]>
Commit | Line | Data |
---|---|---|
bd20f8f4 | 1 | //----------------------------------------------------------------------------- |
2 | // (c) 2009 Henryk Plötz <henryk@ploetzli.ch> | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // LEGIC RF simulation code | |
9 | //----------------------------------------------------------------------------- | |
f7e3ed82 | 10 | #include "legicrf.h" |
8e220a91 | 11 | |
a7247d85 | 12 | static struct legic_frame { |
ccedd6ae | 13 | int bits; |
a2b1414f | 14 | uint32_t data; |
a7247d85 | 15 | } current_frame; |
8e220a91 | 16 | |
3612a8a8 | 17 | static enum { |
18 | STATE_DISCON, | |
19 | STATE_IV, | |
20 | STATE_CON, | |
21 | } legic_state; | |
22 | ||
23 | static crc_t legic_crc; | |
24 | static int legic_read_count; | |
25 | static uint32_t legic_prng_bc; | |
26 | static uint32_t legic_prng_iv; | |
27 | ||
28 | static int legic_phase_drift; | |
29 | static int legic_frame_drift; | |
30 | static int legic_reqresp_drift; | |
8e220a91 | 31 | |
add16a62 | 32 | AT91PS_TC timer; |
3612a8a8 | 33 | AT91PS_TC prng_timer; |
add16a62 | 34 | |
ad5bc8cc | 35 | /* |
c71c5ee1 | 36 | static void setup_timer(void) { |
ad5bc8cc | 37 | // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging |
38 | // this it won't be terribly accurate but should be good enough. | |
39 | // | |
add16a62 | 40 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); |
41 | timer = AT91C_BASE_TC1; | |
42 | timer->TC_CCR = AT91C_TC_CLKDIS; | |
0aa4cfc2 | 43 | timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; |
add16a62 | 44 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; |
45 | ||
ad5bc8cc | 46 | // |
47 | // Set up Timer 2 to use for measuring time between frames in | |
48 | // tag simulation mode. Runs 4x faster as Timer 1 | |
49 | // | |
3612a8a8 | 50 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2); |
51 | prng_timer = AT91C_BASE_TC2; | |
52 | prng_timer->TC_CCR = AT91C_TC_CLKDIS; | |
53 | prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK; | |
54 | prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
55 | } | |
111c6934 | 56 | |
57 | AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14); | |
58 | AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE; | |
59 | ||
60 | // fast clock | |
61 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable | |
62 | AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks | |
63 | AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR | | |
64 | AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET; | |
65 | AT91C_BASE_TC0->TC_RA = 1; | |
66 | AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000 | |
67 | ||
ad5bc8cc | 68 | */ |
69 | ||
70 | // At TIMER_CLOCK3 (MCK/32) | |
71 | //#define RWD_TIME_1 150 /* RWD_TIME_PAUSE off, 80us on = 100us */ | |
72 | //#define RWD_TIME_0 90 /* RWD_TIME_PAUSE off, 40us on = 60us */ | |
73 | //#define RWD_TIME_PAUSE 30 /* 20us */ | |
74 | ||
22f4dca8 | 75 | // testing calculating in (us) microseconds. |
111c6934 | 76 | #define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks |
77 | #define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks | |
76471e5d | 78 | #define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */ |
79 | #define TAG_BIT_PERIOD 150 // 100us == 100 * 1.5 == 150ticks | |
111c6934 | 80 | #define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495 |
ad5bc8cc | 81 | |
76471e5d | 82 | #define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit |
add16a62 | 83 | |
3612a8a8 | 84 | #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */ |
85 | #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */ | |
86 | ||
3612a8a8 | 87 | #define OFFSET_LOG 1024 |
add16a62 | 88 | |
89 | #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz))) | |
aac23b24 | 90 | |
ad5bc8cc | 91 | #ifndef SHORT_COIL |
b4a6775b | 92 | # define SHORT_COIL LOW(GPIO_SSC_DOUT); |
ad5bc8cc | 93 | #endif |
94 | #ifndef OPEN_COIL | |
b4a6775b | 95 | # define OPEN_COIL HIGH(GPIO_SSC_DOUT); |
ad5bc8cc | 96 | #endif |
97 | ||
87342aad | 98 | uint32_t sendFrameStop = 0; |
ad5bc8cc | 99 | |
111c6934 | 100 | // Pause pulse, off in 20us / 30ticks, |
101 | // ONE / ZERO bit pulse, | |
102 | // one == 80us / 120ticks | |
103 | // zero == 40us / 60ticks | |
104 | #ifndef COIL_PULSE | |
25d52dd2 | 105 | # define COIL_PULSE(x) \ |
106 | do { \ | |
76471e5d | 107 | SHORT_COIL; \ |
25d52dd2 | 108 | WaitTicks( (RWD_TIME_PAUSE) ); \ |
76471e5d | 109 | OPEN_COIL; \ |
22f4dca8 | 110 | WaitTicks((x)); \ |
25d52dd2 | 111 | } while (0) |
111c6934 | 112 | #endif |
c71c5ee1 | 113 | |
114 | // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces. | |
115 | // Historically it used to be FREE_BUFFER_SIZE, which was 2744. | |
116 | #define LEGIC_CARD_MEMSIZE 1024 | |
117 | static uint8_t* cardmem; | |
118 | ||
faabfafe | 119 | static void frame_append_bit(struct legic_frame * const f, uint8_t bit) { |
b4a6775b | 120 | // Overflow, won't happen |
121 | if (f->bits >= 31) return; | |
122 | ||
123 | f->data |= (bit << f->bits); | |
124 | f->bits++; | |
125 | } | |
126 | ||
127 | static void frame_clean(struct legic_frame * const f) { | |
128 | f->data = 0; | |
129 | f->bits = 0; | |
130 | } | |
131 | ||
ad5bc8cc | 132 | // Prng works when waiting in 99.1us cycles. |
133 | // and while sending/receiving in bit frames (100, 60) | |
b4a6775b | 134 | /*static void CalibratePrng( uint32_t time){ |
ad5bc8cc | 135 | // Calculate Cycles based on timer 100us |
87342aad | 136 | uint32_t i = (time - sendFrameStop) / 100 ; |
ad5bc8cc | 137 | |
138 | // substract cycles of finished frames | |
139 | int k = i - legic_prng_count()+1; | |
140 | ||
141 | // substract current frame length, rewind to beginning | |
142 | if ( k > 0 ) | |
143 | legic_prng_forward(k); | |
144 | } | |
b4a6775b | 145 | */ |
ad5bc8cc | 146 | |
3612a8a8 | 147 | /* Generate Keystream */ |
22f4dca8 | 148 | uint32_t get_key_stream(int skip, int count) { |
c71c5ee1 | 149 | uint32_t key = 0; |
150 | int i; | |
edaf10af | 151 | |
c71c5ee1 | 152 | // Use int to enlarge timer tc to 32bit |
edaf10af | 153 | legic_prng_bc += prng_timer->TC_CV; |
c71c5ee1 | 154 | |
155 | // reset the prng timer. | |
22f4dca8 | 156 | ResetTimer(prng_timer); |
edaf10af | 157 | |
158 | /* If skip == -1, forward prng time based */ | |
159 | if(skip == -1) { | |
c71c5ee1 | 160 | i = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */ |
edaf10af | 161 | i -= legic_prng_count(); /* substract cycles of finished frames */ |
c71c5ee1 | 162 | i -= count; /* substract current frame length, rewind to beginning */ |
edaf10af | 163 | legic_prng_forward(i); |
164 | } else { | |
165 | legic_prng_forward(skip); | |
166 | } | |
167 | ||
edaf10af | 168 | i = (count == 6) ? -1 : legic_read_count; |
169 | ||
c71c5ee1 | 170 | /* Write Time Data into LOG */ |
171 | // uint8_t *BigBuf = BigBuf_get_addr(); | |
172 | // BigBuf[OFFSET_LOG+128+i] = legic_prng_count(); | |
173 | // BigBuf[OFFSET_LOG+256+i*4] = (legic_prng_bc >> 0) & 0xff; | |
174 | // BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff; | |
175 | // BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff; | |
176 | // BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff; | |
177 | // BigBuf[OFFSET_LOG+384+i] = count; | |
edaf10af | 178 | |
179 | /* Generate KeyStream */ | |
180 | for(i=0; i<count; i++) { | |
181 | key |= legic_prng_get_bit() << i; | |
182 | legic_prng_forward(1); | |
183 | } | |
184 | return key; | |
3612a8a8 | 185 | } |
186 | ||
187 | /* Send a frame in tag mode, the FPGA must have been set up by | |
188 | * LegicRfSimulate | |
189 | */ | |
22f4dca8 | 190 | void frame_send_tag(uint16_t response, uint8_t bits, uint8_t crypt) { |
ad5bc8cc | 191 | /* Bitbang the response */ |
192 | LOW(GPIO_SSC_DOUT); | |
193 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
194 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
3612a8a8 | 195 | |
ad5bc8cc | 196 | /* Use time to crypt frame */ |
197 | if(crypt) { | |
111c6934 | 198 | legic_prng_forward(2); /* TAG_FRAME_WAIT -> shift by 2 */ |
ad5bc8cc | 199 | response ^= legic_prng_get_bits(bits); |
200 | } | |
c71c5ee1 | 201 | |
ad5bc8cc | 202 | /* Wait for the frame start */ |
22f4dca8 | 203 | WaitUS( TAG_FRAME_WAIT ); |
e30c654b | 204 | |
ad5bc8cc | 205 | uint8_t bit = 0; |
f7b42573 | 206 | for(int i = 0; i < bits; i++) { |
c71c5ee1 | 207 | |
ad5bc8cc | 208 | bit = response & 1; |
209 | response >>= 1; | |
8e220a91 | 210 | |
ad5bc8cc | 211 | if (bit) |
212 | HIGH(GPIO_SSC_DOUT); | |
edaf10af | 213 | else |
ad5bc8cc | 214 | LOW(GPIO_SSC_DOUT); |
215 | ||
22f4dca8 | 216 | WaitUS(100); |
ad5bc8cc | 217 | } |
218 | LOW(GPIO_SSC_DOUT); | |
219 | } | |
c71c5ee1 | 220 | |
ad5bc8cc | 221 | /* Send a frame in reader mode, the FPGA must have been set up by |
222 | * LegicRfReader | |
223 | */ | |
22f4dca8 | 224 | void frame_sendAsReader(uint32_t data, uint8_t bits){ |
c71c5ee1 | 225 | |
111c6934 | 226 | uint32_t starttime = GET_TICKS, send = 0; |
ad5bc8cc | 227 | uint16_t mask = 1; |
faabfafe | 228 | uint8_t prngstart = legic_prng_count() ; |
111c6934 | 229 | |
230 | // xor lsfr onto data. | |
231 | send = data ^ legic_prng_get_bits(bits); | |
ad5bc8cc | 232 | |
233 | for (; mask < BITMASK(bits); mask <<= 1) { | |
234 | if (send & mask) { | |
76471e5d | 235 | COIL_PULSE(RWD_TIME_1); |
ad5bc8cc | 236 | } else { |
76471e5d | 237 | COIL_PULSE(RWD_TIME_0); |
ad5bc8cc | 238 | } |
dcc10e5e | 239 | } |
e30c654b | 240 | |
76471e5d | 241 | // Final pause to mark the end of the frame |
76471e5d | 242 | COIL_PULSE(0); |
b4a6775b | 243 | |
87342aad | 244 | sendFrameStop = GET_TICKS; |
ad5bc8cc | 245 | uint8_t cmdbytes[] = { |
faabfafe | 246 | bits, |
111c6934 | 247 | BYTEx(data, 0), |
248 | BYTEx(data, 1), | |
3e750be3 | 249 | BYTEx(send, 0), |
250 | BYTEx(send, 1), | |
faabfafe | 251 | prngstart, |
ad5bc8cc | 252 | legic_prng_count() |
253 | }; | |
87342aad | 254 | LogTrace(cmdbytes, sizeof(cmdbytes), starttime, sendFrameStop, NULL, TRUE); |
dcc10e5e | 255 | } |
256 | ||
257 | /* Receive a frame from the card in reader emulation mode, the FPGA and | |
ad5bc8cc | 258 | * timer must have been set up by LegicRfReader and frame_sendAsReader. |
e30c654b | 259 | * |
dcc10e5e | 260 | * The LEGIC RF protocol from card to reader does not include explicit |
261 | * frame start/stop information or length information. The reader must | |
262 | * know beforehand how many bits it wants to receive. (Notably: a card | |
263 | * sending a stream of 0-bits is indistinguishable from no card present.) | |
e30c654b | 264 | * |
dcc10e5e | 265 | * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but |
266 | * I'm not smart enough to use it. Instead I have patched hi_read_tx to output | |
267 | * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look | |
268 | * for edges. Count the edges in each bit interval. If they are approximately | |
269 | * 0 this was a 0-bit, if they are approximately equal to the number of edges | |
270 | * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the | |
ad5bc8cc | 271 | * timer that's still running from frame_sendAsReader in order to get a synchronization |
dcc10e5e | 272 | * with the frame that we just sent. |
e30c654b | 273 | * |
274 | * FIXME: Because we're relying on the hysteresis to just do the right thing | |
dcc10e5e | 275 | * the range is severely reduced (and you'll probably also need a good antenna). |
e30c654b | 276 | * So this should be fixed some time in the future for a proper receiver. |
dcc10e5e | 277 | */ |
111c6934 | 278 | static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) { |
ad5bc8cc | 279 | |
b4a6775b | 280 | frame_clean(f); |
22f4dca8 | 281 | if ( bits > 32 ) return; |
3612a8a8 | 282 | |
22f4dca8 | 283 | uint8_t i = bits, edges = 0; |
b4a6775b | 284 | uint16_t lsfr = 0; |
db44e049 | 285 | uint32_t the_bit = 1, next_bit_at = 0, data; |
25d52dd2 | 286 | |
b4a6775b | 287 | int old_level = 0, level = 0; |
25d52dd2 | 288 | |
db44e049 | 289 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; |
290 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
291 | ||
faabfafe | 292 | // calibrate the prng. |
293 | // | |
b4a6775b | 294 | legic_prng_forward(2); |
ad5bc8cc | 295 | |
296 | // precompute the cipher | |
faabfafe | 297 | uint8_t prngstart = legic_prng_count() ; |
b4a6775b | 298 | |
faabfafe | 299 | data = lsfr = legic_prng_get_bits(bits); |
b4a6775b | 300 | |
b4a6775b | 301 | //FIXED time between sending frame and now listening frame. 330us |
faabfafe | 302 | // 387 = 0x19 0001 1001 |
303 | // 480 = 0x19 | |
304 | // 500 = 0x1C 0001 1100 | |
111c6934 | 305 | uint32_t starttime = GET_TICKS; |
faabfafe | 306 | //uint16_t mywait = TAG_FRAME_WAIT - (starttime - sendFrameStop); |
3e750be3 | 307 | //uint16_t mywait = 495 - (starttime - sendFrameStop); |
308 | if ( bits == 6) { | |
309 | //Dbprintf("6 WAIT %d", 495 - 9 - 9 ); | |
310 | WaitTicks( 495 - 9 - 9 ); | |
311 | } else { | |
312 | //Dbprintf("x WAIT %d", mywait ); | |
313 | //WaitTicks( mywait ); | |
314 | WaitTicks( 450 ); | |
faabfafe | 315 | } |
316 | ||
111c6934 | 317 | next_bit_at = GET_TICKS + TAG_BIT_PERIOD; |
25d52dd2 | 318 | |
22f4dca8 | 319 | while ( i-- ){ |
dcc10e5e | 320 | edges = 0; |
25d52dd2 | 321 | uint8_t adjust = 0; |
111c6934 | 322 | while ( GET_TICKS < next_bit_at) { |
ad5bc8cc | 323 | |
b4a6775b | 324 | level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); |
ad5bc8cc | 325 | |
326 | if (level != old_level) | |
b4a6775b | 327 | ++edges; |
328 | ||
dcc10e5e | 329 | old_level = level; |
25d52dd2 | 330 | |
331 | if(edges > 20 && adjust == 0) { | |
332 | next_bit_at -= 15; | |
333 | adjust = 1; | |
334 | } | |
335 | } | |
336 | ||
ad5bc8cc | 337 | next_bit_at += TAG_BIT_PERIOD; |
3612a8a8 | 338 | |
ad5bc8cc | 339 | // We expect 42 edges == ONE |
faabfafe | 340 | //if (edges > 20 && edges < 64) |
341 | if ( edges > 20 ) | |
8e220a91 | 342 | data ^= the_bit; |
87342aad | 343 | |
344 | the_bit <<= 1; | |
dcc10e5e | 345 | } |
e30c654b | 346 | |
b4a6775b | 347 | // output |
dcc10e5e | 348 | f->data = data; |
349 | f->bits = bits; | |
db44e049 | 350 | |
faabfafe | 351 | uint8_t cmdbytes[] = { |
352 | bits, | |
111c6934 | 353 | BYTEx(data,0), |
354 | BYTEx(data,1), | |
87342aad | 355 | BYTEx(data, 0) ^ BYTEx(lsfr,0), |
356 | BYTEx(data, 1) ^ BYTEx(lsfr,1), | |
faabfafe | 357 | prngstart, |
111c6934 | 358 | legic_prng_count() |
ad5bc8cc | 359 | }; |
faabfafe | 360 | LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE); |
a7247d85 | 361 | } |
362 | ||
c71c5ee1 | 363 | // Setup pm3 as a Legic Reader |
87342aad | 364 | static uint32_t setup_phase_reader(uint8_t iv) { |
22f4dca8 | 365 | |
f7b42573 | 366 | // Switch on carrier and let the tag charge for 1ms |
ad5bc8cc | 367 | HIGH(GPIO_SSC_DOUT); |
25d52dd2 | 368 | WaitUS(1000); |
ad5bc8cc | 369 | |
22f4dca8 | 370 | ResetTicks(); |
ad5bc8cc | 371 | |
f7b42573 | 372 | // no keystream yet |
c71c5ee1 | 373 | legic_prng_init(0); |
f7b42573 | 374 | |
ad5bc8cc | 375 | // send IV handshake |
376 | frame_sendAsReader(iv, 7); | |
377 | ||
378 | // Now both tag and reader has same IV. Prng can start. | |
3612a8a8 | 379 | legic_prng_init(iv); |
e30c654b | 380 | |
111c6934 | 381 | frame_receiveAsReader(¤t_frame, 6); |
f7b42573 | 382 | |
ad5bc8cc | 383 | // fixed delay before sending ack. |
25d52dd2 | 384 | WaitTicks(366); // 244us |
385 | legic_prng_forward(1); //240us / 100 == 2.4 iterations | |
ad5bc8cc | 386 | |
f7b42573 | 387 | // Send obsfuscated acknowledgment frame. |
ad5bc8cc | 388 | // 0x19 = 0x18 MIM22, 0x01 LSB READCMD |
389 | // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD | |
390 | switch ( current_frame.data ) { | |
87342aad | 391 | case 0x0D: frame_sendAsReader(0x19, 6); break; |
392 | case 0x1D: | |
393 | case 0x3D: frame_sendAsReader(0x39, 6); break; | |
394 | default: break; | |
f7b42573 | 395 | } |
8e220a91 | 396 | return current_frame.data; |
2561caa2 | 397 | } |
398 | ||
22f4dca8 | 399 | static void LegicCommonInit(void) { |
400 | ||
7cc204bf | 401 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
b4a6775b | 402 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); |
dcc10e5e | 403 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
e30c654b | 404 | |
dcc10e5e | 405 | /* Bitbang the transmitter */ |
ad5bc8cc | 406 | LOW(GPIO_SSC_DOUT); |
dcc10e5e | 407 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
408 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
e30c654b | 409 | |
c71c5ee1 | 410 | // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier. |
411 | cardmem = BigBuf_malloc(LEGIC_CARD_MEMSIZE); | |
412 | memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE); | |
413 | ||
414 | clear_trace(); | |
415 | set_tracing(TRUE); | |
8e220a91 | 416 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
ad5bc8cc | 417 | |
22f4dca8 | 418 | StartTicks(); |
8e220a91 | 419 | } |
420 | ||
111c6934 | 421 | // Switch off carrier, make sure tag is reset |
c71c5ee1 | 422 | static void switch_off_tag_rwd(void) { |
ad5bc8cc | 423 | LOW(GPIO_SSC_DOUT); |
3e750be3 | 424 | WaitUS(20); |
8e220a91 | 425 | WDT_HIT(); |
3e750be3 | 426 | set_tracing(FALSE); |
8e220a91 | 427 | } |
c71c5ee1 | 428 | |
f7b42573 | 429 | // calculate crc4 for a legic READ command |
430 | // 5,8,10 address size. | |
111c6934 | 431 | static uint32_t legic4Crc(uint8_t legicCmd, uint16_t byte_index, uint8_t value, uint8_t cmd_sz) { |
ad5bc8cc | 432 | crc_clear(&legic_crc); |
87342aad | 433 | //uint32_t temp = (value << cmd_sz) | (byte_index << 1) | legicCmd; |
434 | //crc_update(&legic_crc, temp, cmd_sz + 8 ); | |
435 | crc_update(&legic_crc, 1, 1); /* CMD_READ */ | |
436 | crc_update(&legic_crc, byte_index, cmd_sz-1); | |
437 | crc_update(&legic_crc, value, 8); | |
8e220a91 | 438 | return crc_finish(&legic_crc); |
439 | } | |
440 | ||
f7b42573 | 441 | int legic_read_byte(int byte_index, int cmd_sz) { |
8e220a91 | 442 | |
3e750be3 | 443 | uint8_t byte = 0, crc = 0, calcCrc = 0; |
444 | uint32_t cmd = (byte_index << 1) | LEGIC_READ; | |
445 | ||
22f4dca8 | 446 | // (us)| ticks |
447 | // ------------- | |
448 | // 330 | 495 | |
449 | // 460 | 690 | |
450 | // 258 | 387 | |
451 | // 244 | 366 | |
faabfafe | 452 | WaitTicks(387); |
453 | legic_prng_forward(4); // 460 / 100 = 4.6 iterations | |
3e750be3 | 454 | |
ad5bc8cc | 455 | frame_sendAsReader(cmd, cmd_sz); |
111c6934 | 456 | frame_receiveAsReader(¤t_frame, 12); |
c71c5ee1 | 457 | |
111c6934 | 458 | byte = BYTEx(current_frame.data, 0); |
459 | calcCrc = legic4Crc(LEGIC_READ, byte_index, byte, cmd_sz); | |
460 | crc = BYTEx(current_frame.data, 1); | |
65c2d21d | 461 | |
c71c5ee1 | 462 | if( calcCrc != crc ) { |
463 | Dbprintf("!!! crc mismatch: expected %x but got %x !!!", calcCrc, crc); | |
a2b1414f | 464 | return -1; |
465 | } | |
8e220a91 | 466 | return byte; |
467 | } | |
468 | ||
c71c5ee1 | 469 | /* |
470 | * - assemble a write_cmd_frame with crc and send it | |
471 | * - wait until the tag sends back an ACK ('1' bit unencrypted) | |
472 | * - forward the prng based on the timing | |
8e220a91 | 473 | */ |
3e134b4c | 474 | //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) { |
111c6934 | 475 | int legic_write_byte(uint8_t byte, uint16_t addr, uint8_t addr_sz) { |
c71c5ee1 | 476 | |
477 | //do not write UID, CRC at offset 0-4. | |
111c6934 | 478 | if (addr <= 4) return 0; |
c71c5ee1 | 479 | |
480 | // crc | |
3612a8a8 | 481 | crc_clear(&legic_crc); |
482 | crc_update(&legic_crc, 0, 1); /* CMD_WRITE */ | |
483 | crc_update(&legic_crc, addr, addr_sz); | |
484 | crc_update(&legic_crc, byte, 8); | |
3612a8a8 | 485 | uint32_t crc = crc_finish(&legic_crc); |
c71c5ee1 | 486 | |
111c6934 | 487 | uint32_t crc2 = legic4Crc(LEGIC_WRITE, addr, byte, addr_sz+1); |
488 | if ( crc != crc2 ) | |
489 | Dbprintf("crc is missmatch"); | |
490 | ||
c71c5ee1 | 491 | // send write command |
3612a8a8 | 492 | uint32_t cmd = ((crc <<(addr_sz+1+8)) //CRC |
493 | |(byte <<(addr_sz+1)) //Data | |
494 | |(addr <<1) //Address | |
111c6934 | 495 | | LEGIC_WRITE); //CMD = Write |
496 | ||
3612a8a8 | 497 | uint32_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd |
498 | ||
cc708897 | 499 | legic_prng_forward(2); /* we wait anyways */ |
c71c5ee1 | 500 | |
22f4dca8 | 501 | WaitUS(TAG_FRAME_WAIT); |
c71c5ee1 | 502 | |
ad5bc8cc | 503 | frame_sendAsReader(cmd, cmd_sz); |
c71c5ee1 | 504 | |
111c6934 | 505 | // wllm-rbnt doesnt have these |
506 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; | |
507 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
3612a8a8 | 508 | |
c71c5ee1 | 509 | // wait for ack |
510 | int t, old_level = 0, edges = 0; | |
511 | int next_bit_at = 0; | |
3e134b4c | 512 | |
22f4dca8 | 513 | WaitUS(TAG_FRAME_WAIT); |
c71c5ee1 | 514 | |
111c6934 | 515 | for( t = 0; t < 80; ++t) { |
3612a8a8 | 516 | edges = 0; |
ad5bc8cc | 517 | next_bit_at += TAG_BIT_PERIOD; |
3612a8a8 | 518 | while(timer->TC_CV < next_bit_at) { |
519 | int level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); | |
111c6934 | 520 | if(level != old_level) |
3612a8a8 | 521 | edges++; |
111c6934 | 522 | |
3612a8a8 | 523 | old_level = level; |
524 | } | |
525 | if(edges > 20 && edges < 60) { /* expected are 42 edges */ | |
526 | int t = timer->TC_CV; | |
ad5bc8cc | 527 | int c = t / TAG_BIT_PERIOD; |
c71c5ee1 | 528 | |
22f4dca8 | 529 | ResetTimer(timer); |
cc708897 | 530 | legic_prng_forward(c); |
3612a8a8 | 531 | return 0; |
532 | } | |
533 | } | |
c71c5ee1 | 534 | |
22f4dca8 | 535 | ResetTimer(timer); |
3612a8a8 | 536 | return -1; |
537 | } | |
8e220a91 | 538 | |
cc708897 | 539 | int LegicRfReader(int offset, int bytes, int iv) { |
3e134b4c | 540 | |
111c6934 | 541 | uint16_t byte_index = 0; |
faabfafe | 542 | uint8_t cmd_sz = 0, isOK = 1; |
543 | int card_sz = 0; | |
544 | ||
8e220a91 | 545 | LegicCommonInit(); |
546 | ||
87342aad | 547 | uint32_t tag_type = setup_phase_reader(iv); |
faabfafe | 548 | |
c71c5ee1 | 549 | switch_off_tag_rwd(); |
ad5bc8cc | 550 | |
a2b1414f | 551 | switch(tag_type) { |
3e134b4c | 552 | case 0x0d: |
111c6934 | 553 | if ( MF_DBGLEVEL >= 2) DbpString("MIM22 card found, reading card"); |
3e134b4c | 554 | cmd_sz = 6; |
555 | card_sz = 22; | |
556 | break; | |
a2b1414f | 557 | case 0x1d: |
111c6934 | 558 | if ( MF_DBGLEVEL >= 2) DbpString("MIM256 card found, reading card"); |
3612a8a8 | 559 | cmd_sz = 9; |
a2b1414f | 560 | card_sz = 256; |
561 | break; | |
562 | case 0x3d: | |
111c6934 | 563 | if ( MF_DBGLEVEL >= 2) DbpString("MIM1024 card found, reading card"); |
3612a8a8 | 564 | cmd_sz = 11; |
a2b1414f | 565 | card_sz = 1024; |
566 | break; | |
567 | default: | |
111c6934 | 568 | if ( MF_DBGLEVEL >= 1) Dbprintf("Unknown card format: %x", tag_type); |
87342aad | 569 | isOK = 0; |
570 | goto OUT; | |
571 | break; | |
a2b1414f | 572 | } |
111c6934 | 573 | if (bytes == -1) |
a2b1414f | 574 | bytes = card_sz; |
edaf10af | 575 | |
111c6934 | 576 | if (bytes + offset >= card_sz) |
c71c5ee1 | 577 | bytes = card_sz - offset; |
a2b1414f | 578 | |
ad5bc8cc | 579 | // Start setup and read bytes. |
87342aad | 580 | setup_phase_reader(iv); |
581 | ||
3612a8a8 | 582 | LED_B_ON(); |
ad5bc8cc | 583 | while (byte_index < bytes) { |
111c6934 | 584 | int r = legic_read_byte(byte_index + offset, cmd_sz); |
ad5bc8cc | 585 | |
586 | if (r == -1 || BUTTON_PRESS()) { | |
faabfafe | 587 | if ( MF_DBGLEVEL >= 3) DbpString("operation aborted"); |
87342aad | 588 | isOK = 0; |
589 | goto OUT; | |
a2b1414f | 590 | } |
111c6934 | 591 | cardmem[++byte_index] = r; |
3612a8a8 | 592 | WDT_HIT(); |
2561caa2 | 593 | } |
c71c5ee1 | 594 | |
87342aad | 595 | OUT: |
faabfafe | 596 | WDT_HIT(); |
3612a8a8 | 597 | switch_off_tag_rwd(); |
c71c5ee1 | 598 | LEDsoff(); |
ad5bc8cc | 599 | uint8_t len = (bytes & 0x3FF); |
87342aad | 600 | cmd_send(CMD_ACK,isOK,len,0,cardmem,len); |
3612a8a8 | 601 | return 0; |
602 | } | |
603 | ||
cc708897 | 604 | /*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) { |
3e134b4c | 605 | int byte_index=0; |
606 | ||
607 | LED_B_ON(); | |
87342aad | 608 | setup_phase_reader(iv); |
3e134b4c | 609 | //legic_prng_forward(2); |
610 | while(byte_index < bytes) { | |
611 | int r; | |
612 | ||
613 | //check if the DCF should be changed | |
614 | if ( (offset == 0x05) && (bytes == 0x02) ) { | |
615 | //write DCF in reverse order (addr 0x06 before 0x05) | |
616 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); | |
617 | //legic_prng_forward(1); | |
618 | if(r == 0) { | |
619 | byte_index++; | |
620 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); | |
621 | } | |
622 | //legic_prng_forward(1); | |
623 | } | |
624 | else { | |
625 | r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue); | |
626 | } | |
627 | if((r != 0) || BUTTON_PRESS()) { | |
628 | Dbprintf("operation aborted @ 0x%03.3x", byte_index); | |
629 | switch_off_tag_rwd(); | |
630 | LED_B_OFF(); | |
631 | LED_C_OFF(); | |
632 | return -1; | |
633 | } | |
634 | ||
635 | WDT_HIT(); | |
636 | byte_index++; | |
637 | if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); | |
638 | } | |
639 | LED_B_OFF(); | |
640 | LED_C_OFF(); | |
641 | DbpString("write successful"); | |
642 | return 0; | |
643 | }*/ | |
644 | ||
cc708897 | 645 | void LegicRfWriter(int offset, int bytes, int iv) { |
646 | ||
ad5bc8cc | 647 | int byte_index = 0, addr_sz = 0; |
117d9ec2 | 648 | |
3612a8a8 | 649 | LegicCommonInit(); |
650 | ||
c71c5ee1 | 651 | if ( MF_DBGLEVEL >= 2) DbpString("setting up legic card"); |
652 | ||
87342aad | 653 | uint32_t tag_type = setup_phase_reader(iv); |
c71c5ee1 | 654 | |
8e220a91 | 655 | switch_off_tag_rwd(); |
c71c5ee1 | 656 | |
3612a8a8 | 657 | switch(tag_type) { |
3e134b4c | 658 | case 0x0d: |
659 | if(offset+bytes > 22) { | |
111c6934 | 660 | Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset + bytes); |
3e134b4c | 661 | return; |
662 | } | |
663 | addr_sz = 5; | |
111c6934 | 664 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset + bytes); |
3e134b4c | 665 | break; |
3612a8a8 | 666 | case 0x1d: |
667 | if(offset+bytes > 0x100) { | |
111c6934 | 668 | Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset + bytes); |
3612a8a8 | 669 | return; |
670 | } | |
671 | addr_sz = 8; | |
111c6934 | 672 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset + bytes); |
3612a8a8 | 673 | break; |
674 | case 0x3d: | |
675 | if(offset+bytes > 0x400) { | |
111c6934 | 676 | Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset + bytes); |
3612a8a8 | 677 | return; |
678 | } | |
679 | addr_sz = 10; | |
111c6934 | 680 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset, offset + bytes); |
3612a8a8 | 681 | break; |
682 | default: | |
683 | Dbprintf("No or unknown card found, aborting"); | |
684 | return; | |
685 | } | |
686 | ||
687 | LED_B_ON(); | |
87342aad | 688 | setup_phase_reader(iv); |
111c6934 | 689 | int r = 0; |
3612a8a8 | 690 | while(byte_index < bytes) { |
3e134b4c | 691 | |
692 | //check if the DCF should be changed | |
693 | if ( ((byte_index+offset) == 0x05) && (bytes >= 0x02) ) { | |
694 | //write DCF in reverse order (addr 0x06 before 0x05) | |
c71c5ee1 | 695 | r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), addr_sz); |
3e134b4c | 696 | |
697 | // write second byte on success... | |
698 | if(r == 0) { | |
699 | byte_index++; | |
c71c5ee1 | 700 | r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), addr_sz); |
3e134b4c | 701 | } |
702 | } | |
703 | else { | |
c71c5ee1 | 704 | r = legic_write_byte(cardmem[byte_index+offset], byte_index+offset, addr_sz); |
3e134b4c | 705 | } |
c71c5ee1 | 706 | |
111c6934 | 707 | if ((r != 0) || BUTTON_PRESS()) { |
3612a8a8 | 708 | Dbprintf("operation aborted @ 0x%03.3x", byte_index); |
709 | switch_off_tag_rwd(); | |
c71c5ee1 | 710 | LEDsoff(); |
3612a8a8 | 711 | return; |
712 | } | |
3e134b4c | 713 | |
714 | WDT_HIT(); | |
715 | byte_index++; | |
3e134b4c | 716 | } |
c71c5ee1 | 717 | LEDsoff(); |
718 | if ( MF_DBGLEVEL >= 1) DbpString("write successful"); | |
3e134b4c | 719 | } |
720 | ||
cc708897 | 721 | void LegicRfRawWriter(int address, int byte, int iv) { |
c71c5ee1 | 722 | |
723 | int byte_index = 0, addr_sz = 0; | |
3e134b4c | 724 | |
725 | LegicCommonInit(); | |
726 | ||
c71c5ee1 | 727 | if ( MF_DBGLEVEL >= 2) DbpString("setting up legic card"); |
728 | ||
87342aad | 729 | uint32_t tag_type = setup_phase_reader(iv); |
c71c5ee1 | 730 | |
3e134b4c | 731 | switch_off_tag_rwd(); |
c71c5ee1 | 732 | |
3e134b4c | 733 | switch(tag_type) { |
734 | case 0x0d: | |
cc708897 | 735 | if(address > 22) { |
736 | Dbprintf("Error: can not write to 0x%03.3x on MIM22", address); | |
3e134b4c | 737 | return; |
738 | } | |
739 | addr_sz = 5; | |
c71c5ee1 | 740 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte); |
3e134b4c | 741 | break; |
742 | case 0x1d: | |
cc708897 | 743 | if(address > 0x100) { |
744 | Dbprintf("Error: can not write to 0x%03.3x on MIM256", address); | |
3e134b4c | 745 | return; |
746 | } | |
747 | addr_sz = 8; | |
c71c5ee1 | 748 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte); |
3e134b4c | 749 | break; |
750 | case 0x3d: | |
cc708897 | 751 | if(address > 0x400) { |
752 | Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address); | |
3e134b4c | 753 | return; |
754 | } | |
755 | addr_sz = 10; | |
c71c5ee1 | 756 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address, byte); |
3e134b4c | 757 | break; |
758 | default: | |
759 | Dbprintf("No or unknown card found, aborting"); | |
760 | return; | |
761 | } | |
c71c5ee1 | 762 | |
cc708897 | 763 | Dbprintf("integer value: %d address: %d addr_sz: %d", byte, address, addr_sz); |
3e134b4c | 764 | LED_B_ON(); |
c71c5ee1 | 765 | |
87342aad | 766 | setup_phase_reader(iv); |
111c6934 | 767 | |
cc708897 | 768 | int r = legic_write_byte(byte, address, addr_sz); |
3e134b4c | 769 | |
770 | if((r != 0) || BUTTON_PRESS()) { | |
771 | Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index, r); | |
772 | switch_off_tag_rwd(); | |
c71c5ee1 | 773 | LEDsoff(); |
3e134b4c | 774 | return; |
3612a8a8 | 775 | } |
3612a8a8 | 776 | |
c71c5ee1 | 777 | LEDsoff(); |
778 | if ( MF_DBGLEVEL >= 1) DbpString("write successful"); | |
779 | } | |
3612a8a8 | 780 | |
3e750be3 | 781 | void LegicRfInfo(void){ |
782 | ||
783 | LegicCommonInit(); | |
784 | uint32_t tag_type = setup_phase_reader(0x55); | |
785 | uint8_t cmd_sz = 0; | |
786 | uint16_t card_sz = 0; | |
787 | ||
788 | switch(tag_type) { | |
789 | case 0x0d: | |
790 | cmd_sz = 6; | |
791 | card_sz = 22; | |
792 | break; | |
793 | case 0x1d: | |
794 | cmd_sz = 9; | |
795 | card_sz = 256; | |
796 | break; | |
797 | case 0x3d: | |
798 | cmd_sz = 11; | |
799 | card_sz = 1024; | |
800 | break; | |
801 | default: | |
802 | cmd_send(CMD_ACK,0,0,0,0,0); | |
803 | goto OUT; | |
804 | } | |
805 | ||
806 | // read UID bytes. | |
807 | uint8_t uid[] = {0,0,0,0}; | |
808 | for ( uint8_t i = 0; i < sizeof(uid); ++i) { | |
809 | int r = legic_read_byte(i, cmd_sz); | |
810 | if ( r == -1 ) { | |
811 | cmd_send(CMD_ACK,0,0,0,0,0); | |
812 | goto OUT; | |
813 | } | |
814 | uid[i] = r & 0xFF; | |
815 | } | |
816 | ||
817 | cmd_send(CMD_ACK,1,card_sz,0,uid,sizeof(uid)); | |
818 | out: | |
819 | switch_off_tag_rwd(); | |
820 | LEDsoff(); | |
821 | ||
822 | } | |
823 | ||
c71c5ee1 | 824 | /* Handle (whether to respond) a frame in tag mode |
825 | * Only called when simulating a tag. | |
826 | */ | |
3612a8a8 | 827 | static void frame_handle_tag(struct legic_frame const * const f) |
828 | { | |
117d9ec2 | 829 | uint8_t *BigBuf = BigBuf_get_addr(); |
830 | ||
3612a8a8 | 831 | /* First Part of Handshake (IV) */ |
832 | if(f->bits == 7) { | |
c71c5ee1 | 833 | |
3612a8a8 | 834 | LED_C_ON(); |
c71c5ee1 | 835 | |
ad5bc8cc | 836 | // Reset prng timer |
22f4dca8 | 837 | ResetTimer(prng_timer); |
c71c5ee1 | 838 | |
3612a8a8 | 839 | legic_prng_init(f->data); |
ad5bc8cc | 840 | frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1B */ |
3612a8a8 | 841 | legic_state = STATE_IV; |
842 | legic_read_count = 0; | |
843 | legic_prng_bc = 0; | |
844 | legic_prng_iv = f->data; | |
845 | ||
111c6934 | 846 | |
22f4dca8 | 847 | ResetTimer(timer); |
848 | WaitUS(280); | |
3612a8a8 | 849 | return; |
3612a8a8 | 850 | } |
851 | ||
852 | /* 0x19==??? */ | |
853 | if(legic_state == STATE_IV) { | |
cc708897 | 854 | int local_key = get_key_stream(3, 6); |
855 | int xored = 0x39 ^ local_key; | |
856 | if((f->bits == 6) && (f->data == xored)) { | |
3612a8a8 | 857 | legic_state = STATE_CON; |
858 | ||
22f4dca8 | 859 | ResetTimer(timer); |
860 | WaitUS(200); | |
3612a8a8 | 861 | return; |
111c6934 | 862 | |
863 | } else { | |
3612a8a8 | 864 | legic_state = STATE_DISCON; |
865 | LED_C_OFF(); | |
cc708897 | 866 | Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored); |
3612a8a8 | 867 | return; |
868 | } | |
869 | } | |
870 | ||
871 | /* Read */ | |
872 | if(f->bits == 11) { | |
873 | if(legic_state == STATE_CON) { | |
cc708897 | 874 | int key = get_key_stream(2, 11); //legic_phase_drift, 11); |
3612a8a8 | 875 | int addr = f->data ^ key; addr = addr >> 1; |
117d9ec2 | 876 | int data = BigBuf[addr]; |
111c6934 | 877 | int hash = legic4Crc(LEGIC_READ, addr, data, 11) << 8; |
117d9ec2 | 878 | BigBuf[OFFSET_LOG+legic_read_count] = (uint8_t)addr; |
3612a8a8 | 879 | legic_read_count++; |
880 | ||
881 | //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c); | |
882 | legic_prng_forward(legic_reqresp_drift); | |
883 | ||
884 | frame_send_tag(hash | data, 12, 1); | |
885 | ||
22f4dca8 | 886 | ResetTimer(timer); |
cc708897 | 887 | legic_prng_forward(2); |
22f4dca8 | 888 | WaitUS(180); |
3612a8a8 | 889 | return; |
890 | } | |
891 | } | |
892 | ||
893 | /* Write */ | |
894 | if(f->bits == 23) { | |
895 | int key = get_key_stream(-1, 23); //legic_frame_drift, 23); | |
896 | int addr = f->data ^ key; addr = addr >> 1; addr = addr & 0x3ff; | |
897 | int data = f->data ^ key; data = data >> 11; data = data & 0xff; | |
898 | ||
899 | /* write command */ | |
900 | legic_state = STATE_DISCON; | |
901 | LED_C_OFF(); | |
902 | Dbprintf("write - addr: %x, data: %x", addr, data); | |
903 | return; | |
904 | } | |
905 | ||
906 | if(legic_state != STATE_DISCON) { | |
907 | Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count); | |
908 | int i; | |
909 | Dbprintf("IV: %03.3x", legic_prng_iv); | |
910 | for(i = 0; i<legic_read_count; i++) { | |
117d9ec2 | 911 | Dbprintf("Read Nb: %u, Addr: %u", i, BigBuf[OFFSET_LOG+i]); |
3612a8a8 | 912 | } |
913 | ||
914 | for(i = -1; i<legic_read_count; i++) { | |
915 | uint32_t t; | |
117d9ec2 | 916 | t = BigBuf[OFFSET_LOG+256+i*4]; |
917 | t |= BigBuf[OFFSET_LOG+256+i*4+1] << 8; | |
918 | t |= BigBuf[OFFSET_LOG+256+i*4+2] <<16; | |
919 | t |= BigBuf[OFFSET_LOG+256+i*4+3] <<24; | |
3612a8a8 | 920 | |
921 | Dbprintf("Cycles: %u, Frame Length: %u, Time: %u", | |
117d9ec2 | 922 | BigBuf[OFFSET_LOG+128+i], |
923 | BigBuf[OFFSET_LOG+384+i], | |
3612a8a8 | 924 | t); |
925 | } | |
926 | } | |
927 | legic_state = STATE_DISCON; | |
928 | legic_read_count = 0; | |
929 | SpinDelay(10); | |
930 | LED_C_OFF(); | |
931 | return; | |
932 | } | |
933 | ||
934 | /* Read bit by bit untill full frame is received | |
935 | * Call to process frame end answer | |
936 | */ | |
c71c5ee1 | 937 | static void emit(int bit) { |
938 | ||
939 | switch (bit) { | |
940 | case 1: | |
941 | frame_append_bit(¤t_frame, 1); | |
942 | break; | |
943 | case 0: | |
944 | frame_append_bit(¤t_frame, 0); | |
945 | break; | |
946 | default: | |
947 | if(current_frame.bits <= 4) { | |
948 | frame_clean(¤t_frame); | |
949 | } else { | |
950 | frame_handle_tag(¤t_frame); | |
951 | frame_clean(¤t_frame); | |
952 | } | |
953 | WDT_HIT(); | |
954 | break; | |
955 | } | |
3612a8a8 | 956 | } |
957 | ||
958 | void LegicRfSimulate(int phase, int frame, int reqresp) | |
959 | { | |
960 | /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode, | |
961 | * modulation mode set to 212kHz subcarrier. We are getting the incoming raw | |
962 | * envelope waveform on DIN and should send our response on DOUT. | |
963 | * | |
964 | * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll | |
965 | * measure the time between two rising edges on DIN, and no encoding on the | |
966 | * subcarrier from card to reader, so we'll just shift out our verbatim data | |
967 | * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear, | |
968 | * seems to be 300us-ish. | |
969 | */ | |
970 | ||
c71c5ee1 | 971 | legic_phase_drift = phase; |
972 | legic_frame_drift = frame; | |
973 | legic_reqresp_drift = reqresp; | |
974 | ||
975 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
976 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
977 | FpgaSetupSsc(); | |
978 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K); | |
979 | ||
980 | /* Bitbang the receiver */ | |
981 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; | |
982 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
983 | ||
ad5bc8cc | 984 | //setup_timer(); |
c71c5ee1 | 985 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
986 | ||
987 | int old_level = 0; | |
988 | int active = 0; | |
989 | legic_state = STATE_DISCON; | |
990 | ||
991 | LED_B_ON(); | |
992 | DbpString("Starting Legic emulator, press button to end"); | |
3612a8a8 | 993 | |
c71c5ee1 | 994 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
995 | int level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); | |
996 | int time = timer->TC_CV; | |
997 | ||
998 | if(level != old_level) { | |
999 | if(level == 1) { | |
1000 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
1001 | ||
1002 | if (FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) { | |
1003 | /* 1 bit */ | |
1004 | emit(1); | |
1005 | active = 1; | |
1006 | LED_A_ON(); | |
1007 | } else if (FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) { | |
1008 | /* 0 bit */ | |
1009 | emit(0); | |
1010 | active = 1; | |
1011 | LED_A_ON(); | |
1012 | } else if (active) { | |
1013 | /* invalid */ | |
1014 | emit(-1); | |
1015 | active = 0; | |
1016 | LED_A_OFF(); | |
1017 | } | |
1018 | } | |
1019 | } | |
3612a8a8 | 1020 | |
c71c5ee1 | 1021 | /* Frame end */ |
1022 | if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) { | |
1023 | emit(-1); | |
1024 | active = 0; | |
1025 | LED_A_OFF(); | |
1026 | } | |
a2b1414f | 1027 | |
c71c5ee1 | 1028 | if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) { |
1029 | timer->TC_CCR = AT91C_TC_CLKDIS; | |
1030 | } | |
1031 | ||
1032 | old_level = level; | |
1033 | WDT_HIT(); | |
1034 | } | |
1035 | if ( MF_DBGLEVEL >= 1) DbpString("Stopped"); | |
1036 | LEDsoff(); | |
1037 | } | |
3e134b4c | 1038 | |
3e134b4c | 1039 | //----------------------------------------------------------------------------- |
1040 | // Code up a string of octets at layer 2 (including CRC, we don't generate | |
1041 | // that here) so that they can be transmitted to the reader. Doesn't transmit | |
1042 | // them yet, just leaves them ready to send in ToSend[]. | |
1043 | //----------------------------------------------------------------------------- | |
1044 | // static void CodeLegicAsTag(const uint8_t *cmd, int len) | |
1045 | // { | |
1046 | // int i; | |
1047 | ||
1048 | // ToSendReset(); | |
1049 | ||
1050 | // // Transmit a burst of ones, as the initial thing that lets the | |
1051 | // // reader get phase sync. This (TR1) must be > 80/fs, per spec, | |
1052 | // // but tag that I've tried (a Paypass) exceeds that by a fair bit, | |
1053 | // // so I will too. | |
1054 | // for(i = 0; i < 20; i++) { | |
1055 | // ToSendStuffBit(1); | |
1056 | // ToSendStuffBit(1); | |
1057 | // ToSendStuffBit(1); | |
1058 | // ToSendStuffBit(1); | |
1059 | // } | |
1060 | ||
1061 | // // Send SOF. | |
1062 | // for(i = 0; i < 10; i++) { | |
1063 | // ToSendStuffBit(0); | |
1064 | // ToSendStuffBit(0); | |
1065 | // ToSendStuffBit(0); | |
1066 | // ToSendStuffBit(0); | |
1067 | // } | |
1068 | // for(i = 0; i < 2; i++) { | |
1069 | // ToSendStuffBit(1); | |
1070 | // ToSendStuffBit(1); | |
1071 | // ToSendStuffBit(1); | |
1072 | // ToSendStuffBit(1); | |
1073 | // } | |
1074 | ||
1075 | // for(i = 0; i < len; i++) { | |
1076 | // int j; | |
1077 | // uint8_t b = cmd[i]; | |
1078 | ||
1079 | // // Start bit | |
1080 | // ToSendStuffBit(0); | |
1081 | // ToSendStuffBit(0); | |
1082 | // ToSendStuffBit(0); | |
1083 | // ToSendStuffBit(0); | |
1084 | ||
1085 | // // Data bits | |
1086 | // for(j = 0; j < 8; j++) { | |
1087 | // if(b & 1) { | |
1088 | // ToSendStuffBit(1); | |
1089 | // ToSendStuffBit(1); | |
1090 | // ToSendStuffBit(1); | |
1091 | // ToSendStuffBit(1); | |
1092 | // } else { | |
1093 | // ToSendStuffBit(0); | |
1094 | // ToSendStuffBit(0); | |
1095 | // ToSendStuffBit(0); | |
1096 | // ToSendStuffBit(0); | |
1097 | // } | |
1098 | // b >>= 1; | |
1099 | // } | |
1100 | ||
1101 | // // Stop bit | |
1102 | // ToSendStuffBit(1); | |
1103 | // ToSendStuffBit(1); | |
1104 | // ToSendStuffBit(1); | |
1105 | // ToSendStuffBit(1); | |
1106 | // } | |
1107 | ||
1108 | // // Send EOF. | |
1109 | // for(i = 0; i < 10; i++) { | |
1110 | // ToSendStuffBit(0); | |
1111 | // ToSendStuffBit(0); | |
1112 | // ToSendStuffBit(0); | |
1113 | // ToSendStuffBit(0); | |
1114 | // } | |
1115 | // for(i = 0; i < 2; i++) { | |
1116 | // ToSendStuffBit(1); | |
1117 | // ToSendStuffBit(1); | |
1118 | // ToSendStuffBit(1); | |
1119 | // ToSendStuffBit(1); | |
1120 | // } | |
1121 | ||
1122 | // // Convert from last byte pos to length | |
1123 | // ToSendMax++; | |
1124 | // } | |
1125 | ||
1126 | //----------------------------------------------------------------------------- | |
1127 | // The software UART that receives commands from the reader, and its state | |
1128 | // variables. | |
1129 | //----------------------------------------------------------------------------- | |
1130 | static struct { | |
1131 | enum { | |
1132 | STATE_UNSYNCD, | |
1133 | STATE_GOT_FALLING_EDGE_OF_SOF, | |
1134 | STATE_AWAITING_START_BIT, | |
1135 | STATE_RECEIVING_DATA | |
1136 | } state; | |
1137 | uint16_t shiftReg; | |
1138 | int bitCnt; | |
1139 | int byteCnt; | |
1140 | int byteCntMax; | |
1141 | int posCnt; | |
1142 | uint8_t *output; | |
1143 | } Uart; | |
1144 | ||
1145 | /* Receive & handle a bit coming from the reader. | |
1146 | * | |
1147 | * This function is called 4 times per bit (every 2 subcarrier cycles). | |
1148 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us | |
1149 | * | |
1150 | * LED handling: | |
1151 | * LED A -> ON once we have received the SOF and are expecting the rest. | |
1152 | * LED A -> OFF once we have received EOF or are in error state or unsynced | |
1153 | * | |
1154 | * Returns: true if we received a EOF | |
1155 | * false if we are still waiting for some more | |
1156 | */ | |
1157 | // static RAMFUNC int HandleLegicUartBit(uint8_t bit) | |
1158 | // { | |
1159 | // switch(Uart.state) { | |
1160 | // case STATE_UNSYNCD: | |
1161 | // if(!bit) { | |
1162 | // // we went low, so this could be the beginning of an SOF | |
1163 | // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; | |
1164 | // Uart.posCnt = 0; | |
1165 | // Uart.bitCnt = 0; | |
1166 | // } | |
1167 | // break; | |
1168 | ||
1169 | // case STATE_GOT_FALLING_EDGE_OF_SOF: | |
1170 | // Uart.posCnt++; | |
1171 | // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit | |
1172 | // if(bit) { | |
1173 | // if(Uart.bitCnt > 9) { | |
1174 | // // we've seen enough consecutive | |
1175 | // // zeros that it's a valid SOF | |
1176 | // Uart.posCnt = 0; | |
1177 | // Uart.byteCnt = 0; | |
1178 | // Uart.state = STATE_AWAITING_START_BIT; | |
1179 | // LED_A_ON(); // Indicate we got a valid SOF | |
1180 | // } else { | |
1181 | // // didn't stay down long enough | |
1182 | // // before going high, error | |
1183 | // Uart.state = STATE_UNSYNCD; | |
1184 | // } | |
1185 | // } else { | |
1186 | // // do nothing, keep waiting | |
1187 | // } | |
1188 | // Uart.bitCnt++; | |
1189 | // } | |
1190 | // if(Uart.posCnt >= 4) Uart.posCnt = 0; | |
1191 | // if(Uart.bitCnt > 12) { | |
1192 | // // Give up if we see too many zeros without | |
1193 | // // a one, too. | |
1194 | // LED_A_OFF(); | |
1195 | // Uart.state = STATE_UNSYNCD; | |
1196 | // } | |
1197 | // break; | |
1198 | ||
1199 | // case STATE_AWAITING_START_BIT: | |
1200 | // Uart.posCnt++; | |
1201 | // if(bit) { | |
1202 | // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs | |
1203 | // // stayed high for too long between | |
1204 | // // characters, error | |
1205 | // Uart.state = STATE_UNSYNCD; | |
1206 | // } | |
1207 | // } else { | |
1208 | // // falling edge, this starts the data byte | |
1209 | // Uart.posCnt = 0; | |
1210 | // Uart.bitCnt = 0; | |
1211 | // Uart.shiftReg = 0; | |
1212 | // Uart.state = STATE_RECEIVING_DATA; | |
1213 | // } | |
1214 | // break; | |
1215 | ||
1216 | // case STATE_RECEIVING_DATA: | |
1217 | // Uart.posCnt++; | |
1218 | // if(Uart.posCnt == 2) { | |
1219 | // // time to sample a bit | |
1220 | // Uart.shiftReg >>= 1; | |
1221 | // if(bit) { | |
1222 | // Uart.shiftReg |= 0x200; | |
1223 | // } | |
1224 | // Uart.bitCnt++; | |
1225 | // } | |
1226 | // if(Uart.posCnt >= 4) { | |
1227 | // Uart.posCnt = 0; | |
1228 | // } | |
1229 | // if(Uart.bitCnt == 10) { | |
1230 | // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) | |
1231 | // { | |
1232 | // // this is a data byte, with correct | |
1233 | // // start and stop bits | |
1234 | // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; | |
1235 | // Uart.byteCnt++; | |
1236 | ||
1237 | // if(Uart.byteCnt >= Uart.byteCntMax) { | |
1238 | // // Buffer overflowed, give up | |
1239 | // LED_A_OFF(); | |
1240 | // Uart.state = STATE_UNSYNCD; | |
1241 | // } else { | |
1242 | // // so get the next byte now | |
1243 | // Uart.posCnt = 0; | |
1244 | // Uart.state = STATE_AWAITING_START_BIT; | |
1245 | // } | |
1246 | // } else if (Uart.shiftReg == 0x000) { | |
1247 | // // this is an EOF byte | |
1248 | // LED_A_OFF(); // Finished receiving | |
1249 | // Uart.state = STATE_UNSYNCD; | |
1250 | // if (Uart.byteCnt != 0) { | |
1251 | // return TRUE; | |
1252 | // } | |
1253 | // } else { | |
1254 | // // this is an error | |
1255 | // LED_A_OFF(); | |
1256 | // Uart.state = STATE_UNSYNCD; | |
1257 | // } | |
1258 | // } | |
1259 | // break; | |
1260 | ||
1261 | // default: | |
1262 | // LED_A_OFF(); | |
1263 | // Uart.state = STATE_UNSYNCD; | |
1264 | // break; | |
1265 | // } | |
1266 | ||
1267 | // return FALSE; | |
1268 | // } | |
1269 | ||
1270 | ||
f7b42573 | 1271 | static void UartReset() { |
1272 | Uart.byteCntMax = 3; | |
3e134b4c | 1273 | Uart.state = STATE_UNSYNCD; |
1274 | Uart.byteCnt = 0; | |
1275 | Uart.bitCnt = 0; | |
1276 | Uart.posCnt = 0; | |
f7b42573 | 1277 | memset(Uart.output, 0x00, 3); |
3e134b4c | 1278 | } |
1279 | ||
f7b42573 | 1280 | // static void UartInit(uint8_t *data) { |
3e134b4c | 1281 | // Uart.output = data; |
1282 | // UartReset(); | |
1283 | // } | |
1284 | ||
1285 | //============================================================================= | |
1286 | // An LEGIC reader. We take layer two commands, code them | |
1287 | // appropriately, and then send them to the tag. We then listen for the | |
1288 | // tag's response, which we leave in the buffer to be demodulated on the | |
1289 | // PC side. | |
1290 | //============================================================================= | |
1291 | ||
1292 | static struct { | |
1293 | enum { | |
1294 | DEMOD_UNSYNCD, | |
1295 | DEMOD_PHASE_REF_TRAINING, | |
1296 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, | |
1297 | DEMOD_GOT_FALLING_EDGE_OF_SOF, | |
1298 | DEMOD_AWAITING_START_BIT, | |
1299 | DEMOD_RECEIVING_DATA | |
1300 | } state; | |
1301 | int bitCount; | |
1302 | int posCount; | |
1303 | int thisBit; | |
1304 | uint16_t shiftReg; | |
1305 | uint8_t *output; | |
1306 | int len; | |
1307 | int sumI; | |
1308 | int sumQ; | |
1309 | } Demod; | |
1310 | ||
1311 | /* | |
1312 | * Handles reception of a bit from the tag | |
1313 | * | |
1314 | * This function is called 2 times per bit (every 4 subcarrier cycles). | |
1315 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us | |
1316 | * | |
1317 | * LED handling: | |
1318 | * LED C -> ON once we have received the SOF and are expecting the rest. | |
1319 | * LED C -> OFF once we have received EOF or are unsynced | |
1320 | * | |
1321 | * Returns: true if we received a EOF | |
1322 | * false if we are still waiting for some more | |
1323 | * | |
1324 | */ | |
1325 | ||
1326 | #ifndef SUBCARRIER_DETECT_THRESHOLD | |
1327 | # define SUBCARRIER_DETECT_THRESHOLD 8 | |
1328 | #endif | |
1329 | ||
1330 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) | |
1331 | #ifndef CHECK_FOR_SUBCARRIER | |
1332 | # define CHECK_FOR_SUBCARRIER() { v = MAX(ai, aq) + MIN(halfci, halfcq); } | |
1333 | #endif | |
1334 | ||
1335 | // The soft decision on the bit uses an estimate of just the | |
1336 | // quadrant of the reference angle, not the exact angle. | |
1337 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) | |
1338 | #define MAKE_SOFT_DECISION() { \ | |
1339 | if(Demod.sumI > 0) \ | |
1340 | v = ci; \ | |
1341 | else \ | |
1342 | v = -ci; \ | |
1343 | \ | |
1344 | if(Demod.sumQ > 0) \ | |
1345 | v += cq; \ | |
1346 | else \ | |
1347 | v -= cq; \ | |
1348 | \ | |
1349 | } | |
1350 | ||
1351 | static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq) | |
1352 | { | |
1353 | int v = 0; | |
1354 | int ai = ABS(ci); | |
1355 | int aq = ABS(cq); | |
1356 | int halfci = (ai >> 1); | |
1357 | int halfcq = (aq >> 1); | |
1358 | ||
1359 | switch(Demod.state) { | |
1360 | case DEMOD_UNSYNCD: | |
1361 | ||
1362 | CHECK_FOR_SUBCARRIER() | |
1363 | ||
1364 | if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected | |
1365 | Demod.state = DEMOD_PHASE_REF_TRAINING; | |
1366 | Demod.sumI = ci; | |
1367 | Demod.sumQ = cq; | |
1368 | Demod.posCount = 1; | |
1369 | } | |
1370 | break; | |
1371 | ||
1372 | case DEMOD_PHASE_REF_TRAINING: | |
1373 | if(Demod.posCount < 8) { | |
1374 | ||
1375 | CHECK_FOR_SUBCARRIER() | |
1376 | ||
1377 | if (v > SUBCARRIER_DETECT_THRESHOLD) { | |
1378 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. | |
1379 | // note: synchronization time > 80 1/fs | |
1380 | Demod.sumI += ci; | |
1381 | Demod.sumQ += cq; | |
1382 | ++Demod.posCount; | |
1383 | } else { | |
1384 | // subcarrier lost | |
1385 | Demod.state = DEMOD_UNSYNCD; | |
1386 | } | |
1387 | } else { | |
1388 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; | |
1389 | } | |
1390 | break; | |
1391 | ||
1392 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: | |
1393 | ||
1394 | MAKE_SOFT_DECISION() | |
1395 | ||
1396 | //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq ); | |
1397 | // logic '0' detected | |
1398 | if (v <= 0) { | |
1399 | ||
1400 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; | |
1401 | ||
1402 | // start of SOF sequence | |
1403 | Demod.posCount = 0; | |
1404 | } else { | |
1405 | // maximum length of TR1 = 200 1/fs | |
1406 | if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD; | |
1407 | } | |
1408 | ++Demod.posCount; | |
1409 | break; | |
1410 | ||
1411 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: | |
1412 | ++Demod.posCount; | |
1413 | ||
1414 | MAKE_SOFT_DECISION() | |
1415 | ||
1416 | if(v > 0) { | |
1417 | // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges | |
1418 | if(Demod.posCount < 10*2) { | |
1419 | Demod.state = DEMOD_UNSYNCD; | |
1420 | } else { | |
1421 | LED_C_ON(); // Got SOF | |
1422 | Demod.state = DEMOD_AWAITING_START_BIT; | |
1423 | Demod.posCount = 0; | |
1424 | Demod.len = 0; | |
1425 | } | |
1426 | } else { | |
1427 | // low phase of SOF too long (> 12 etu) | |
1428 | if(Demod.posCount > 13*2) { | |
1429 | Demod.state = DEMOD_UNSYNCD; | |
1430 | LED_C_OFF(); | |
1431 | } | |
1432 | } | |
1433 | break; | |
1434 | ||
1435 | case DEMOD_AWAITING_START_BIT: | |
1436 | ++Demod.posCount; | |
1437 | ||
1438 | MAKE_SOFT_DECISION() | |
1439 | ||
1440 | if(v > 0) { | |
1441 | // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs | |
1442 | if(Demod.posCount > 3*2) { | |
1443 | Demod.state = DEMOD_UNSYNCD; | |
1444 | LED_C_OFF(); | |
1445 | } | |
1446 | } else { | |
1447 | // start bit detected | |
1448 | Demod.bitCount = 0; | |
1449 | Demod.posCount = 1; // this was the first half | |
1450 | Demod.thisBit = v; | |
1451 | Demod.shiftReg = 0; | |
1452 | Demod.state = DEMOD_RECEIVING_DATA; | |
1453 | } | |
1454 | break; | |
1455 | ||
1456 | case DEMOD_RECEIVING_DATA: | |
1457 | ||
1458 | MAKE_SOFT_DECISION() | |
1459 | ||
1460 | if(Demod.posCount == 0) { | |
1461 | // first half of bit | |
1462 | Demod.thisBit = v; | |
1463 | Demod.posCount = 1; | |
1464 | } else { | |
1465 | // second half of bit | |
1466 | Demod.thisBit += v; | |
1467 | Demod.shiftReg >>= 1; | |
1468 | // logic '1' | |
1469 | if(Demod.thisBit > 0) | |
1470 | Demod.shiftReg |= 0x200; | |
1471 | ||
1472 | ++Demod.bitCount; | |
1473 | ||
1474 | if(Demod.bitCount == 10) { | |
1475 | ||
1476 | uint16_t s = Demod.shiftReg; | |
1477 | ||
1478 | if((s & 0x200) && !(s & 0x001)) { | |
1479 | // stop bit == '1', start bit == '0' | |
1480 | uint8_t b = (s >> 1); | |
1481 | Demod.output[Demod.len] = b; | |
1482 | ++Demod.len; | |
1483 | Demod.state = DEMOD_AWAITING_START_BIT; | |
1484 | } else { | |
1485 | Demod.state = DEMOD_UNSYNCD; | |
1486 | LED_C_OFF(); | |
1487 | ||
1488 | if(s == 0x000) { | |
1489 | // This is EOF (start, stop and all data bits == '0' | |
1490 | return TRUE; | |
1491 | } | |
1492 | } | |
1493 | } | |
1494 | Demod.posCount = 0; | |
1495 | } | |
1496 | break; | |
1497 | ||
1498 | default: | |
1499 | Demod.state = DEMOD_UNSYNCD; | |
1500 | LED_C_OFF(); | |
1501 | break; | |
1502 | } | |
1503 | return FALSE; | |
1504 | } | |
1505 | ||
1506 | // Clear out the state of the "UART" that receives from the tag. | |
1507 | static void DemodReset() { | |
1508 | Demod.len = 0; | |
1509 | Demod.state = DEMOD_UNSYNCD; | |
1510 | Demod.posCount = 0; | |
1511 | Demod.sumI = 0; | |
1512 | Demod.sumQ = 0; | |
1513 | Demod.bitCount = 0; | |
1514 | Demod.thisBit = 0; | |
1515 | Demod.shiftReg = 0; | |
f7b42573 | 1516 | memset(Demod.output, 0x00, 3); |
3e134b4c | 1517 | } |
1518 | ||
1519 | static void DemodInit(uint8_t *data) { | |
1520 | Demod.output = data; | |
1521 | DemodReset(); | |
1522 | } | |
1523 | ||
1524 | /* | |
1525 | * Demodulate the samples we received from the tag, also log to tracebuffer | |
1526 | * quiet: set to 'TRUE' to disable debug output | |
1527 | */ | |
1528 | #define LEGIC_DMA_BUFFER_SIZE 256 | |
1529 | static void GetSamplesForLegicDemod(int n, bool quiet) | |
1530 | { | |
1531 | int max = 0; | |
1532 | bool gotFrame = FALSE; | |
1533 | int lastRxCounter = LEGIC_DMA_BUFFER_SIZE; | |
1534 | int ci, cq, samples = 0; | |
1535 | ||
1536 | BigBuf_free(); | |
1537 | ||
1538 | // And put the FPGA in the appropriate mode | |
1539 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ); | |
1540 | ||
1541 | // The response (tag -> reader) that we're receiving. | |
1542 | // Set up the demodulator for tag -> reader responses. | |
1543 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1544 | ||
1545 | // The DMA buffer, used to stream samples from the FPGA | |
1546 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE); | |
1547 | int8_t *upTo = dmaBuf; | |
1548 | ||
1549 | // Setup and start DMA. | |
1550 | if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){ | |
1551 | if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); | |
1552 | return; | |
1553 | } | |
1554 | ||
1555 | // Signal field is ON with the appropriate LED: | |
1556 | LED_D_ON(); | |
1557 | for(;;) { | |
1558 | int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; | |
1559 | if(behindBy > max) max = behindBy; | |
1560 | ||
1561 | while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) { | |
1562 | ci = upTo[0]; | |
1563 | cq = upTo[1]; | |
1564 | upTo += 2; | |
1565 | if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) { | |
1566 | upTo = dmaBuf; | |
1567 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
1568 | AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE; | |
1569 | } | |
1570 | lastRxCounter -= 2; | |
1571 | if(lastRxCounter <= 0) | |
1572 | lastRxCounter = LEGIC_DMA_BUFFER_SIZE; | |
1573 | ||
1574 | samples += 2; | |
1575 | ||
1576 | gotFrame = HandleLegicSamplesDemod(ci , cq ); | |
1577 | if ( gotFrame ) | |
1578 | break; | |
1579 | } | |
1580 | ||
1581 | if(samples > n || gotFrame) | |
1582 | break; | |
1583 | } | |
1584 | ||
1585 | FpgaDisableSscDma(); | |
1586 | ||
1587 | if (!quiet && Demod.len == 0) { | |
1588 | Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", | |
1589 | max, | |
1590 | samples, | |
1591 | gotFrame, | |
1592 | Demod.len, | |
1593 | Demod.sumI, | |
1594 | Demod.sumQ | |
1595 | ); | |
1596 | } | |
1597 | ||
1598 | //Tracing | |
1599 | if (Demod.len > 0) { | |
1600 | uint8_t parity[MAX_PARITY_SIZE] = {0x00}; | |
1601 | LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE); | |
1602 | } | |
1603 | } | |
1604 | //----------------------------------------------------------------------------- | |
1605 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1606 | //----------------------------------------------------------------------------- | |
1607 | static void TransmitForLegic(void) | |
1608 | { | |
1609 | int c; | |
1610 | ||
1611 | FpgaSetupSsc(); | |
1612 | ||
1613 | while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) | |
1614 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
1615 | ||
1616 | // Signal field is ON with the appropriate Red LED | |
1617 | LED_D_ON(); | |
1618 | ||
1619 | // Signal we are transmitting with the Green LED | |
1620 | LED_B_ON(); | |
1621 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
1622 | ||
1623 | for(c = 0; c < 10;) { | |
1624 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1625 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
1626 | c++; | |
1627 | } | |
1628 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1629 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1630 | (void)r; | |
1631 | } | |
1632 | WDT_HIT(); | |
1633 | } | |
1634 | ||
1635 | c = 0; | |
1636 | for(;;) { | |
1637 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1638 | AT91C_BASE_SSC->SSC_THR = ToSend[c]; | |
1639 | legic_prng_forward(1); // forward the lfsr | |
1640 | c++; | |
1641 | if(c >= ToSendMax) { | |
1642 | break; | |
1643 | } | |
1644 | } | |
1645 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1646 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1647 | (void)r; | |
1648 | } | |
1649 | WDT_HIT(); | |
1650 | } | |
1651 | LED_B_OFF(); | |
1652 | } | |
1653 | ||
1654 | ||
1655 | //----------------------------------------------------------------------------- | |
1656 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], | |
1657 | // so that it is ready to transmit to the tag using TransmitForLegic(). | |
1658 | //----------------------------------------------------------------------------- | |
bf2cd644 | 1659 | static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) |
3e134b4c | 1660 | { |
1661 | int i, j; | |
1662 | uint8_t b; | |
1663 | ||
1664 | ToSendReset(); | |
1665 | ||
1666 | // Send SOF | |
bf2cd644 | 1667 | for(i = 0; i < 7; i++) |
3e134b4c | 1668 | ToSendStuffBit(1); |
3e134b4c | 1669 | |
bf2cd644 | 1670 | |
1671 | for(i = 0; i < cmdlen; i++) { | |
3e134b4c | 1672 | // Start bit |
1673 | ToSendStuffBit(0); | |
1674 | ||
1675 | // Data bits | |
1676 | b = cmd[i]; | |
bf2cd644 | 1677 | for(j = 0; j < bits; j++) { |
3e134b4c | 1678 | if(b & 1) { |
1679 | ToSendStuffBit(1); | |
1680 | } else { | |
1681 | ToSendStuffBit(0); | |
1682 | } | |
1683 | b >>= 1; | |
1684 | } | |
1685 | } | |
1686 | ||
1687 | // Convert from last character reference to length | |
1688 | ++ToSendMax; | |
1689 | } | |
1690 | ||
1691 | /** | |
1692 | Convenience function to encode, transmit and trace Legic comms | |
1693 | **/ | |
bf2cd644 | 1694 | static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) |
3e134b4c | 1695 | { |
bf2cd644 | 1696 | CodeLegicBitsAsReader(cmd, cmdlen, bits); |
3e134b4c | 1697 | TransmitForLegic(); |
1698 | if (tracing) { | |
1699 | uint8_t parity[1] = {0x00}; | |
3e82f956 | 1700 | LogTrace(cmd, cmdlen, 0, 0, parity, TRUE); |
3e134b4c | 1701 | } |
1702 | } | |
1703 | ||
3e134b4c | 1704 | |
1705 | // Set up LEGIC communication | |
1706 | void ice_legic_setup() { | |
1707 | ||
1708 | // standard things. | |
1709 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1710 | BigBuf_free(); BigBuf_Clear_ext(false); | |
1711 | clear_trace(); | |
1712 | set_tracing(TRUE); | |
1713 | DemodReset(); | |
1714 | UartReset(); | |
1715 | ||
1716 | // Set up the synchronous serial port | |
1717 | FpgaSetupSsc(); | |
1718 | ||
1719 | // connect Demodulated Signal to ADC: | |
1720 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1721 | ||
1722 | // Signal field is on with the appropriate LED | |
1723 | LED_D_ON(); | |
1724 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
f7b42573 | 1725 | SpinDelay(20); |
3e134b4c | 1726 | // Start the timer |
1727 | //StartCountSspClk(); | |
1728 | ||
1729 | // initalize CRC | |
1730 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); | |
1731 | ||
1732 | // initalize prng | |
1733 | legic_prng_init(0); | |
1734 | } |