 0;
+ char amp = param_getchar(Cmd, 0);
+ char cmdp = param_getchar(Cmd, 0);
+ if (strlen(Cmd) > 12 || cmdp == 'h' || cmdp == 'H') {
+ PrintAndLog("Usage: data askrawdemod [clock] <invert> [maxError] [amplify]");
+ PrintAndLog(" [set clock as integer] optional, if not set, autodetect");
+ PrintAndLog(" <invert>, 1 to invert output");
+ PrintAndLog(" [set maximum allowed errors], default = 100");
+ PrintAndLog(" <amplify>, 'a' to attempt demod with ask amplification, default = no amp");
+ PrintAndLog("");
+ PrintAndLog(" sample: data askrawdemod = demod an ask tag from GraphBuffer");
+ PrintAndLog(" : data askrawdemod a = demod an ask tag from GraphBuffer, amplified");
+ PrintAndLog(" : data askrawdemod 32 = demod an ask tag from GraphBuffer using a clock of RF/32");
+ PrintAndLog(" : data askrawdemod 32 1 = demod an ask tag from GraphBuffer using a clock of RF/32 and inverting data");
+ PrintAndLog(" : data askrawdemod 1 = demod an ask tag from GraphBuffer while inverting data");
+ PrintAndLog(" : data askrawdemod 64 1 0 = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
+ PrintAndLog(" : data askrawdemod 64 1 0 a = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors, and amp");
+ return 0;
+ }
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
- sscanf(Cmd, "%i %i", &clk, &invert);
+ sscanf(Cmd, "%i %i %i %c", &clk, &invert, &maxErr, &);
if (invert != 0 && invert != 1) {
PrintAndLog("Invalid argument: %s", Cmd);
return 0;
}
- size_t BitLen = getFromGraphBuf(BitStream);
+ if (clk==1){
+ invert=1;
+ clk=0;
+ }
+ if (amp == 'a' || amp == 'A') askAmp=1;
+ size_t BitLen = getFromGraphBuf(BitStream);
+ if (BitLen==0) return 0;
int errCnt=0;
- errCnt = askrawdemod(BitStream, &BitLen,&clk,&invert);
- if (errCnt==-1||BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
- PrintAndLog("no data found");
+ errCnt = askrawdemod(BitStream, &BitLen, &clk, &invert, maxErr, askAmp);
+ if (errCnt==-1||BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
+ PrintAndLog("no data found");
if (g_debugMode==1) PrintAndLog("errCnt: %d, BitLen: %d, clk: %d, invert: %d", errCnt, BitLen, clk, invert);
return 0;
- }
- PrintAndLog("Using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen);
+ }
+ PrintAndLog("Using Clock: %d - invert: %d - Bits Found: %d", clk, invert, BitLen);
//move BitStream back to DemodBuffer
- setDemodBuf(BitStream,BitLen,0);
+ setDemodBuf(BitStream,BitLen,0);
- //output
+ //output
if (errCnt>0){
- PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
+ PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d", errCnt);
}
PrintAndLog("ASK demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
}
/* Get our clock */
- clock = GetClock(Cmd, high, 1);
+ clock = GetAskClock(Cmd, high, 1);
gtl = ClearGraph(0);
bit = 0;
return 0;
}
+//by marshmellow
+//use large jumps in read samples to identify edges of waves and then amplify that wave to max
+//similar to dirtheshold, threshold, and askdemod commands
+//takes a threshold length which is the measured length between two samples then determines an edge
+int CmdAskEdgeDetect(const char *Cmd)
+{
+ int thresLen = 25;
+ sscanf(Cmd, "%i", &thresLen);
+ int shift = 127;
+ int shiftedVal=0;
+ for(int i = 1; i<GraphTraceLen; i++){
+ if (GraphBuffer[i]-GraphBuffer[i-1]>=thresLen) //large jump up
+ shift=127;
+ else if(GraphBuffer[i]-GraphBuffer[i-1]<=-1*thresLen) //large jump down
+ shift=-127;
+
+ shiftedVal=GraphBuffer[i]+shift;
+
+ if (shiftedVal>127)
+ shiftedVal=127;
+ else if (shiftedVal<-127)
+ shiftedVal=-127;
+ GraphBuffer[i-1] = shiftedVal;
+ }
+ RepaintGraphWindow();
+ //CmdNorm("");
+ return 0;
+}
+
/* Print our clock rate */
// uses data from graphbuffer
+// adjusted to take char parameter for type of modulation to find the clock - by marshmellow.
int CmdDetectClockRate(const char *Cmd)
{
- GetClock("",0,0);
- //int clock = DetectASKClock(0);
- //PrintAndLog("Auto-detected clock rate: %d", clock);
- return 0;
+ char cmdp = param_getchar(Cmd, 0);
+ if (strlen(Cmd) > 3 || strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') {
+ PrintAndLog("Usage: data detectclock [modulation]");
+ PrintAndLog(" [modulation as char], specify the modulation type you want to detect the clock of");
+ PrintAndLog(" 'a' = ask, 'f' = fsk, 'n' = nrz/direct, 'p' = psk");
+ PrintAndLog("");
+ PrintAndLog(" sample: data detectclock a = detect the clock of an ask modulated wave in the GraphBuffer");
+ PrintAndLog(" data detectclock f = detect the clock of an fsk modulated wave in the GraphBuffer");
+ PrintAndLog(" data detectclock p = detect the clock of an psk modulated wave in the GraphBuffer");
+ PrintAndLog(" data detectclock n = detect the clock of an nrz/direct modulated wave in the GraphBuffer");
+ }
+ int ans=0;
+ if (cmdp == 'a'){
+ ans = GetAskClock("", true, false);
+ } else if (cmdp == 'f'){
+ ans = GetFskClock("", true, false);
+ } else if (cmdp == 'n'){
+ ans = GetNrzClock("", true, false);
+ } else if (cmdp == 'p'){
+ ans = GetPskClock("", true, false);
+ } else {
+ PrintAndLog ("Please specify a valid modulation to detect the clock of - see option h for help");
+ }
+ return ans;
}
//by marshmellow
//fsk raw demod and print binary
-//takes 4 arguments - Clock, invert, rchigh, rclow
-//defaults: clock = 50, invert=0, rchigh=10, rclow=8 (RF/10 RF/8 (fsk2a))
+//takes 4 arguments - Clock, invert, fchigh, fclow
+//defaults: clock = 50, invert=1, fchigh=10, fclow=8 (RF/10 RF/8 (fsk2a))
int CmdFSKrawdemod(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
int invert=0;
int fchigh=0;
int fclow=0;
+ char cmdp = param_getchar(Cmd, 0);
+ if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
+ PrintAndLog("Usage: data fskrawdemod [clock] <invert> [fchigh] [fclow]");
+ PrintAndLog(" [set clock as integer] optional, omit for autodetect.");
+ PrintAndLog(" <invert>, 1 for invert output, can be used even if the clock is omitted");
+ PrintAndLog(" [fchigh], larger field clock length, omit for autodetect");
+ PrintAndLog(" [fclow], small field clock length, omit for autodetect");
+ PrintAndLog("");
+ PrintAndLog(" sample: data fskrawdemod = demod an fsk tag from GraphBuffer using autodetect");
+ PrintAndLog(" : data fskrawdemod 32 = demod an fsk tag from GraphBuffer using a clock of RF/32, autodetect fc");
+ PrintAndLog(" : data fskrawdemod 1 = demod an fsk tag from GraphBuffer using autodetect, invert output");
+ PrintAndLog(" : data fskrawdemod 32 1 = demod an fsk tag from GraphBuffer using a clock of RF/32, invert output, autodetect fc");
+ PrintAndLog(" : data fskrawdemod 64 0 8 5 = demod an fsk1 RF/64 tag from GraphBuffer");
+ PrintAndLog(" : data fskrawdemod 50 0 10 8 = demod an fsk2 RF/50 tag from GraphBuffer");
+ PrintAndLog(" : data fskrawdemod 50 1 10 8 = demod an fsk2a RF/50 tag from GraphBuffer");
+ return 0;
+ }
//set options from parameters entered with the command
- sscanf(Cmd, "%i %i %i %i", &rfLen, &invert, &fchigh, &fclow);
+ sscanf(Cmd, "%i %i %i %i", &rfLen, &invert, &fchigh, &fclow);
if (strlen(Cmd)>0 && strlen(Cmd)<=2) {
if (rfLen==1){
invert=1; //if invert option only is used
rfLen = 0;
}
- }
+ }
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
- size_t BitLen = getFromGraphBuf(BitStream);
+ size_t BitLen = getFromGraphBuf(BitStream);
+ if (BitLen==0) return 0;
//get field clock lengths
uint16_t fcs=0;
+ uint8_t dummy=0;
if (fchigh==0 || fclow == 0){
- fcs=countFC(BitStream, BitLen);
+ fcs=countFC(BitStream, BitLen, &dummy);
if (fcs==0){
fchigh=10;
fclow=8;
if (rfLen == 0) rfLen = 50;
}
PrintAndLog("Args invert: %d - Clock:%d - fchigh:%d - fclow: %d",invert,rfLen,fchigh, fclow);
- int size = fskdemod(BitStream,BitLen,(uint8_t)rfLen,(uint8_t)invert,(uint8_t)fchigh,(uint8_t)fclow);
+ int size = fskdemod(BitStream,BitLen,(uint8_t)rfLen,(uint8_t)invert,(uint8_t)fchigh,(uint8_t)fclow);
if (size>0){
PrintAndLog("FSK decoded bitstream:");
- setDemodBuf(BitStream,size,0);
+ setDemodBuf(BitStream,size,0);
// Now output the bitstream to the scrollback by line of 16 bits
if(size > (8*32)+2) size = (8*32)+2; //only output a max of 8 blocks of 32 bits most tags will have full bit stream inside that sample size
printBitStream(BitStream,size);
+ return 1;
} else{
PrintAndLog("no FSK data found");
}
uint32_t hi2=0, hi=0, lo=0;
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
- size_t BitLen = getFromGraphBuf(BitStream);
+ size_t BitLen = getFromGraphBuf(BitStream);
+ if (BitLen==0) return 0;
//get binary from fsk wave
- int idx = HIDdemodFSK(BitStream,&BitLen,&hi2,&hi,&lo);
+ int idx = HIDdemodFSK(BitStream,&BitLen,&hi2,&hi,&lo);
if (idx<0){
if (g_debugMode){
if (idx==-1){
- PrintAndLog("DEBUG: Just Noise Detected");
+ PrintAndLog("DEBUG: Just Noise Detected");
} else if (idx == -2) {
PrintAndLog("DEBUG: Error demoding fsk");
} else if (idx == -3) {
return 0;
}
if (hi2 != 0){ //extra large HID tags
- PrintAndLog("HID Prox TAG ID: %x%08x%08x (%d)",
+ PrintAndLog("HID Prox TAG ID: %x%08x%08x (%d)",
(unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
}
else { //standard HID tags <38 bits
lo2=lo2>>1;
idx3++;
}
- fmtLen =idx3+19;
+ fmtLen =idx3+19;
fc =0;
cardnum=0;
if(fmtLen==26){
cardnum = (lo>>1)&0x7FFFF;
fc = ((hi&0xF)<<12)|(lo>>20);
}
- }
- PrintAndLog("HID Prox TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
+ }
+ PrintAndLog("HID Prox TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
(unsigned int) fmtLen, (unsigned int) fc, (unsigned int) cardnum);
}
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t BitLen = getFromGraphBuf(BitStream);
+ if (BitLen==0) return 0;
//get binary from fsk wave
int idx = ParadoxdemodFSK(BitStream,&BitLen,&hi2,&hi,&lo);
if (idx<0){
return 1;
}
-
//by marshmellow
//IO-Prox demod - FSK RF/64 with preamble of 000000001
//print ioprox ID and some format details
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
//set defaults
- int idx=0;
+ int idx=0;
//something in graphbuffer?
if (GraphTraceLen < 65) {
if (g_debugMode)PrintAndLog("DEBUG: not enough samples in GraphBuffer");
return 0;
}
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
- size_t BitLen = getFromGraphBuf(BitStream);
+ size_t BitLen = getFromGraphBuf(BitStream);
+ if (BitLen==0) return 0;
//get binary from fsk wave
- idx = IOdemodFSK(BitStream,BitLen);
+ idx = IOdemodFSK(BitStream,BitLen);
if (idx<0){
if (g_debugMode){
if (idx==-1){
return 0;
}
PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx], BitStream[idx+1], BitStream[idx+2], BitStream[idx+3], BitStream[idx+4], BitStream[idx+5], BitStream[idx+6], BitStream[idx+7], BitStream[idx+8]);
- PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx+9], BitStream[idx+10], BitStream[idx+11],BitStream[idx+12],BitStream[idx+13],BitStream[idx+14],BitStream[idx+15],BitStream[idx+16],BitStream[idx+17]);
+ PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx+9], BitStream[idx+10], BitStream[idx+11],BitStream[idx+12],BitStream[idx+13],BitStream[idx+14],BitStream[idx+15],BitStream[idx+16],BitStream[idx+17]);
PrintAndLog("%d%d%d%d%d%d%d%d %d facility",BitStream[idx+18], BitStream[idx+19], BitStream[idx+20],BitStream[idx+21],BitStream[idx+22],BitStream[idx+23],BitStream[idx+24],BitStream[idx+25],BitStream[idx+26]);
PrintAndLog("%d%d%d%d%d%d%d%d %d version",BitStream[idx+27], BitStream[idx+28], BitStream[idx+29],BitStream[idx+30],BitStream[idx+31],BitStream[idx+32],BitStream[idx+33],BitStream[idx+34],BitStream[idx+35]);
PrintAndLog("%d%d%d%d%d%d%d%d %d code1",BitStream[idx+36], BitStream[idx+37], BitStream[idx+38],BitStream[idx+39],BitStream[idx+40],BitStream[idx+41],BitStream[idx+42],BitStream[idx+43],BitStream[idx+44]);
PrintAndLog("%d%d%d%d%d%d%d%d %d%d checksum",BitStream[idx+54],BitStream[idx+55],BitStream[idx+56],BitStream[idx+57],BitStream[idx+58],BitStream[idx+59],BitStream[idx+60],BitStream[idx+61],BitStream[idx+62],BitStream[idx+63]);
uint32_t code = bytebits_to_byte(BitStream+idx,32);
- uint32_t code2 = bytebits_to_byte(BitStream+idx+32,32);
+ uint32_t code2 = bytebits_to_byte(BitStream+idx+32,32);
uint8_t version = bytebits_to_byte(BitStream+idx+27,8); //14,4
uint8_t facilitycode = bytebits_to_byte(BitStream+idx+18,8) ;
uint16_t number = (bytebits_to_byte(BitStream+idx+36,8)<<8)|(bytebits_to_byte(BitStream+idx+45,8)); //36,9
- PrintAndLog("IO Prox XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
+ PrintAndLog("IO Prox XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
setDemodBuf(BitStream,64,idx);
- if (g_debugMode){
+ if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, Len: %d, Printing demod buffer:",idx,64);
printDemodBuff();
}
- return 1;
+ return 1;
}
-
//by marshmellow
//AWID Prox demod - FSK RF/50 with preamble of 00000001 (always a 96 bit data stream)
//print full AWID Prox ID and some bit format details if found
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t size = getFromGraphBuf(BitStream);
+ if (size==0) return 0;
//get binary from fsk wave
int idx = AWIDdemodFSK(BitStream, &size);
PrintAndLog("DEBUG: Error - only noise found");
else if (idx == -3)
PrintAndLog("DEBUG: Error - problem during FSK demod");
- // else if (idx == -3)
- // PrintAndLog("Error: thought we had a tag but the parity failed");
else if (idx == -4)
PrintAndLog("DEBUG: Error - AWID preamble not found");
else if (idx == -5)
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t size = getFromGraphBuf(BitStream);
+ if (size==0) return 0;
//get binary from fsk wave
int idx = PyramiddemodFSK(BitStream, &size);
}
//by marshmellow
-//attempt to detect the field clock and bit clock for FSK
-int CmdFSKfcDetect(const char *Cmd)
+//attempt to psk1 demod graph buffer
+int PSKDemod(const char *Cmd, uint8_t verbose)
{
- uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
- size_t size = getFromGraphBuf(BitStream);
-
- uint16_t ans = countFC(BitStream, size);
- if (ans==0) {
- if (g_debugMode) PrintAndLog("DEBUG: No data found");
- return 0;
+ int invert=0;
+ int clk=0;
+ int maxErr=100;
+ sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr);
+ if (clk==1){
+ invert=1;
+ clk=0;
}
- uint8_t fc1, fc2;
- fc1 = (ans >> 8) & 0xFF;
- fc2 = ans & 0xFF;
-
- uint8_t rf1 = detectFSKClk(BitStream, size, fc1, fc2);
- if (rf1==0) {
- if (g_debugMode) PrintAndLog("DEBUG: Clock detect error");
- return 0;
+ if (invert != 0 && invert != 1) {
+ PrintAndLog("Invalid argument: %s", Cmd);
+ return -1;
}
- PrintAndLog("Detected Field Clocks: FC/%d, FC/%d - Bit Clock: RF/%d", fc1, fc2, rf1);
- return 1;
-}
-
-//by marshmellow
-//attempt to detect the bit clock for PSK or NRZ modulations
-int CmdDetectNRZpskClockRate(const char *Cmd)
-{
- GetNRZpskClock("",0,0);
- return 0;
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
+ size_t BitLen = getFromGraphBuf(BitStream);
+ if (BitLen==0) return 0;
+ int errCnt=0;
+ errCnt = pskRawDemod(BitStream, &BitLen,&clk,&invert);
+ if (errCnt > maxErr){
+ if (g_debugMode==1) PrintAndLog("Too many errors found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
+ return -1;
+ }
+ if (errCnt<0|| BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
+ if (g_debugMode==1) PrintAndLog("no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
+ return -1;
+ }
+ if (verbose) PrintAndLog("Tried PSK Demod using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen);
+ //prime demod buffer for output
+ setDemodBuf(BitStream,BitLen,0);
+ return errCnt;
}
-//by marshmellow
-//attempt to psk1 or nrz demod graph buffer
-//NOTE CURRENTLY RELIES ON PEAKS :(
-int PSKnrzDemod(const char *Cmd, uint8_t verbose)
-{
- int invert=0;
- int clk=0;
- sscanf(Cmd, "%i %i", &clk, &invert);
- if (invert != 0 && invert != 1) {
- PrintAndLog("Invalid argument: %s", Cmd);
- return -1;
- }
- uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
- size_t BitLen = getFromGraphBuf(BitStream);
- int errCnt=0;
- errCnt = pskNRZrawDemod(BitStream, &BitLen,&clk,&invert);
- if (errCnt<0|| BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
- if (g_debugMode==1) PrintAndLog("no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
- return -1;
- }
- if (verbose) PrintAndLog("Tried PSK/NRZ Demod using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen);
-
- //prime demod buffer for output
- setDemodBuf(BitStream,BitLen,0);
- return errCnt;
-}
// Indala 26 bit decode
// by marshmellow
// optional arguments - same as CmdpskNRZrawDemod (clock & invert)
int CmdIndalaDecode(const char *Cmd)
{
- int ans;
- if (strlen(Cmd)>0){
- ans = PSKnrzDemod(Cmd, 0);
- } else{ //default to RF/32
- ans = PSKnrzDemod("32", 0);
- }
+ int ans;
+ if (strlen(Cmd)>0){
+ ans = PSKDemod(Cmd, 0);
+ } else{ //default to RF/32
+ ans = PSKDemod("32", 0);
+ }
if (ans < 0){
if (g_debugMode==1)
- PrintAndLog("Error1: %d",ans);
+ PrintAndLog("Error1: %d",ans);
return 0;
}
uint8_t invert=0;
ans = indala26decode(DemodBuffer,(size_t *) &DemodBufferLen, &invert);
if (ans < 1) {
if (g_debugMode==1)
- PrintAndLog("Error2: %d",ans);
+ PrintAndLog("Error2: %d",ans);
return -1;
}
char showbits[251]={0x00};
if (invert)
- if (g_debugMode==1)
- PrintAndLog("Had to invert bits");
+ if (g_debugMode==1)
+ PrintAndLog("Had to invert bits");
//convert UID to HEX
uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7;
showbits[idx]='\0';
PrintAndLog("Indala UID=%s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7);
}
- if (g_debugMode){
- PrintAndLog("DEBUG: printing demodbuffer:");
- printDemodBuff();
- }
+ if (g_debugMode){
+ PrintAndLog("DEBUG: printing demodbuffer:");
+ printDemodBuff();
+ }
return 1;
}
-//by marshmellow
-//attempt to clean psk wave noise after a peak
-//NOTE RELIES ON PEAKS :(
-int CmdPskClean(const char *Cmd)
+// by marshmellow
+// takes 3 arguments - clock, invert, maxErr as integers
+// attempts to demodulate nrz only
+// prints binary found and saves in demodbuffer for further commands
+int CmdNRZrawDemod(const char *Cmd)
{
- uint8_t bitStream[MAX_GRAPH_TRACE_LEN]={0};
- size_t bitLen = getFromGraphBuf(bitStream);
- pskCleanWave(bitStream, bitLen);
- setGraphBuf(bitStream, bitLen);
- return 0;
+ int invert=0;
+ int clk=0;
+ int maxErr=100;
+ char cmdp = param_getchar(Cmd, 0);
+ if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
+ PrintAndLog("Usage: data nrzrawdemod [clock] <0|1> [maxError]");
+ PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
+ PrintAndLog(" <invert>, 1 for invert output");
+ PrintAndLog(" [set maximum allowed errors], default = 100.");
+ PrintAndLog("");
+ PrintAndLog(" sample: data nrzrawdemod = demod a nrz/direct tag from GraphBuffer");
+ PrintAndLog(" : data nrzrawdemod 32 = demod a nrz/direct tag from GraphBuffer using a clock of RF/32");
+ PrintAndLog(" : data nrzrawdemod 32 1 = demod a nrz/direct tag from GraphBuffer using a clock of RF/32 and inverting data");
+ PrintAndLog(" : data nrzrawdemod 1 = demod a nrz/direct tag from GraphBuffer while inverting data");
+ PrintAndLog(" : data nrzrawdemod 64 1 0 = demod a nrz/direct tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
+
+ return 0;
+ }
+
+ sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr);
+ if (clk==1){
+ invert=1;
+ clk=0;
+ }
+ if (invert != 0 && invert != 1) {
+ PrintAndLog("Invalid argument: %s", Cmd);
+ return 0;
+ }
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
+ size_t BitLen = getFromGraphBuf(BitStream);
+ if (BitLen==0) return 0;
+ int errCnt=0;
+ errCnt = nrzRawDemod(BitStream, &BitLen, &clk, &invert, maxErr);
+ if (errCnt > maxErr){
+ if (g_debugMode==1) PrintAndLog("Too many errors found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
+ return 0;
+ }
+ if (errCnt<0|| BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
+ if (g_debugMode==1) PrintAndLog("no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
+ return 0;
+ }
+ PrintAndLog("Tried NRZ Demod using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen);
+ //prime demod buffer for output
+ setDemodBuf(BitStream,BitLen,0);
+
+ if (errCnt>0){
+ PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
+ }else{
+ }
+ PrintAndLog("NRZ demoded bitstream:");
+ // Now output the bitstream to the scrollback by line of 16 bits
+ printDemodBuff();
+ return 1;
}
// by marshmellow
-// takes 2 arguments - clock and invert both as integers
+// takes 3 arguments - clock, invert, maxErr as integers
// attempts to demodulate psk only
// prints binary found and saves in demodbuffer for further commands
-int CmdpskNRZrawDemod(const char *Cmd)
+int CmdPSK1rawDemod(const char *Cmd)
{
int errCnt;
-
- errCnt = PSKnrzDemod(Cmd, 1);
- //output
- if (errCnt<0){
- if (g_debugMode) PrintAndLog("Error demoding: %d",errCnt);
+ char cmdp = param_getchar(Cmd, 0);
+ if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
+ PrintAndLog("Usage: data psk1rawdemod [clock] <0|1> [maxError]");
+ PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
+ PrintAndLog(" <invert>, 1 for invert output");
+ PrintAndLog(" [set maximum allowed errors], default = 100.");
+ PrintAndLog("");
+ PrintAndLog(" sample: data psk1rawdemod = demod a psk1 tag from GraphBuffer");
+ PrintAndLog(" : data psk1rawdemod 32 = demod a psk1 tag from GraphBuffer using a clock of RF/32");
+ PrintAndLog(" : data psk1rawdemod 32 1 = demod a psk1 tag from GraphBuffer using a clock of RF/32 and inverting data");
+ PrintAndLog(" : data psk1rawdemod 1 = demod a psk1 tag from GraphBuffer while inverting data");
+ PrintAndLog(" : data psk1rawdemod 64 1 0 = demod a psk1 tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
return 0;
- }
- if (errCnt>0){
- if (g_debugMode){
- PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
- PrintAndLog("PSK or NRZ demoded bitstream:");
- // Now output the bitstream to the scrollback by line of 16 bits
- printDemodBuff();
- }
- }else{
- PrintAndLog("PSK or NRZ demoded bitstream:");
- // Now output the bitstream to the scrollback by line of 16 bits
- printDemodBuff();
- return 1;
}
- return 0;
+ errCnt = PSKDemod(Cmd, 1);
+ //output
+ if (errCnt<0){
+ if (g_debugMode) PrintAndLog("Error demoding: %d",errCnt);
+ return 0;
+ }
+ if (errCnt>0){
+ PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
+ }else{
+ }
+ PrintAndLog("PSK demoded bitstream:");
+ // Now output the bitstream to the scrollback by line of 16 bits
+ printDemodBuff();
+ return 1;
}
// by marshmellow
int CmdPSK2rawDemod(const char *Cmd)
{
int errCnt=0;
- errCnt=PSKnrzDemod(Cmd, 1);
+ char cmdp = param_getchar(Cmd, 0);
+ if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
+ PrintAndLog("Usage: data psk2rawdemod [clock] <0|1> [maxError]");
+ PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
+ PrintAndLog(" <invert>, 1 for invert output");
+ PrintAndLog(" [set maximum allowed errors], default = 100.");
+ PrintAndLog("");
+ PrintAndLog(" sample: data psk2rawdemod = demod a psk2 tag from GraphBuffer, autodetect clock");
+ PrintAndLog(" : data psk2rawdemod 32 = demod a psk2 tag from GraphBuffer using a clock of RF/32");
+ PrintAndLog(" : data psk2rawdemod 32 1 = demod a psk2 tag from GraphBuffer using a clock of RF/32 and inverting output");
+ PrintAndLog(" : data psk2rawdemod 1 = demod a psk2 tag from GraphBuffer, autodetect clock and invert output");
+ PrintAndLog(" : data psk2rawdemod 64 1 0 = demod a psk2 tag from GraphBuffer using a clock of RF/64, inverting output and allowing 0 demod errors");
+ return 0;
+ }
+ errCnt=PSKDemod(Cmd, 1);
if (errCnt<0){
if (g_debugMode) PrintAndLog("Error demoding: %d",errCnt);
return 0;
*(string_ptr - 1) = '\0';
PrintAndLog("%s", string_buf);
string_buf[0] = '\0';
+ }
}
- }
return 0;
}
PrintAndLog("# LF antenna: %5.2f V @ 134.00 kHz", vLf134/1000.0);
PrintAndLog("# LF optimal: %5.2f V @%9.2f kHz", peakv/1000.0, 12000.0/(peakf+1));
PrintAndLog("# HF antenna: %5.2f V @ 13.56 MHz", vHf/1000.0);
- if (peakv<2000)
+
+#define LF_UNUSABLE_V 2948 // was 2000. Changed due to bugfix in voltage measurements. LF results are now 47% higher.
+#define LF_MARGINAL_V 14739 // was 10000. Changed due to bugfix bug in voltage measurements. LF results are now 47% higher.
+#define HF_UNUSABLE_V 3167 // was 2000. Changed due to bugfix in voltage measurements. HF results are now 58% higher.
+#define HF_MARGINAL_V 7917 // was 5000. Changed due to bugfix in voltage measurements. HF results are now 58% higher.
+
+ if (peakv < LF_UNUSABLE_V)
PrintAndLog("# Your LF antenna is unusable.");
- else if (peakv<10000)
+ else if (peakv < LF_MARGINAL_V)
PrintAndLog("# Your LF antenna is marginal.");
- if (vHf<2000)
+ if (vHf < HF_UNUSABLE_V)
PrintAndLog("# Your HF antenna is unusable.");
- else if (vHf<5000)
+ else if (vHf < HF_MARGINAL_V)
PrintAndLog("# Your HF antenna is marginal.");
- for (int i = 0; i < 256; i++) {
- GraphBuffer[i] = resp.d.asBytes[i] - 128;
+ if (peakv >= LF_UNUSABLE_V) {
+ for (int i = 0; i < 256; i++) {
+ GraphBuffer[i] = resp.d.asBytes[i] - 128;
+ }
+ PrintAndLog("Displaying LF tuning graph. Divisor 89 is 134khz, 95 is 125khz.\n");
+ PrintAndLog("\n");
+ GraphTraceLen = 256;
+ ShowGraphWindow();
}
- PrintAndLog("Done! Divisor 89 is 134khz, 95 is 125khz.\n");
- PrintAndLog("\n");
- GraphTraceLen = 256;
- ShowGraphWindow();
-
- return 0;
+ return 0;
}
}
/* Get our clock */
- clock = GetClock(Cmd, high, 1);
+ clock = GetAskClock(Cmd, high, 1);
int tolerance = clock/4;
int bit, lastbit, wave;
/* Get our clock */
- clock = GetClock(Cmd, 0, 1);
+ clock = GetAskClock(Cmd, 0, 1);
wave = 0;
lastbit = 1;
int CmdDirectionalThreshold(const char *Cmd)
{
- int8_t upThres = param_get8(Cmd, 0);
- int8_t downThres = param_get8(Cmd, 1);
+ int8_t upThres = param_get8(Cmd, 0);
+ int8_t downThres = param_get8(Cmd, 1);
printf("Applying Up Threshold: %d, Down Threshold: %d\n", upThres, downThres);
{"help", CmdHelp, 1, "This help"},
{"amp", CmdAmp, 1, "Amplify peaks"},
{"askdemod", Cmdaskdemod, 1, "<0 or 1> -- Attempt to demodulate simple ASK tags"},
- {"askmandemod", Cmdaskmandemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate ASK/Manchester tags and output binary (args optional)"},
- {"askrawdemod", Cmdaskrawdemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate ASK tags and output bin (args optional)"},
+ {"askedgedetect", CmdAskEdgeDetect, 1, "[threshold] Adjust Graph for manual ask demod using length of sample differences to detect the edge of a wave - default = 25"},
+ {"askem410xdemod",CmdAskEM410xDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Attempt to demodulate ASK/Manchester tags and output binary (args optional)"},
+ {"askmandemod", Cmdaskmandemod, 1, "[clock] [invert<0|1>] [maxErr] -- Attempt to demodulate ASK/Manchester tags and output binary (args optional)"},
+ {"askrawdemod", Cmdaskrawdemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate ASK tags and output bin (args optional)"},
{"autocorr", CmdAutoCorr, 1, "<window length> -- Autocorrelation over window"},
{"biphaserawdecode",CmdBiphaseDecodeRaw,1,"[offset] [invert<0|1>] Biphase decode bin stream in demod buffer (offset = 0|1 bits to shift the decode start)"},
{"bitsamples", CmdBitsamples, 0, "Get raw samples as bitstring"},
{"bitstream", CmdBitstream, 1, "[clock rate] -- Convert waveform into a bitstream"},
{"buffclear", CmdBuffClear, 1, "Clear sample buffer and graph window"},
{"dec", CmdDec, 1, "Decimate samples"},
- {"detectclock", CmdDetectClockRate, 1, "Detect ASK clock rate"},
+ {"detectclock", CmdDetectClockRate, 1, "[modulation] Detect clock rate (options: 'a','f','n','p' for ask, fsk, nrz, psk respectively)"},
{"fskdemod", CmdFSKdemod, 1, "Demodulate graph window as a HID FSK"},
{"fskawiddemod", CmdFSKdemodAWID, 1, "Demodulate graph window as an AWID FSK tag using raw"},
- {"fskfcdetect", CmdFSKfcDetect, 1, "Try to detect the Field Clock of an FSK wave"},
+ //{"fskfcdetect", CmdFSKfcDetect, 1, "Try to detect the Field Clock of an FSK wave"},
{"fskhiddemod", CmdFSKdemodHID, 1, "Demodulate graph window as a HID FSK tag using raw"},
{"fskiodemod", CmdFSKdemodIO, 1, "Demodulate graph window as an IO Prox tag FSK using raw"},
{"fskpyramiddemod",CmdFSKdemodPyramid,1, "Demodulate graph window as a Pyramid FSK tag using raw"},
{"fskparadoxdemod",CmdFSKdemodParadox,1, "Demodulate graph window as a Paradox FSK tag using raw"},
{"fskrawdemod", CmdFSKrawdemod, 1, "[clock rate] [invert] [rchigh] [rclow] Demodulate graph window from FSK to bin (clock = 50)(invert = 1|0)(rchigh = 10)(rclow=8)"},
{"grid", CmdGrid, 1, "<x> <y> -- overlay grid on graph window, use zero value to turn off either"},
- {"hexsamples", CmdHexsamples, 0, "<bytes> [<offset>] -- Dump big buffer as hex bytes"},
+ {"hexsamples", CmdHexsamples, 0, "<bytes> [<offset>] -- Dump big buffer as hex bytes"},
{"hide", CmdHide, 1, "Hide graph window"},
{"hpf", CmdHpf, 1, "Remove DC offset from trace"},
{"load", CmdLoad, 1, "<filename> -- Load trace (to graph window"},
{"mandemod", CmdManchesterDemod, 1, "[i] [clock rate] -- Manchester demodulate binary stream (option 'i' to invert output)"},
{"manrawdecode", Cmdmandecoderaw, 1, "Manchester decode binary stream already in graph buffer"},
{"manmod", CmdManchesterMod, 1, "[clock rate] -- Manchester modulate a binary stream"},
- {"norm", CmdNorm, 1, "Normalize max/min to +/-128"},
+ {"norm", CmdNorm, 1, "Normalize max/min to +/-128"},
+ //{"nrzdetectclock",CmdDetectNRZClockRate, 1, "Detect ASK, PSK, or NRZ clock rate"},
+ {"nrzrawdemod", CmdNRZrawDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Attempt to demodulate nrz tags and output binary (args optional)"},
{"plot", CmdPlot, 1, "Show graph window (hit 'h' in window for keystroke help)"},
- {"pskclean", CmdPskClean, 1, "Attempt to clean psk wave"},
- {"pskdetectclock",CmdDetectNRZpskClockRate, 1, "Detect ASK, PSK, or NRZ clock rate"},
- {"pskindalademod",CmdIndalaDecode, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk1 indala tags and output ID binary & hex (args optional)"},
- {"psk1nrzrawdemod",CmdpskNRZrawDemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk1 or nrz tags and output binary (args optional)"},
- {"psk2rawdemod", CmdPSK2rawDemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk2 tags and output binary (args optional)"},
+ //{"pskdetectclock",CmdDetectPSKClockRate, 1, "Detect ASK, PSK, or NRZ clock rate"},
+ {"pskindalademod",CmdIndalaDecode, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk1 indala tags and output ID binary & hex (args optional)"},
+ {"psk1rawdemod", CmdPSK1rawDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Attempt to demodulate psk1 tags and output binary (args optional)"},
+ {"psk2rawdemod", CmdPSK2rawDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Attempt to demodulate psk2 tags and output binary (args optional)"},
{"samples", CmdSamples, 0, "[512 - 40000] -- Get raw samples for graph window"},
{"save", CmdSave, 1, "<filename> -- Save trace (from graph window)"},
{"scale", CmdScale, 1, "<int> -- Set cursor display scale"},
{"setdebugmode", CmdSetDebugMode, 1, "<0|1> -- Turn on or off Debugging Mode for demods"},
{"shiftgraphzero",CmdGraphShiftZero, 1, "<shift> -- Shift 0 for Graphed wave + or - shift value"},
{"threshold", CmdThreshold, 1, "<threshold> -- Maximize/minimize every value in the graph window depending on threshold"},
- {"dirthreshold", CmdDirectionalThreshold, 1, "<thres up> <thres down> -- Max rising higher up-thres/ Min falling lower down-thres, keep rest as prev."},
- {"tune", CmdTuneSamples, 0, "Get hw tune samples for graph window"},
- {"undec", CmdUndec, 1, "Un-decimate samples by 2"},
- {"zerocrossings", CmdZerocrossings, 1, "Count time between zero-crossings"},
+ {"dirthreshold", CmdDirectionalThreshold, 1, "<thres up> <thres down> -- Max rising higher up-thres/ Min falling lower down-thres, keep rest as prev."},
+ {"tune", CmdTuneSamples, 0, "Get hw tune samples for graph window"},
+ {"undec", CmdUndec, 1, "Un-decimate samples by 2"},
+ {"zerocrossings", CmdZerocrossings, 1, "Count time between zero-crossings"},
{NULL, NULL, 0, NULL}
};
void printBitStream(uint8_t BitStream[], uint32_t bitLen);
int CmdAmp(const char *Cmd);
int Cmdaskdemod(const char *Cmd);
+int CmdAskEM410xDemod(const char *Cmd);
int Cmdaskrawdemod(const char *Cmd);
int Cmdaskmandemod(const char *Cmd);
int CmdAutoCorr(const char *Cmd);
int CmdFSKdemodParadox(const char *Cmd);
int CmdFSKdemodPyramid(const char *Cmd);
int CmdFSKrawdemod(const char *Cmd);
-int CmdDetectNRZpskClockRate(const char *Cmd);
-int CmdpskNRZrawDemod(const char *Cmd);
+int CmdPSK1rawDemod(const char *Cmd);
+int CmdPSK2rawDemod(const char *Cmd);
int CmdGrid(const char *Cmd);
int CmdHexsamples(const char *Cmd);
int CmdHide(const char *Cmd);
int CmdManchesterDemod(const char *Cmd);
int CmdManchesterMod(const char *Cmd);
int CmdNorm(const char *Cmd);
+int CmdNRZrawDemod(const char *Cmd);
int CmdPlot(const char *Cmd);
int CmdSamples(const char *Cmd);
int CmdTuneSamples(const char *Cmd);
uint8_t wipeCard = 0;\r
uint8_t uid[8] = {0x00};\r
uint8_t oldUid[8] = {0x00};\r
+ uint8_t atqa[2] = {0x00};\r
+ uint8_t sak[1] = {0x00};\r
+ uint8_t atqaPresent = 1;\r
int res;\r
-\r
- if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') {\r
- PrintAndLog("Usage: hf mf csetuid <UID 8 hex symbols> <w>");\r
- PrintAndLog("sample: hf mf csetuid 01020304 w");\r
- PrintAndLog("Set UID for magic Chinese card (only works with!!!)");\r
- PrintAndLog("If you want wipe card then add 'w' into command line. \n");\r
+ char ctmp;\r
+ int argi=0;\r
+\r
+ if (strlen(Cmd) < 1 || param_getchar(Cmd, argi) == 'h') {\r
+ PrintAndLog("Usage: hf mf csetuid <UID 8 hex symbols> [ATQA 4 hex symbols SAK 2 hex symbols] [w]");\r
+ PrintAndLog("sample: hf mf csetuid 01020304");\r
+ PrintAndLog("sample: hf mf csetuid 01020304 0004 08 w");\r
+ PrintAndLog("Set UID, ATQA, and SAK for magic Chinese card (only works with such cards)");\r
+ PrintAndLog("If you also want to wipe the card then add 'w' at the end of the command line.");\r
return 0;\r
- } \r
+ }\r
\r
- if (param_getchar(Cmd, 0) && param_gethex(Cmd, 0, uid, 8)) {\r
+ if (param_getchar(Cmd, argi) && param_gethex(Cmd, argi, uid, 8)) {\r
PrintAndLog("UID must include 8 HEX symbols");\r
return 1;\r
}\r
+ argi++;\r
+\r
+ ctmp = param_getchar(Cmd, argi);\r
+ if (ctmp == 'w' || ctmp == 'W') {\r
+ wipeCard = 1;\r
+ atqaPresent = 0;\r
+ }\r
+\r
+ if (atqaPresent) {\r
+ if (param_getchar(Cmd, argi)) {\r
+ if (param_gethex(Cmd, argi, atqa, 4)) {\r
+ PrintAndLog("ATQA must include 4 HEX symbols");\r
+ return 1;\r
+ }\r
+ argi++;\r
+ if (!param_getchar(Cmd, argi) || param_gethex(Cmd, argi, sak, 2)) {\r
+ PrintAndLog("SAK must include 2 HEX symbols");\r
+ return 1;\r
+ }\r
+ argi++;\r
+ } else\r
+ atqaPresent = 0;\r
+ }\r
+\r
+ if(!wipeCard) {\r
+ ctmp = param_getchar(Cmd, argi);\r
+ if (ctmp == 'w' || ctmp == 'W') {\r
+ wipeCard = 1;\r
+ }\r
+ }\r
\r
- char ctmp = param_getchar(Cmd, 1);\r
- if (ctmp == 'w' || ctmp == 'W') wipeCard = 1;\r
- \r
PrintAndLog("--wipe card:%s uid:%s", (wipeCard)?"YES":"NO", sprint_hex(uid, 4));\r
\r
- res = mfCSetUID(uid, oldUid, wipeCard);\r
+ res = mfCSetUID(uid, (atqaPresent)?atqa:NULL, (atqaPresent)?sak:NULL, oldUid, wipeCard);\r
if (res) {\r
PrintAndLog("Can't set UID. error=%d", res);\r
return 1;\r
int CmdLFfind(const char *Cmd)
{
int ans=0;
- char cmdp = param_getchar(Cmd, 0);
-
- if (strlen(Cmd) > 1 || cmdp == 'h' || cmdp == 'H') {
- PrintAndLog("Usage: lf search <0|1>");
- PrintAndLog(" <use data from Graphbuffer>, if not set, try reading data from tag.");
- PrintAndLog("");
- PrintAndLog(" sample: lf search");
- PrintAndLog(" : lf search 1");
- return 0;
- }
+ char cmdp = param_getchar(Cmd, 0);
+ char testRaw = param_getchar(Cmd, 1);
+ if (strlen(Cmd) > 2 || cmdp == 'h' || cmdp == 'H') {
+ PrintAndLog("Usage: lf search <0|1> [u]");
+ PrintAndLog(" <use data from Graphbuffer> , if not set, try reading data from tag.");
+ PrintAndLog(" [Search for Unknown tags] , if not set, reads only known tags.");
+ PrintAndLog("");
+ PrintAndLog(" sample: lf search = try reading data from tag & search for known tags");
+ PrintAndLog(" : lf search 1 = use data from GraphBuffer & search for known tags");
+ PrintAndLog(" : lf search u = try reading data from tag & search for known and unknown tags");
+ PrintAndLog(" : lf search 1 u = use data from GraphBuffer & search for known and unknown tags");
- if (!offline && (cmdp != '1')){
+ return 0;
+ }
+
+ if (!offline && (cmdp != '1')){
ans=CmdLFRead("");
ans=CmdSamples("20000");
- } else if (GraphTraceLen < 1000) {
- PrintAndLog("Data in Graphbuffer was too small.");
- return 0;
+ } else if (GraphTraceLen < 1000) {
+ PrintAndLog("Data in Graphbuffer was too small.");
+ return 0;
}
-
+ if (cmdp == 'u' || cmdp == 'U') testRaw = 'u';
PrintAndLog("NOTE: some demods output possible binary\n if it finds something that looks like a tag");
+ PrintAndLog("False Positives ARE possible\n");
PrintAndLog("\nChecking for known tags:\n");
ans=CmdFSKdemodIO("");
if (ans>0) {
PrintAndLog("\nValid Indala ID Found!");
return 1;
}
- ans=Cmdaskmandemod("");
+ ans=CmdAskEM410xDemod("");
if (ans>0) {
PrintAndLog("\nValid EM410x ID Found!");
return 1;
}
- PrintAndLog("No Known Tags Found!\n");
+ PrintAndLog("\nNo Known Tags Found!\n");
+ if (testRaw=='u' || testRaw=='U'){
+ //test unknown tag formats (raw mode)
+ PrintAndLog("\nChecking for Unknown tags:\n");
+ ans=CmdDetectClockRate("f");
+ if (ans != 0){ //fsk
+ ans=CmdFSKrawdemod("");
+ if (ans>0) {
+ PrintAndLog("\nUnknown FSK Modulated Tag Found!");
+ return 1;
+ }
+ }
+ ans=Cmdaskmandemod("");
+ if (ans>0) {
+ PrintAndLog("\nUnknown ASK Modulated and Manchester encoded Tag Found!");
+ return 1;
+ }
+ ans=CmdPSK1rawDemod("");
+ if (ans>0) {
+ PrintAndLog("Possible unknown PSK1 Modulated Tag Found above!\n\nCould also be PSK2 - try 'data psk2rawdemod'");
+ PrintAndLog("\nCould also be PSK3 - [currently not supported]");
+ PrintAndLog("\nCould also be NRZ - try 'data nrzrawdemod");
+ return 1;
+ }
+ PrintAndLog("\nNo Data Found!\n");
+ }
return 0;
}
{"indalademod", CmdIndalaDemod, 1, "['224'] -- Demodulate samples for Indala 64 bit UID (option '224' for 224 bit)"},
{"indalaclone", CmdIndalaClone, 0, "<UID> ['l']-- Clone Indala to T55x7 (tag must be in antenna)(UID in HEX)(option 'l' for 224 UID"},
{"read", CmdLFRead, 0, "Read 125/134 kHz LF ID-only tag. Do 'lf read h' for help"},
- {"search", CmdLFfind, 1, "Read and Search for valid known tag (in offline mode it you can load first then search)"},
+ {"search", CmdLFfind, 1, "[offline] ['u'] Read and Search for valid known tag (in offline mode it you can load first then search) - 'u' to search for unknown tags"},
{"sim", CmdLFSim, 0, "[GAP] -- Simulate LF tag from buffer with optional GAP (in microseconds)"},
{"simbidir", CmdLFSimBidir, 0, "Simulate LF tag (with bidirectional data transmission between reader and tag)"},
{"simman", CmdLFSimManchester, 0, "<Clock> <Bitstream> [GAP] Simulate arbitrary Manchester LF tag"},
}
/* get clock */
- clock = GetClock(Cmd, high, 0);
+ clock = GetAskClock(Cmd, false, false);
/* parity for our 4 columns */
parity[0] = parity[1] = parity[2] = parity[3] = 0;
uint16_t i = 0;
if ( size > MAX_GRAPH_TRACE_LEN )
size = MAX_GRAPH_TRACE_LEN;
- ClearGraph(0);
- for (; i < size; ++i){
+ ClearGraph(0);
+ for (; i < size; ++i){
GraphBuffer[i]=buff[i]-128;
- }
- GraphTraceLen=size;
- RepaintGraphWindow();
- return;
+ }
+ GraphTraceLen=size;
+ RepaintGraphWindow();
+ return;
}
size_t getFromGraphBuf(uint8_t *buff)
{
- if ( buff == NULL ) return 0;
-
- uint32_t i;
- for (i=0;i<GraphTraceLen;++i){
- if (GraphBuffer[i]>127) GraphBuffer[i]=127; //trim
- if (GraphBuffer[i]<-127) GraphBuffer[i]=-127; //trim
- buff[i]=(uint8_t)(GraphBuffer[i]+128);
- }
- return i;
-}
-
-
-// Get or auto-detect clock rate
-int GetClock(const char *str, int peak, int verbose)
-{
- int clock;
- sscanf(str, "%i", &clock);
- if (!strcmp(str, ""))
- clock = 0;
-
- // Auto-detect clock
- if (!clock)
- {
- uint8_t grph[MAX_GRAPH_TRACE_LEN]={0};
- size_t size = getFromGraphBuf(grph);
- if ( size == 0 ) {
- PrintAndLog("Failed to copy from graphbuffer");
- return -1;
- }
- clock = DetectASKClock(grph,size,0);
- // Only print this message if we're not looping something
- if (!verbose){
- PrintAndLog("Auto-detected clock rate: %d", clock);
- }
+ if (buff == NULL ) return 0;
+ uint32_t i;
+ for (i=0;i<GraphTraceLen;++i){
+ if (GraphBuffer[i]>127) GraphBuffer[i]=127; //trim
+ if (GraphBuffer[i]<-127) GraphBuffer[i]=-127; //trim
+ buff[i]=(uint8_t)(GraphBuffer[i]+128);
}
- return clock;
+ return i;
}
// A simple test to see if there is any data inside Graphbuffer.
}
}
-int GetNRZpskClock(const char *str, int peak, int verbose)
+// Get or auto-detect ask clock rate
+int GetAskClock(const char str[], bool printAns, bool verbose)
+{
+ int clock;
+ sscanf(str, "%i", &clock);
+ if (!strcmp(str, ""))
+ clock = 0;
+
+ if (clock != 0)
+ return clock;
+ // Auto-detect clock
+ uint8_t grph[MAX_GRAPH_TRACE_LEN]={0};
+ size_t size = getFromGraphBuf(grph);
+ if (size == 0) {
+ if (verbose)
+ PrintAndLog("Failed to copy from graphbuffer");
+ return -1;
+ }
+ DetectASKClock(grph, size, &clock, 20);
+ // Only print this message if we're not looping something
+ if (printAns){
+ PrintAndLog("Auto-detected clock rate: %d", clock);
+ }
+ return clock;
+}
+
+int GetPskClock(const char str[], bool printAns, bool verbose)
+{
+ int clock;
+ sscanf(str, "%i", &clock);
+ if (!strcmp(str, ""))
+ clock = 0;
+
+ if (clock!=0)
+ return clock;
+ // Auto-detect clock
+ uint8_t grph[MAX_GRAPH_TRACE_LEN]={0};
+ size_t size = getFromGraphBuf(grph);
+ if ( size == 0 ) {
+ if (verbose)
+ PrintAndLog("Failed to copy from graphbuffer");
+ return -1;
+ }
+ clock = DetectPSKClock(grph,size,0);
+ // Only print this message if we're not looping something
+ if (printAns){
+ PrintAndLog("Auto-detected clock rate: %d", clock);
+ }
+ return clock;
+}
+
+uint8_t GetNrzClock(const char str[], bool printAns, bool verbose)
{
int clock;
sscanf(str, "%i", &clock);
if (!strcmp(str, ""))
clock = 0;
+ if (clock!=0)
+ return clock;
// Auto-detect clock
- if (!clock)
- {
- uint8_t grph[MAX_GRAPH_TRACE_LEN]={0};
- size_t size = getFromGraphBuf(grph);
- if ( size == 0 ) {
+ uint8_t grph[MAX_GRAPH_TRACE_LEN]={0};
+ size_t size = getFromGraphBuf(grph);
+ if ( size == 0 ) {
+ if (verbose)
PrintAndLog("Failed to copy from graphbuffer");
- return -1;
- }
- clock = DetectpskNRZClock(grph,size,0);
- // Only print this message if we're not looping something
- if (!verbose){
- PrintAndLog("Auto-detected clock rate: %d", clock);
- }
+ return -1;
+ }
+ clock = DetectNRZClock(grph, size, 0);
+ // Only print this message if we're not looping something
+ if (printAns){
+ PrintAndLog("Auto-detected clock rate: %d", clock);
}
return clock;
}
+//by marshmellow
+//attempt to detect the field clock and bit clock for FSK
+uint8_t GetFskClock(const char str[], bool printAns, bool verbose)
+{
+ int clock;
+ sscanf(str, "%i", &clock);
+ if (!strcmp(str, ""))
+ clock = 0;
+ if (clock != 0) return (uint8_t)clock;
+
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
+ size_t size = getFromGraphBuf(BitStream);
+ if (size==0) return 0;
+ uint8_t dummy = 0;
+ uint16_t ans = countFC(BitStream, size, &dummy);
+ if (ans==0) {
+ if (verbose) PrintAndLog("DEBUG: No data found");
+ return 0;
+ }
+ uint8_t fc1, fc2;
+ fc1 = (ans >> 8) & 0xFF;
+ fc2 = ans & 0xFF;
+
+ uint8_t rf1 = detectFSKClk(BitStream, size, fc1, fc2);
+ if (rf1==0) {
+ if (verbose) PrintAndLog("DEBUG: Clock detect error");
+ return 0;
+ }
+ if ((fc1==10 && fc2==8) || (fc1==8 && fc2==5)){
+ if (printAns) PrintAndLog("Detected Field Clocks: FC/%d, FC/%d - Bit Clock: RF/%d", fc1, fc2, rf1);
+ return rf1;
+ }
+ if (verbose){
+ PrintAndLog("DEBUG: unknown fsk field clock detected");
+ PrintAndLog("Detected Field Clocks: FC/%d, FC/%d - Bit Clock: RF/%d", fc1, fc2, rf1);
+ }
+ return 0;
+}
int ClearGraph(int redraw);
//int DetectClock(int peak);
size_t getFromGraphBuf(uint8_t *buff);
-int GetClock(const char *str, int peak, int verbose);
-int GetNRZpskClock(const char *str, int peak, int verbose);
+int GetAskClock(const char str[], bool printAns, bool verbose);
+int GetPskClock(const char str[], bool printAns, bool verbose);
+uint8_t GetNrzClock(const char str[], bool printAns, bool verbose);
+uint8_t GetFskClock(const char str[], bool printAns, bool verbose);
void setGraphBuf(uint8_t *buff, size_t size);
bool HasGraphData();
\r
// "MAGIC" CARD\r
\r
-int mfCSetUID(uint8_t *uid, uint8_t *oldUID, bool wantWipe) {\r
- \r
+int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, bool wantWipe) {\r
uint8_t oldblock0[16] = {0x00};\r
uint8_t block0[16] = {0x00};\r
- memcpy(block0, uid, 4); \r
- block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // Mifare UID BCC\r
- // mifare classic SAK(byte 5) and ATQA(byte 6 and 7)\r
- //block0[5] = 0x08;\r
- //block0[6] = 0x04;\r
- //block0[7] = 0x00;\r
- \r
- block0[5] = 0x01; //sak\r
- block0[6] = 0x01;\r
- block0[7] = 0x0f;\r
- \r
+\r
int old = mfCGetBlock(0, oldblock0, CSETBLOCK_SINGLE_OPER);\r
- if ( old == 0) {\r
- memcpy(block0+8, oldblock0+8, 8);\r
- PrintAndLog("block 0: %s", sprint_hex(block0,16));\r
+ if (old == 0) {\r
+ memcpy(block0, oldblock0, 16);\r
+ PrintAndLog("old block 0: %s", sprint_hex(block0,16));\r
} else {\r
- PrintAndLog("Couldn't get olddata. Will write over the last bytes of Block 0.");\r
+ PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");\r
+ }\r
+\r
+ // fill in the new values\r
+ // UID\r
+ memcpy(block0, uid, 4); \r
+ // Mifare UID BCC\r
+ block0[4] = block0[0]^block0[1]^block0[2]^block0[3];\r
+ // mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)\r
+ if (sak!=NULL)\r
+ block0[5]=sak[0];\r
+ if (atqa!=NULL) {\r
+ block0[6]=atqa[1];\r
+ block0[7]=atqa[0];\r
}\r
+ PrintAndLog("new block 0: %s", sprint_hex(block0,16));\r
return mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER);\r
}\r
\r
int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount);\r
int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount);\r
\r
-int mfCSetUID(uint8_t *uid, uint8_t *oldUID, bool wantWipe);\r
+int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, bool wantWipe);\r
int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params);\r
int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params);\r
\r
for (uint8_t i = 0; i < bitLen; i++){
ans ^= ((bits >> i) & 1);
}
- //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
+ //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
return (ans == pType);
}
}
//by marshmellow
-//takes 2 arguments - clock and invert both as integers
+//takes 3 arguments - clock, invert, maxErr as integers
//attempts to demodulate ask while decoding manchester
//prints binary found and saves in graphbuffer for further commands
-int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
+int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr)
{
int i;
- int clk2=*clk;
- *clk=DetectASKClock(BinStream, *size, *clk); //clock default
-
+ //int clk2=*clk;
+ int start = DetectASKClock(BinStream, *size, clk, 20); //clock default
+ if (*clk==0) return -3;
+ if (start < 0) return -3;
// if autodetected too low then adjust //MAY NEED ADJUSTMENT
- if (clk2==0 && *clk<8) *clk =64;
- if (clk2==0 && *clk<32) *clk=32;
+ //if (clk2==0 && *clk<8) *clk =64;
+ //if (clk2==0 && *clk<32) *clk=32;
if (*invert != 0 && *invert != 1) *invert=0;
uint32_t initLoopMax = 200;
if (initLoopMax > *size) initLoopMax=*size;
int lastBit = 0; //set first clock check
uint32_t bitnum = 0; //output counter
int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
- if (*clk<=32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
+ if (*clk<=32) tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
int iii = 0;
uint32_t gLen = *size;
if (gLen > 3000) gLen=3000;
uint8_t errCnt =0;
+ uint16_t MaxBits = 500;
uint32_t bestStart = *size;
- uint32_t bestErrCnt = (*size/1000);
- uint32_t maxErr = (*size/1000);
+ int bestErrCnt = maxErr+1;
// PrintAndLog("DEBUG - lastbit - %d",lastBit);
// loop to find first wave that works
for (iii=0; iii < gLen; ++iii){
if (errCnt>(maxErr)) break; //allow 1 error for every 1000 samples else start over
}
}
- if ((i-iii) >(400 * *clk)) break; //got plenty of bits
+ if ((i-iii) >(MaxBits * *clk)) break; //got plenty of bits
}
//we got more than 64 good bits and not all errors
- if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<maxErr)) {
+ if ((((i-iii)/ *clk) > (64)) && (errCnt<=maxErr)) {
//possible good read
if (errCnt==0){
bestStart=iii;
}
}
}
- if (bestErrCnt<maxErr){
+ if (bestErrCnt<=maxErr){
//best run is good enough set to best run and set overwrite BinStream
iii=bestStart;
lastBit = bestStart - *clk;
lastBit+=*clk;//skip over error
}
}
- if (bitnum >=400) break;
+ if (bitnum >=MaxBits) break;
}
*size=bitnum;
} else{
{
size_t modIdx=20000, i=0;
if (size>modIdx) return -1;
- for (size_t idx=0; idx < size; idx++){
- BitStream[idx+modIdx++] = BitStream[idx];
- BitStream[idx+modIdx++] = BitStream[idx]^1;
- }
- for (; i<(size*2); i++){
- BitStream[i] = BitStream[i+20000];
- }
- return i;
+ for (size_t idx=0; idx < size; idx++){
+ BitStream[idx+modIdx++] = BitStream[idx];
+ BitStream[idx+modIdx++] = BitStream[idx]^1;
+ }
+ for (; i<(size*2); i++){
+ BitStream[i] = BitStream[i+20000];
+ }
+ return i;
}
//by marshmellow
//run through 2 times and take least errCnt
int manrawdecode(uint8_t * BitStream, size_t *size)
{
- int bitnum=0;
- int errCnt =0;
- int i=1;
- int bestErr = 1000;
- int bestRun = 0;
- int ii=1;
+ uint16_t bitnum=0;
+ uint16_t MaxBits = 500;
+ uint16_t errCnt = 0;
+ size_t i=1;
+ uint16_t bestErr = 1000;
+ uint16_t bestRun = 0;
+ size_t ii=1;
+ if (size == 0) return -1;
for (ii=1;ii<3;++ii){
i=1;
for (i=i+ii;i<*size-2;i+=2){
} else {
errCnt++;
}
- if(bitnum>300) break;
+ if(bitnum>MaxBits) break;
}
if (bestErr>errCnt){
bestErr=errCnt;
if (errCnt<20){
ii=bestRun;
i=1;
- for (i=i+ii;i < *size-2;i+=2){
+ for (i=i+ii; i < *size-2; i+=2){
if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
BitStream[bitnum++]=0;
} else if((BitStream[i] == 0) && BitStream[i+1] == 1){
BitStream[bitnum++]=77;
//errCnt++;
}
- if(bitnum>300) break;
+ if(bitnum>MaxBits) break;
}
*size=bitnum;
}
//take 01 or 10 = 0 and 11 or 00 = 1
int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
{
- uint8_t bitnum=0;
+ uint16_t bitnum=0;
uint32_t errCnt =0;
uint32_t i;
+ uint16_t MaxBits=500;
i=offset;
+ if (size == 0) return -1;
for (;i<*size-2; i+=2){
if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
BitStream[bitnum++]=1^invert;
BitStream[bitnum++]=77;
errCnt++;
}
- if(bitnum>250) break;
+ if(bitnum>MaxBits) break;
}
*size=bitnum;
return errCnt;
}
//by marshmellow
-//takes 2 arguments - clock and invert both as integers
+void askAmp(uint8_t *BitStream, size_t size)
+{
+ int shift = 127;
+ int shiftedVal=0;
+ for(int i = 1; i<size; i++){
+ if (BitStream[i]-BitStream[i-1]>=30) //large jump up
+ shift=127;
+ else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down
+ shift=-127;
+
+ shiftedVal=BitStream[i]+shift;
+
+ if (shiftedVal>255)
+ shiftedVal=255;
+ else if (shiftedVal<0)
+ shiftedVal=0;
+ BitStream[i-1] = shiftedVal;
+ }
+ return;
+}
+
+//by marshmellow
+//takes 3 arguments - clock, invert and maxErr as integers
//attempts to demodulate ask only
//prints binary found and saves in graphbuffer for further commands
-int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
+int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp)
{
uint32_t i;
- // int invert=0; //invert default
- int clk2 = *clk;
- *clk=DetectASKClock(BinStream, *size, *clk); //clock default
- //uint8_t BitStream[502] = {0};
-
- //HACK: if clock not detected correctly - default
- if (clk2==0 && *clk<8) *clk =64;
- if (clk2==0 && *clk<32 && clk2==0) *clk=32;
+ if (*size==0) return -1;
+ int start = DetectASKClock(BinStream, *size, clk, 20); //clock default
+ if (*clk==0) return -1;
+ if (start<0) return -1;
if (*invert != 0 && *invert != 1) *invert =0;
uint32_t initLoopMax = 200;
if (initLoopMax > *size) initLoopMax=*size;
// Detect high and lows
//25% fuzz in case highs and lows aren't clipped [marshmellow]
int high, low, ans;
+ if (amp==1) askAmp(BinStream, *size);
ans = getHiLo(BinStream, initLoopMax, &high, &low, 75, 75);
- if (ans<1) return -2; //just noise
+ if (ans<1) return -1; //just noise
//PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
uint32_t bitnum = 0; //output counter
uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock
// if they fall + or - this value + clock from last valid wave
- if (*clk == 32) tol=1; //clock tolerance may not be needed anymore currently set to
+ if (*clk == 32) tol=0; //clock tolerance may not be needed anymore currently set to
// + or - 1 but could be increased for poor waves or removed entirely
uint32_t iii = 0;
uint32_t gLen = *size;
if (gLen > 500) gLen=500;
uint8_t errCnt =0;
uint32_t bestStart = *size;
- uint32_t bestErrCnt = (*size/1000);
- uint32_t maxErr = bestErrCnt;
+ uint32_t bestErrCnt = maxErr; //(*size/1000);
uint8_t midBit=0;
+ uint16_t MaxBits=1000;
//PrintAndLog("DEBUG - lastbit - %d",lastBit);
//loop to find first wave that works
- for (iii=0; iii < gLen; ++iii){
+ for (iii=start; iii < gLen; ++iii){
if ((BinStream[iii]>=high) || (BinStream[iii]<=low)){
lastBit=iii-*clk;
+ errCnt=0;
//loop through to see if this start location works
for (i = iii; i < *size; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
errCnt++;
lastBit+=*clk;//skip over until hit too many errors
- if (errCnt > ((*size/1000))){ //allow 1 error for every 1000 samples else start over
- errCnt=0;
+ if (errCnt > maxErr){
+ //errCnt=0;
break;
}
}
}
- if ((i-iii)>(500 * *clk)) break; //got enough bits
+ if ((i-iii)>(MaxBits * *clk)) break; //got enough bits
}
//we got more than 64 good bits and not all errors
- if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<(*size/1000))) {
+ if ((((i-iii)/ *clk) > (64)) && (errCnt<=maxErr)) {
//possible good read
if (errCnt==0){
bestStart=iii;
}
}
}
- if (bestErrCnt<maxErr){
+ if (bestErrCnt<=maxErr){
//best run is good enough - set to best run and overwrite BinStream
- iii=bestStart;
+ iii = bestStart;
lastBit = bestStart - *clk;
bitnum=0;
for (i = iii; i < *size; ++i) {
} else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){
//low found and we are expecting a bar
lastBit+=*clk;
- BinStream[bitnum] = 1-*invert;
+ BinStream[bitnum] = 1 - *invert;
bitnum++;
midBit=0;
} else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
BinStream[bitnum]=77;
bitnum++;
}
-
lastBit+=*clk;//skip over error
}
}
- if (bitnum >=400) break;
+ if (bitnum >= MaxBits) break;
}
*size=bitnum;
} else{
for (int word = 0; word < (bLen); word+=pLen){
for (int bit=0; bit < pLen; bit++){
parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
- BitStream[j++] = (BitStream[startIdx+word+bit]);
+ BitStream[j++] = (BitStream[startIdx+word+bit]);
}
j--;
// if parity fails then return 0
// FSK Demod then try to locate an Farpointe Data (pyramid) ID
int PyramiddemodFSK(uint8_t *dest, size_t *size)
{
- //make sure buffer has data
- if (*size < 128*50) return -5;
+ //make sure buffer has data
+ if (*size < 128*50) return -5;
- //test samples are not just noise
- if (justNoise(dest, *size)) return -1;
+ //test samples are not just noise
+ if (justNoise(dest, *size)) return -1;
- // FSK demodulator
- *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
- if (*size < 128) return -2; //did we get a good demod?
+ // FSK demodulator
+ *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
+ if (*size < 128) return -2; //did we get a good demod?
- uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
+ uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
size_t startIdx = 0;
uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
if (errChk == 0) return -4; //preamble not found
return (int)startIdx;
}
+
+uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, int high, int low)
+{
+ uint8_t allPeaks=1;
+ uint16_t cntPeaks=0;
+ for (size_t i=20; i<255; i++){
+ if (dest[i]>low && dest[i]<high)
+ allPeaks=0;
+ else
+ cntPeaks++;
+ }
+ if (allPeaks==0){
+ if (cntPeaks>190) return 1;
+ }
+ return allPeaks;
+}
+
// by marshmellow
// not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
// maybe somehow adjust peak trimming value based on samples to fix?
-int DetectASKClock(uint8_t dest[], size_t size, int clock)
+// return start index of best starting position for that clock and return clock (by reference)
+int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
{
int i=0;
int clk[]={8,16,32,40,50,64,100,128,256};
int loopCnt = 256; //don't need to loop through entire array...
+ if (size == 0) return -1;
if (size<loopCnt) loopCnt = size;
-
//if we already have a valid clock quit
for (;i<8;++i)
- if (clk[i] == clock) return clock;
+ if (clk[i] == *clock) return 0;
//get high and low peak
int peak, low;
getHiLo(dest, loopCnt, &peak, &low, 75, 75);
+ //test for large clean peaks
+ if (DetectCleanAskWave(dest, size, peak, low)==1){
+ uint16_t fcTest=0;
+ uint8_t mostFC=0;
+ fcTest=countFC(dest, size, &mostFC);
+ uint8_t fc1 = fcTest >> 8;
+ uint8_t fc2 = fcTest & 0xFF;
+
+ for (i=0; i<8; i++){
+ if (clk[i] == fc1) {
+ *clock=fc1;
+ return 0;
+ }
+ if (clk[i] == fc2) {
+ *clock=fc2;
+ return 0;
+ }
+ }
+ }
+
int ii;
int clkCnt;
int tol = 0;
int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
+ int bestStart[]={0,0,0,0,0,0,0,0,0};
int errCnt=0;
//test each valid clock from smallest to greatest to see which lines up
- for(clkCnt=0; clkCnt < 8; ++clkCnt){
+ for(clkCnt=0; clkCnt < 8; clkCnt++){
if (clk[clkCnt] == 32){
tol=1;
}else{
}
bestErr[clkCnt]=1000;
//try lining up the peaks by moving starting point (try first 256)
- for (ii=0; ii < loopCnt; ++ii){
+ for (ii=0; ii < loopCnt; ii++){
if ((dest[ii] >= peak) || (dest[ii] <= low)){
errCnt=0;
// now that we have the first one lined up test rest of wave array
//if we found no errors then we can stop here
// this is correct one - return this clock
//PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
- if(errCnt==0 && clkCnt<6) return clk[clkCnt];
+ if(errCnt==0 && clkCnt<6) {
+ *clock = clk[clkCnt];
+ return ii;
+ }
//if we found errors see if it is lowest so far and save it as best run
- if(errCnt<bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
+ if(errCnt<bestErr[clkCnt]){
+ bestErr[clkCnt]=errCnt;
+ bestStart[clkCnt]=ii;
+ }
}
}
}
}
}
}
- return clk[best];
+ if (bestErr[best]>maxErr) return -1;
+ *clock=clk[best];
+ return bestStart[best];
}
//by marshmellow
-//detect psk clock by reading #peaks vs no peaks(or errors)
-int DetectpskNRZClock(uint8_t dest[], size_t size, int clock)
+//detect psk clock by reading each phase shift
+// a phase shift is determined by measuring the sample length of each wave
+int DetectPSKClock(uint8_t dest[], size_t size, int clock)
{
- int i=0;
- int clk[]={16,32,40,50,64,100,128,256};
- int loopCnt = 2048; //don't need to loop through entire array...
- if (size<loopCnt) loopCnt = size;
-
- //if we already have a valid clock quit
- for (; i < 7; ++i)
- if (clk[i] == clock) return clock;
+ uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
+ uint16_t loopCnt = 4096; //don't need to loop through entire array...
+ if (size == 0) return 0;
+ if (size<loopCnt) loopCnt = size;
- //get high and low peak
- int peak, low;
- getHiLo(dest, loopCnt, &peak, &low, 75, 75);
+ //if we already have a valid clock quit
+ size_t i=1;
+ for (; i < 8; ++i)
+ if (clk[i] == clock) return clock;
- //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
- int ii;
- uint8_t clkCnt;
- uint8_t tol = 0;
- int peakcnt=0;
- int errCnt=0;
- int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000};
- int peaksdet[]={0,0,0,0,0,0,0,0};
- //test each valid clock from smallest to greatest to see which lines up
- for(clkCnt=0; clkCnt < 7; ++clkCnt){
- if (clk[clkCnt] <= 32){
- tol=1;
- }else{
- tol=0;
- }
- //try lining up the peaks by moving starting point (try first 256)
- for (ii=0; ii< loopCnt; ++ii){
- if ((dest[ii] >= peak) || (dest[ii] <= low)){
- errCnt=0;
- peakcnt=0;
- // now that we have the first one lined up test rest of wave array
- for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
- if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
- peakcnt++;
- }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
- peakcnt++;
- }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
- peakcnt++;
- }else{ //error no peak detected
- errCnt++;
- }
- }
- if(peakcnt>peaksdet[clkCnt]) {
- peaksdet[clkCnt]=peakcnt;
- bestErr[clkCnt]=errCnt;
- }
- }
- }
- }
- int iii=0;
- int best=0;
- //int ratio2; //debug
- int ratio;
- //int bits;
- for (iii=0; iii < 7; ++iii){
- ratio=1000;
- //ratio2=1000; //debug
- //bits=size/clk[iii]; //debug
- if (peaksdet[iii] > 0){
- ratio=bestErr[iii]/peaksdet[iii];
- if (((bestErr[best]/peaksdet[best]) > (ratio)+1)){
- best = iii;
- }
- //ratio2=bits/peaksdet[iii]; //debug
- }
- //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d, ratio: %d, bits: %d, peakbitr: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best],ratio, bits,ratio2);
- }
- return clk[best];
+ size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
+ uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
+ uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
+ uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
+ uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
+ countFC(dest, size, &fc);
+ //PrintAndLog("DEBUG: FC: %d",fc);
+
+ //find first full wave
+ for (i=0; i<loopCnt; i++){
+ if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
+ if (waveStart == 0) {
+ waveStart = i+1;
+ //PrintAndLog("DEBUG: waveStart: %d",waveStart);
+ } else {
+ waveEnd = i+1;
+ //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
+ waveLenCnt = waveEnd-waveStart;
+ if (waveLenCnt > fc){
+ firstFullWave = waveStart;
+ fullWaveLen=waveLenCnt;
+ break;
+ }
+ waveStart=0;
+ }
+ }
+ }
+ //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
+
+ //test each valid clock from greatest to smallest to see which lines up
+ for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
+ lastClkBit = firstFullWave; //set end of wave as clock align
+ waveStart = 0;
+ errCnt=0;
+ peakcnt=0;
+ //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
+
+ for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
+ //top edge of wave = start of new wave
+ if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
+ if (waveStart == 0) {
+ waveStart = i+1;
+ waveLenCnt=0;
+ } else { //waveEnd
+ waveEnd = i+1;
+ waveLenCnt = waveEnd-waveStart;
+ if (waveLenCnt > fc){
+ //if this wave is a phase shift
+ //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
+ if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
+ peakcnt++;
+ lastClkBit+=clk[clkCnt];
+ } else if (i<lastClkBit+8){
+ //noise after a phase shift - ignore
+ } else { //phase shift before supposed to based on clock
+ errCnt++;
+ }
+ } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
+ lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
+ }
+ waveStart=i+1;
+ }
+ }
+ }
+ if (errCnt == 0){
+ return clk[clkCnt];
+ }
+ if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
+ if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
+ }
+ //all tested with errors
+ //return the highest clk with the most peaks found
+ uint8_t best=7;
+ for (i=7; i>=1; i--){
+ if (peaksdet[i] > peaksdet[best]) {
+ best = i;
+ }
+ //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
+ }
+ return clk[best];
}
-// by marshmellow (attempt to get rid of high immediately after a low)
-void pskCleanWave(uint8_t *BitStream, size_t size)
+//by marshmellow
+//detect nrz clock by reading #peaks vs no peaks(or errors)
+int DetectNRZClock(uint8_t dest[], size_t size, int clock)
{
- int i;
- int gap = 4;
- int newLow=0;
- int newHigh=0;
- int high, low;
- getHiLo(BitStream, size, &high, &low, 80, 90);
-
- for (i=0; i < size; ++i){
- if (newLow == 1){
- if (BitStream[i]>low){
- BitStream[i]=low+8;
- gap--;
- }
- if (gap == 0){
- newLow=0;
- gap=4;
- }
- }else if (newHigh == 1){
- if (BitStream[i]<high){
- BitStream[i]=high-8;
- gap--;
- }
- if (gap == 0){
- newHigh=0;
- gap=4;
- }
- }
- if (BitStream[i] <= low) newLow=1;
- if (BitStream[i] >= high) newHigh=1;
- }
- return;
+ int i=0;
+ int clk[]={8,16,32,40,50,64,100,128,256};
+ int loopCnt = 4096; //don't need to loop through entire array...
+ if (size == 0) return 0;
+ if (size<loopCnt) loopCnt = size;
+
+ //if we already have a valid clock quit
+ for (; i < 8; ++i)
+ if (clk[i] == clock) return clock;
+
+ //get high and low peak
+ int peak, low;
+ getHiLo(dest, loopCnt, &peak, &low, 75, 75);
+
+ //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
+ int ii;
+ uint8_t clkCnt;
+ uint8_t tol = 0;
+ int peakcnt=0;
+ int peaksdet[]={0,0,0,0,0,0,0,0};
+ int maxPeak=0;
+ //test for large clipped waves
+ for (i=0; i<loopCnt; i++){
+ if (dest[i] >= peak || dest[i] <= low){
+ peakcnt++;
+ } else {
+ if (peakcnt>0 && maxPeak < peakcnt){
+ maxPeak = peakcnt;
+ }
+ peakcnt=0;
+ }
+ }
+ peakcnt=0;
+ //test each valid clock from smallest to greatest to see which lines up
+ for(clkCnt=0; clkCnt < 8; ++clkCnt){
+ //ignore clocks smaller than largest peak
+ if (clk[clkCnt]<maxPeak) continue;
+
+ //try lining up the peaks by moving starting point (try first 256)
+ for (ii=0; ii< loopCnt; ++ii){
+ if ((dest[ii] >= peak) || (dest[ii] <= low)){
+ peakcnt=0;
+ // now that we have the first one lined up test rest of wave array
+ for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
+ if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
+ peakcnt++;
+ }
+ }
+ if(peakcnt>peaksdet[clkCnt]) {
+ peaksdet[clkCnt]=peakcnt;
+ }
+ }
+ }
+ }
+ int iii=7;
+ int best=0;
+ for (iii=7; iii > 0; iii--){
+ if (peaksdet[iii] > peaksdet[best]){
+ best = iii;
+ }
+ //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
+ }
+ return clk[best];
}
// by marshmellow
return 1;
}
-// by marshmellow - demodulate PSK1 wave or NRZ wave (both similar enough)
+// by marshmellow - demodulate NRZ wave (both similar enough)
// peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
-int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert)
+// there probably is a much simpler way to do this....
+int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int maxErr)
{
- if (justNoise(dest, *size)) return -1;
- pskCleanWave(dest,*size);
- int clk2 = DetectpskNRZClock(dest, *size, *clk);
- *clk=clk2;
- uint32_t i;
- int high, low, ans;
- ans = getHiLo(dest, 1260, &high, &low, 75, 80); //25% fuzz on high 20% fuzz on low
- if (ans<1) return -2; //just noise
- uint32_t gLen = *size;
- //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
- int lastBit = 0; //set first clock check
- uint32_t bitnum = 0; //output counter
- uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
- if (*clk==32) tol = 2; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
- uint32_t iii = 0;
- uint8_t errCnt =0;
- uint32_t bestStart = *size;
- uint32_t maxErr = (*size/1000);
- uint32_t bestErrCnt = maxErr;
- uint8_t curBit=0;
- uint8_t bitHigh=0;
- uint8_t ignorewin=*clk/8;
- //PrintAndLog("DEBUG - lastbit - %d",lastBit);
- //loop to find first wave that works - align to clock
- for (iii=0; iii < gLen; ++iii){
- if ((dest[iii]>=high) || (dest[iii]<=low)){
- lastBit=iii-*clk;
- //loop through to see if this start location works
- for (i = iii; i < *size; ++i) {
- //if we found a high bar and we are at a clock bit
- if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
- bitHigh=1;
- lastBit+=*clk;
- ignorewin=*clk/8;
- bitnum++;
- //else if low bar found and we are at a clock point
- }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
- bitHigh=1;
- lastBit+=*clk;
- ignorewin=*clk/8;
- bitnum++;
- //else if no bars found
- }else if(dest[i] < high && dest[i] > low) {
- if (ignorewin==0){
- bitHigh=0;
- }else ignorewin--;
- //if we are past a clock point
- if (i >= lastBit+*clk+tol){ //clock val
- lastBit+=*clk;
- bitnum++;
- }
- //else if bar found but we are not at a clock bit and we did not just have a clock bit
- }else if ((dest[i]>=high || dest[i]<=low) && (i<lastBit+*clk-tol || i>lastBit+*clk+tol) && (bitHigh==0)){
- //error bar found no clock...
- errCnt++;
- }
- if (bitnum>=1000) break;
- }
- //we got more than 64 good bits and not all errors
- if ((bitnum > (64+errCnt)) && (errCnt < (maxErr))) {
- //possible good read
- if (errCnt == 0){
- bestStart = iii;
- bestErrCnt = errCnt;
- break; //great read - finish
- }
- if (errCnt < bestErrCnt){ //set this as new best run
- bestErrCnt = errCnt;
- bestStart = iii;
- }
- }
- }
- }
- if (bestErrCnt < maxErr){
- //best run is good enough set to best run and set overwrite BinStream
- iii=bestStart;
- lastBit=bestStart-*clk;
- bitnum=0;
- for (i = iii; i < *size; ++i) {
- //if we found a high bar and we are at a clock bit
- if ((dest[i] >= high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
- bitHigh=1;
- lastBit+=*clk;
- curBit=1-*invert;
- dest[bitnum]=curBit;
- ignorewin=*clk/8;
- bitnum++;
- //else if low bar found and we are at a clock point
- }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
- bitHigh=1;
- lastBit+=*clk;
- curBit=*invert;
- dest[bitnum]=curBit;
- ignorewin=*clk/8;
- bitnum++;
- //else if no bars found
- }else if(dest[i]<high && dest[i]>low) {
- if (ignorewin==0){
- bitHigh=0;
- }else ignorewin--;
- //if we are past a clock point
- if (i>=lastBit+*clk+tol){ //clock val
- lastBit+=*clk;
- dest[bitnum]=curBit;
- bitnum++;
- }
- //else if bar found but we are not at a clock bit and we did not just have a clock bit
- }else if ((dest[i]>=high || dest[i]<=low) && ((i<lastBit+*clk-tol) || (i>lastBit+*clk+tol)) && (bitHigh==0)){
- //error bar found no clock...
- bitHigh=1;
- dest[bitnum]=77;
- bitnum++;
- errCnt++;
- }
- if (bitnum >=1000) break;
- }
- *size=bitnum;
- } else{
- *size=bitnum;
- *clk=bestStart;
- return -1;
- }
+ if (justNoise(dest, *size)) return -1;
+ *clk = DetectNRZClock(dest, *size, *clk);
+ if (*clk==0) return -2;
+ uint32_t i;
+ int high, low, ans;
+ ans = getHiLo(dest, 1260, &high, &low, 75, 75); //25% fuzz on high 25% fuzz on low
+ if (ans<1) return -2; //just noise
+ uint32_t gLen = 256;
+ if (gLen>*size) gLen = *size;
+ int lastBit = 0; //set first clock check
+ uint32_t bitnum = 0; //output counter
+ uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
+ uint32_t iii = 0;
+ uint16_t errCnt =0;
+ uint16_t MaxBits = 1000;
+ uint32_t bestErrCnt = maxErr+1;
+ uint32_t bestPeakCnt = 0;
+ uint32_t bestPeakStart=0;
+ uint8_t curBit=0;
+ uint8_t bitHigh=0;
+ uint8_t errBitHigh=0;
+ uint16_t peakCnt=0;
+ uint8_t ignoreWindow=4;
+ uint8_t ignoreCnt=ignoreWindow; //in case of noice near peak
+ //loop to find first wave that works - align to clock
+ for (iii=0; iii < gLen; ++iii){
+ if ((dest[iii]>=high) || (dest[iii]<=low)){
+ lastBit=iii-*clk;
+ peakCnt=0;
+ errCnt=0;
+ bitnum=0;
+ //loop through to see if this start location works
+ for (i = iii; i < *size; ++i) {
+ //if we found a high bar and we are at a clock bit
+ if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
+ bitHigh=1;
+ lastBit+=*clk;
+ bitnum++;
+ peakCnt++;
+ errBitHigh=0;
+ ignoreCnt=ignoreWindow;
+ //else if low bar found and we are at a clock point
+ }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
+ bitHigh=1;
+ lastBit+=*clk;
+ bitnum++;
+ peakCnt++;
+ errBitHigh=0;
+ ignoreCnt=ignoreWindow;
+ //else if no bars found
+ }else if(dest[i] < high && dest[i] > low) {
+ if (ignoreCnt==0){
+ bitHigh=0;
+ if (errBitHigh==1){
+ errCnt++;
+ }
+ errBitHigh=0;
+ } else {
+ ignoreCnt--;
+ }
+ //if we are past a clock point
+ if (i >= lastBit+*clk+tol){ //clock val
+ lastBit+=*clk;
+ bitnum++;
+ }
+ //else if bar found but we are not at a clock bit and we did not just have a clock bit
+ }else if ((dest[i]>=high || dest[i]<=low) && (i<lastBit+*clk-tol || i>lastBit+*clk+tol) && (bitHigh==0)){
+ //error bar found no clock...
+ errBitHigh=1;
+ }
+ if (bitnum>=MaxBits) break;
+ }
+ //we got more than 64 good bits and not all errors
+ if (bitnum > (64) && (errCnt <= (maxErr))) {
+ //possible good read
+ if (errCnt == 0){
+ //bestStart = iii;
+ bestErrCnt = errCnt;
+ bestPeakCnt = peakCnt;
+ bestPeakStart = iii;
+ break; //great read - finish
+ }
+ if (errCnt < bestErrCnt){ //set this as new best run
+ bestErrCnt = errCnt;
+ //bestStart = iii;
+ }
+ if (peakCnt > bestPeakCnt){
+ bestPeakCnt=peakCnt;
+ bestPeakStart=iii;
+ }
+ }
+ }
+ }
+ //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart);
+ if (bestErrCnt <= maxErr){
+ //best run is good enough set to best run and set overwrite BinStream
+ iii=bestPeakStart;
+ lastBit=bestPeakStart-*clk;
+ bitnum=0;
+ for (i = iii; i < *size; ++i) {
+ //if we found a high bar and we are at a clock bit
+ if ((dest[i] >= high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
+ bitHigh=1;
+ lastBit+=*clk;
+ curBit=1-*invert;
+ dest[bitnum]=curBit;
+ bitnum++;
+ errBitHigh=0;
+ ignoreCnt=ignoreWindow;
+ //else if low bar found and we are at a clock point
+ }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
+ bitHigh=1;
+ lastBit+=*clk;
+ curBit=*invert;
+ dest[bitnum]=curBit;
+ bitnum++;
+ errBitHigh=0;
+ ignoreCnt=ignoreWindow;
+ //else if no bars found
+ }else if(dest[i]<high && dest[i]>low) {
+ if (ignoreCnt==0){
+ bitHigh=0;
+ //if peak is done was it an error peak?
+ if (errBitHigh==1){
+ dest[bitnum]=77;
+ bitnum++;
+ errCnt++;
+ }
+ errBitHigh=0;
+ } else {
+ ignoreCnt--;
+ }
+ //if we are past a clock point
+ if (i>=lastBit+*clk+tol){ //clock val
+ lastBit+=*clk;
+ dest[bitnum]=curBit;
+ bitnum++;
+ }
+ //else if bar found but we are not at a clock bit and we did not just have a clock bit
+ }else if ((dest[i]>=high || dest[i]<=low) && ((i<lastBit+*clk-tol) || (i>lastBit+*clk+tol)) && (bitHigh==0)){
+ //error bar found no clock...
+ errBitHigh=1;
+ }
+ if (bitnum >= MaxBits) break;
+ }
+ *size=bitnum;
+ } else{
+ *size=bitnum;
+ return -1;
+ }
- if (bitnum>16){
- *size=bitnum;
- } else return -1;
- return errCnt;
+ if (bitnum>16){
+ *size=bitnum;
+ } else return -1;
+ return errCnt;
}
//by marshmellow
uint16_t rfCounter = 0;
uint8_t firstBitFnd = 0;
size_t i;
+ if (size == 0) return 0;
uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
rfLensFnd=0;
fcCounter = fcLow;
else //set it to the large fc
fcCounter = fcHigh;
-
+
//look for bit clock (rf/xx)
if ((fcCounter<lastFCcnt || fcCounter>lastFCcnt)){
//not the same size as the last wave - start of new bit sequence
//by marshmellow
//countFC is to detect the field clock lengths.
//counts and returns the 2 most common wave lengths
-uint16_t countFC(uint8_t *BitStream, size_t size)
+//mainly used for FSK field clock detection
+uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t *mostFC)
{
uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
uint8_t lastFCcnt=0;
uint32_t fcCounter = 0;
size_t i;
-
+ if (size == 0) return 0;
+
// prime i to first up transition
for (i = 1; i < size-1; i++)
if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
fcH=fcLens[best2];
fcL=fcLens[best1];
}
-
+
+ *mostFC=fcLens[best1];
// TODO: take top 3 answers and compare to known Field clocks to get top 2
uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
return fcs;
}
+
+//by marshmellow
+//countPSK_FC is to detect the psk carrier clock length.
+//counts and returns the 1 most common wave length
+uint8_t countPSK_FC(uint8_t *BitStream, size_t size)
+{
+ uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
+ uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
+ uint8_t fcLensFnd = 0;
+ uint32_t fcCounter = 0;
+ size_t i;
+ if (size == 0) return 0;
+
+ // prime i to first up transition
+ for (i = 1; i < size-1; i++)
+ if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
+ break;
+
+ for (; i < size-1; i++){
+ if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
+ // new up transition
+ fcCounter++;
+
+ // save last field clock count (fc/xx)
+ // find which fcLens to save it to:
+ for (int ii=0; ii<10; ii++){
+ if (fcLens[ii]==fcCounter){
+ fcCnts[ii]++;
+ fcCounter=0;
+ break;
+ }
+ }
+ if (fcCounter>0 && fcLensFnd<10){
+ //add new fc length
+ fcCnts[fcLensFnd]++;
+ fcLens[fcLensFnd++]=fcCounter;
+ }
+ fcCounter=0;
+ } else {
+ // count sample
+ fcCounter++;
+ }
+ }
+
+ uint8_t best1=9;
+ uint16_t maxCnt1=0;
+ // go through fclens and find which ones are bigest
+ for (i=0; i<10; i++){
+ //PrintAndLog("DEBUG: FC %d, Cnt %d",fcLens[i],fcCnts[i]);
+ // get the best FC value
+ if (fcCnts[i]>maxCnt1) {
+ maxCnt1=fcCnts[i];
+ best1=i;
+ }
+ }
+ return fcLens[best1];
+}
+
+//by marshmellow - demodulate PSK1 wave
+//uses wave lengths (# Samples)
+int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
+{
+ uint16_t loopCnt = 4096; //don't need to loop through entire array...
+ if (size == 0) return -1;
+ if (*size<loopCnt) loopCnt = *size;
+
+ uint8_t curPhase = *invert;
+ size_t i, waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
+ uint8_t fc=0, fullWaveLen=0, tol=1;
+ uint16_t errCnt=0, waveLenCnt=0;
+ fc = countPSK_FC(dest, *size);
+ if (fc!=2 && fc!=4 && fc!=8) return -1;
+ //PrintAndLog("DEBUG: FC: %d",fc);
+ *clock = DetectPSKClock(dest, *size, *clock);
+ if (*clock==0) return -1;
+ int avgWaveVal=0, lastAvgWaveVal=0;
+ //find first full wave
+ for (i=0; i<loopCnt; i++){
+ if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
+ if (waveStart == 0) {
+ waveStart = i+1;
+ avgWaveVal=dest[i+1];
+ //PrintAndLog("DEBUG: waveStart: %d",waveStart);
+ } else {
+ waveEnd = i+1;
+ //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
+ waveLenCnt = waveEnd-waveStart;
+ lastAvgWaveVal = avgWaveVal/waveLenCnt;
+ if (waveLenCnt > fc){
+ firstFullWave = waveStart;
+ fullWaveLen=waveLenCnt;
+ //if average wave value is > graph 0 then it is an up wave or a 1
+ if (lastAvgWaveVal > 128) curPhase^=1;
+ break;
+ }
+ waveStart=0;
+ avgWaveVal=0;
+ }
+ }
+ avgWaveVal+=dest[i+1];
+ }
+ //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
+ lastClkBit = firstFullWave; //set start of wave as clock align
+ waveStart = 0;
+ errCnt=0;
+ size_t numBits=0;
+ //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
+
+ for (i = firstFullWave+fullWaveLen-1; i < *size-3; i++){
+ //top edge of wave = start of new wave
+ if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
+ if (waveStart == 0) {
+ waveStart = i+1;
+ waveLenCnt=0;
+ avgWaveVal = dest[i+1];
+ } else { //waveEnd
+ waveEnd = i+1;
+ waveLenCnt = waveEnd-waveStart;
+ lastAvgWaveVal = avgWaveVal/waveLenCnt;
+ if (waveLenCnt > fc){
+ //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
+ //if this wave is a phase shift
+ //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
+ if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
+ curPhase^=1;
+ dest[numBits] = curPhase;
+ numBits++;
+ lastClkBit += *clock;
+ } else if (i<lastClkBit+10){
+ //noise after a phase shift - ignore
+ } else { //phase shift before supposed to based on clock
+ errCnt++;
+ dest[numBits] = 77;
+ numBits++;
+ }
+ } else if (i+1 > lastClkBit + *clock + tol + fc){
+ lastClkBit += *clock; //no phase shift but clock bit
+ dest[numBits] = curPhase;
+ numBits++;
+ }
+ avgWaveVal=0;
+ waveStart=i+1;
+ }
+ }
+ avgWaveVal+=dest[i+1];
+ }
+ *size = numBits;
+ return errCnt;
+}
#define LFDEMOD_H__
#include <stdint.h>
-int DetectASKClock(uint8_t dest[], size_t size, int clock);
-int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert);
+int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr);
+int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr);
uint64_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx);
int ManchesterEncode(uint8_t *BitStream, size_t size);
int manrawdecode(uint8_t *BitStream, size_t *size);
int BiphaseRawDecode(uint8_t * BitStream, size_t *size, int offset, int invert);
-int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert);
+int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp);
int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo);
int IOdemodFSK(uint8_t *dest, size_t size);
int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow);
uint32_t bytebits_to_byte(uint8_t* src, size_t numbits);
-int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert);
+int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int maxErr);
void psk1TOpsk2(uint8_t *BitStream, size_t size);
-int DetectpskNRZClock(uint8_t dest[], size_t size, int clock);
+int DetectNRZClock(uint8_t dest[], size_t size, int clock);
int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert);
void pskCleanWave(uint8_t *bitStream, size_t size);
int PyramiddemodFSK(uint8_t *dest, size_t *size);
int AWIDdemodFSK(uint8_t *dest, size_t *size);
size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen);
-uint16_t countFC(uint8_t *BitStream, size_t size);
+uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t *mostFC);
uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow);
int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo);
int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo);
uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx);
uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType);
uint8_t justNoise(uint8_t *BitStream, size_t size);
+uint8_t countPSK_FC(uint8_t *BitStream, size_t size);
+int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert);
+int DetectPSKClock(uint8_t dest[], size_t size, int clock);
#endif