]>
Commit | Line | Data |
---|---|---|
bd20f8f4 | 1 | //----------------------------------------------------------------------------- |
2 | // (c) 2009 Henryk Plötz <henryk@ploetzli.ch> | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // LEGIC RF simulation code | |
9 | //----------------------------------------------------------------------------- | |
f7e3ed82 | 10 | #include "legicrf.h" |
8e220a91 | 11 | |
a7247d85 | 12 | static struct legic_frame { |
a3994421 | 13 | uint8_t bits; |
a2b1414f | 14 | uint32_t data; |
a7247d85 | 15 | } current_frame; |
8e220a91 | 16 | |
3612a8a8 | 17 | static enum { |
18 | STATE_DISCON, | |
19 | STATE_IV, | |
20 | STATE_CON, | |
21 | } legic_state; | |
22 | ||
23 | static crc_t legic_crc; | |
24 | static int legic_read_count; | |
25 | static uint32_t legic_prng_bc; | |
26 | static uint32_t legic_prng_iv; | |
27 | ||
28 | static int legic_phase_drift; | |
29 | static int legic_frame_drift; | |
30 | static int legic_reqresp_drift; | |
8e220a91 | 31 | |
add16a62 | 32 | AT91PS_TC timer; |
3612a8a8 | 33 | AT91PS_TC prng_timer; |
add16a62 | 34 | |
ad5bc8cc | 35 | /* |
c71c5ee1 | 36 | static void setup_timer(void) { |
ad5bc8cc | 37 | // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging |
38 | // this it won't be terribly accurate but should be good enough. | |
39 | // | |
add16a62 | 40 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); |
41 | timer = AT91C_BASE_TC1; | |
42 | timer->TC_CCR = AT91C_TC_CLKDIS; | |
0aa4cfc2 | 43 | timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; |
add16a62 | 44 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; |
45 | ||
ad5bc8cc | 46 | // |
47 | // Set up Timer 2 to use for measuring time between frames in | |
48 | // tag simulation mode. Runs 4x faster as Timer 1 | |
49 | // | |
3612a8a8 | 50 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2); |
51 | prng_timer = AT91C_BASE_TC2; | |
52 | prng_timer->TC_CCR = AT91C_TC_CLKDIS; | |
53 | prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK; | |
54 | prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
55 | } | |
111c6934 | 56 | |
57 | AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14); | |
58 | AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE; | |
59 | ||
60 | // fast clock | |
61 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable | |
62 | AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks | |
63 | AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR | | |
64 | AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET; | |
65 | AT91C_BASE_TC0->TC_RA = 1; | |
66 | AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000 | |
67 | ||
ad5bc8cc | 68 | */ |
69 | ||
70 | // At TIMER_CLOCK3 (MCK/32) | |
22f4dca8 | 71 | // testing calculating in (us) microseconds. |
111c6934 | 72 | #define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks |
73 | #define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks | |
76471e5d | 74 | #define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */ |
d7e24e7c | 75 | #define TAG_BIT_PERIOD 143 // 100us == 100 * 1.5 == 150ticks |
111c6934 | 76 | #define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495 |
ad5bc8cc | 77 | |
76471e5d | 78 | #define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit |
add16a62 | 79 | |
3612a8a8 | 80 | #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */ |
81 | #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */ | |
82 | ||
3612a8a8 | 83 | #define OFFSET_LOG 1024 |
add16a62 | 84 | |
85 | #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz))) | |
aac23b24 | 86 | |
ad5bc8cc | 87 | #ifndef SHORT_COIL |
b4a6775b | 88 | # define SHORT_COIL LOW(GPIO_SSC_DOUT); |
ad5bc8cc | 89 | #endif |
90 | #ifndef OPEN_COIL | |
b4a6775b | 91 | # define OPEN_COIL HIGH(GPIO_SSC_DOUT); |
ad5bc8cc | 92 | #endif |
93 | ||
87342aad | 94 | uint32_t sendFrameStop = 0; |
ad5bc8cc | 95 | |
111c6934 | 96 | // Pause pulse, off in 20us / 30ticks, |
97 | // ONE / ZERO bit pulse, | |
98 | // one == 80us / 120ticks | |
99 | // zero == 40us / 60ticks | |
100 | #ifndef COIL_PULSE | |
25d52dd2 | 101 | # define COIL_PULSE(x) \ |
102 | do { \ | |
76471e5d | 103 | SHORT_COIL; \ |
25d52dd2 | 104 | WaitTicks( (RWD_TIME_PAUSE) ); \ |
76471e5d | 105 | OPEN_COIL; \ |
22f4dca8 | 106 | WaitTicks((x)); \ |
25d52dd2 | 107 | } while (0) |
111c6934 | 108 | #endif |
c71c5ee1 | 109 | |
110 | // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces. | |
111 | // Historically it used to be FREE_BUFFER_SIZE, which was 2744. | |
112 | #define LEGIC_CARD_MEMSIZE 1024 | |
113 | static uint8_t* cardmem; | |
114 | ||
faabfafe | 115 | static void frame_append_bit(struct legic_frame * const f, uint8_t bit) { |
b4a6775b | 116 | // Overflow, won't happen |
117 | if (f->bits >= 31) return; | |
118 | ||
119 | f->data |= (bit << f->bits); | |
120 | f->bits++; | |
121 | } | |
122 | ||
123 | static void frame_clean(struct legic_frame * const f) { | |
124 | f->data = 0; | |
125 | f->bits = 0; | |
126 | } | |
127 | ||
ad5bc8cc | 128 | // Prng works when waiting in 99.1us cycles. |
129 | // and while sending/receiving in bit frames (100, 60) | |
b4a6775b | 130 | /*static void CalibratePrng( uint32_t time){ |
ad5bc8cc | 131 | // Calculate Cycles based on timer 100us |
87342aad | 132 | uint32_t i = (time - sendFrameStop) / 100 ; |
ad5bc8cc | 133 | |
134 | // substract cycles of finished frames | |
135 | int k = i - legic_prng_count()+1; | |
136 | ||
137 | // substract current frame length, rewind to beginning | |
138 | if ( k > 0 ) | |
139 | legic_prng_forward(k); | |
140 | } | |
b4a6775b | 141 | */ |
ad5bc8cc | 142 | |
3612a8a8 | 143 | /* Generate Keystream */ |
22f4dca8 | 144 | uint32_t get_key_stream(int skip, int count) { |
c71c5ee1 | 145 | uint32_t key = 0; |
146 | int i; | |
edaf10af | 147 | |
c71c5ee1 | 148 | // Use int to enlarge timer tc to 32bit |
edaf10af | 149 | legic_prng_bc += prng_timer->TC_CV; |
c71c5ee1 | 150 | |
151 | // reset the prng timer. | |
22f4dca8 | 152 | ResetTimer(prng_timer); |
edaf10af | 153 | |
154 | /* If skip == -1, forward prng time based */ | |
155 | if(skip == -1) { | |
c71c5ee1 | 156 | i = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */ |
edaf10af | 157 | i -= legic_prng_count(); /* substract cycles of finished frames */ |
c71c5ee1 | 158 | i -= count; /* substract current frame length, rewind to beginning */ |
edaf10af | 159 | legic_prng_forward(i); |
160 | } else { | |
161 | legic_prng_forward(skip); | |
162 | } | |
163 | ||
edaf10af | 164 | i = (count == 6) ? -1 : legic_read_count; |
165 | ||
c71c5ee1 | 166 | /* Write Time Data into LOG */ |
167 | // uint8_t *BigBuf = BigBuf_get_addr(); | |
168 | // BigBuf[OFFSET_LOG+128+i] = legic_prng_count(); | |
169 | // BigBuf[OFFSET_LOG+256+i*4] = (legic_prng_bc >> 0) & 0xff; | |
170 | // BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff; | |
171 | // BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff; | |
172 | // BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff; | |
173 | // BigBuf[OFFSET_LOG+384+i] = count; | |
edaf10af | 174 | |
175 | /* Generate KeyStream */ | |
176 | for(i=0; i<count; i++) { | |
177 | key |= legic_prng_get_bit() << i; | |
178 | legic_prng_forward(1); | |
179 | } | |
180 | return key; | |
3612a8a8 | 181 | } |
182 | ||
183 | /* Send a frame in tag mode, the FPGA must have been set up by | |
184 | * LegicRfSimulate | |
185 | */ | |
22f4dca8 | 186 | void frame_send_tag(uint16_t response, uint8_t bits, uint8_t crypt) { |
ad5bc8cc | 187 | /* Bitbang the response */ |
188 | LOW(GPIO_SSC_DOUT); | |
189 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
190 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
3612a8a8 | 191 | |
ad5bc8cc | 192 | /* Use time to crypt frame */ |
193 | if(crypt) { | |
111c6934 | 194 | legic_prng_forward(2); /* TAG_FRAME_WAIT -> shift by 2 */ |
ad5bc8cc | 195 | response ^= legic_prng_get_bits(bits); |
196 | } | |
c71c5ee1 | 197 | |
ad5bc8cc | 198 | /* Wait for the frame start */ |
22f4dca8 | 199 | WaitUS( TAG_FRAME_WAIT ); |
e30c654b | 200 | |
ad5bc8cc | 201 | uint8_t bit = 0; |
f7b42573 | 202 | for(int i = 0; i < bits; i++) { |
c71c5ee1 | 203 | |
ad5bc8cc | 204 | bit = response & 1; |
205 | response >>= 1; | |
8e220a91 | 206 | |
ad5bc8cc | 207 | if (bit) |
208 | HIGH(GPIO_SSC_DOUT); | |
edaf10af | 209 | else |
ad5bc8cc | 210 | LOW(GPIO_SSC_DOUT); |
211 | ||
22f4dca8 | 212 | WaitUS(100); |
ad5bc8cc | 213 | } |
214 | LOW(GPIO_SSC_DOUT); | |
215 | } | |
c71c5ee1 | 216 | |
ad5bc8cc | 217 | /* Send a frame in reader mode, the FPGA must have been set up by |
218 | * LegicRfReader | |
219 | */ | |
22f4dca8 | 220 | void frame_sendAsReader(uint32_t data, uint8_t bits){ |
c71c5ee1 | 221 | |
111c6934 | 222 | uint32_t starttime = GET_TICKS, send = 0; |
ad5bc8cc | 223 | uint16_t mask = 1; |
faabfafe | 224 | uint8_t prngstart = legic_prng_count() ; |
111c6934 | 225 | |
226 | // xor lsfr onto data. | |
227 | send = data ^ legic_prng_get_bits(bits); | |
ad5bc8cc | 228 | |
229 | for (; mask < BITMASK(bits); mask <<= 1) { | |
230 | if (send & mask) { | |
76471e5d | 231 | COIL_PULSE(RWD_TIME_1); |
ad5bc8cc | 232 | } else { |
76471e5d | 233 | COIL_PULSE(RWD_TIME_0); |
ad5bc8cc | 234 | } |
dcc10e5e | 235 | } |
e30c654b | 236 | |
76471e5d | 237 | // Final pause to mark the end of the frame |
76471e5d | 238 | COIL_PULSE(0); |
b4a6775b | 239 | |
87342aad | 240 | sendFrameStop = GET_TICKS; |
ad5bc8cc | 241 | uint8_t cmdbytes[] = { |
faabfafe | 242 | bits, |
111c6934 | 243 | BYTEx(data, 0), |
244 | BYTEx(data, 1), | |
3e750be3 | 245 | BYTEx(send, 0), |
246 | BYTEx(send, 1), | |
faabfafe | 247 | prngstart, |
ad5bc8cc | 248 | legic_prng_count() |
249 | }; | |
87342aad | 250 | LogTrace(cmdbytes, sizeof(cmdbytes), starttime, sendFrameStop, NULL, TRUE); |
dcc10e5e | 251 | } |
252 | ||
253 | /* Receive a frame from the card in reader emulation mode, the FPGA and | |
ad5bc8cc | 254 | * timer must have been set up by LegicRfReader and frame_sendAsReader. |
e30c654b | 255 | * |
dcc10e5e | 256 | * The LEGIC RF protocol from card to reader does not include explicit |
257 | * frame start/stop information or length information. The reader must | |
258 | * know beforehand how many bits it wants to receive. (Notably: a card | |
259 | * sending a stream of 0-bits is indistinguishable from no card present.) | |
e30c654b | 260 | * |
dcc10e5e | 261 | * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but |
262 | * I'm not smart enough to use it. Instead I have patched hi_read_tx to output | |
263 | * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look | |
264 | * for edges. Count the edges in each bit interval. If they are approximately | |
265 | * 0 this was a 0-bit, if they are approximately equal to the number of edges | |
266 | * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the | |
ad5bc8cc | 267 | * timer that's still running from frame_sendAsReader in order to get a synchronization |
dcc10e5e | 268 | * with the frame that we just sent. |
e30c654b | 269 | * |
270 | * FIXME: Because we're relying on the hysteresis to just do the right thing | |
dcc10e5e | 271 | * the range is severely reduced (and you'll probably also need a good antenna). |
e30c654b | 272 | * So this should be fixed some time in the future for a proper receiver. |
dcc10e5e | 273 | */ |
111c6934 | 274 | static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) { |
ad5bc8cc | 275 | |
b4a6775b | 276 | frame_clean(f); |
22f4dca8 | 277 | if ( bits > 32 ) return; |
3612a8a8 | 278 | |
22f4dca8 | 279 | uint8_t i = bits, edges = 0; |
b4a6775b | 280 | uint16_t lsfr = 0; |
d7e24e7c | 281 | uint32_t the_bit = 1, next_bit_at = 0, data = 0; |
25d52dd2 | 282 | |
b4a6775b | 283 | int old_level = 0, level = 0; |
25d52dd2 | 284 | |
db44e049 | 285 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; |
286 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
287 | ||
faabfafe | 288 | // calibrate the prng. |
b4a6775b | 289 | legic_prng_forward(2); |
faabfafe | 290 | uint8_t prngstart = legic_prng_count() ; |
faabfafe | 291 | data = lsfr = legic_prng_get_bits(bits); |
b4a6775b | 292 | |
b4a6775b | 293 | //FIXED time between sending frame and now listening frame. 330us |
faabfafe | 294 | // 387 = 0x19 0001 1001 |
111c6934 | 295 | uint32_t starttime = GET_TICKS; |
faabfafe | 296 | //uint16_t mywait = TAG_FRAME_WAIT - (starttime - sendFrameStop); |
3e750be3 | 297 | //uint16_t mywait = 495 - (starttime - sendFrameStop); |
298 | if ( bits == 6) { | |
d7e24e7c | 299 | //WaitTicks( 495 - 9 - 9 ); |
300 | WaitTicks( 475 ); | |
3e750be3 | 301 | } else { |
302 | //Dbprintf("x WAIT %d", mywait ); | |
303 | //WaitTicks( mywait ); | |
304 | WaitTicks( 450 ); | |
faabfafe | 305 | } |
306 | ||
111c6934 | 307 | next_bit_at = GET_TICKS + TAG_BIT_PERIOD; |
25d52dd2 | 308 | |
22f4dca8 | 309 | while ( i-- ){ |
dcc10e5e | 310 | edges = 0; |
111c6934 | 311 | while ( GET_TICKS < next_bit_at) { |
ad5bc8cc | 312 | |
b4a6775b | 313 | level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); |
ad5bc8cc | 314 | |
315 | if (level != old_level) | |
b4a6775b | 316 | ++edges; |
317 | ||
dcc10e5e | 318 | old_level = level; |
25d52dd2 | 319 | } |
320 | ||
ad5bc8cc | 321 | next_bit_at += TAG_BIT_PERIOD; |
3612a8a8 | 322 | |
ad5bc8cc | 323 | // We expect 42 edges == ONE |
faabfafe | 324 | //if (edges > 20 && edges < 64) |
325 | if ( edges > 20 ) | |
8e220a91 | 326 | data ^= the_bit; |
87342aad | 327 | |
328 | the_bit <<= 1; | |
dcc10e5e | 329 | } |
e30c654b | 330 | |
b4a6775b | 331 | // output |
dcc10e5e | 332 | f->data = data; |
333 | f->bits = bits; | |
db44e049 | 334 | |
faabfafe | 335 | uint8_t cmdbytes[] = { |
336 | bits, | |
d7e24e7c | 337 | BYTEx(data, 0), |
338 | BYTEx(data, 1), | |
339 | BYTEx(data, 0) ^ BYTEx(lsfr, 0), | |
340 | BYTEx(data, 1) ^ BYTEx(lsfr, 1), | |
faabfafe | 341 | prngstart, |
111c6934 | 342 | legic_prng_count() |
ad5bc8cc | 343 | }; |
faabfafe | 344 | LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE); |
a7247d85 | 345 | } |
346 | ||
c71c5ee1 | 347 | // Setup pm3 as a Legic Reader |
87342aad | 348 | static uint32_t setup_phase_reader(uint8_t iv) { |
22f4dca8 | 349 | |
f7b42573 | 350 | // Switch on carrier and let the tag charge for 1ms |
ad5bc8cc | 351 | HIGH(GPIO_SSC_DOUT); |
d7e24e7c | 352 | WaitUS(1000); |
ad5bc8cc | 353 | |
22f4dca8 | 354 | ResetTicks(); |
ad5bc8cc | 355 | |
f7b42573 | 356 | // no keystream yet |
c71c5ee1 | 357 | legic_prng_init(0); |
f7b42573 | 358 | |
ad5bc8cc | 359 | // send IV handshake |
360 | frame_sendAsReader(iv, 7); | |
361 | ||
362 | // Now both tag and reader has same IV. Prng can start. | |
3612a8a8 | 363 | legic_prng_init(iv); |
e30c654b | 364 | |
111c6934 | 365 | frame_receiveAsReader(¤t_frame, 6); |
f7b42573 | 366 | |
d7e24e7c | 367 | // 292us (438t) - fixed delay before sending ack. |
368 | // minus log and stuff 100tick? | |
369 | WaitTicks(338); | |
370 | legic_prng_forward(3); | |
ad5bc8cc | 371 | |
f7b42573 | 372 | // Send obsfuscated acknowledgment frame. |
ad5bc8cc | 373 | // 0x19 = 0x18 MIM22, 0x01 LSB READCMD |
374 | // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD | |
375 | switch ( current_frame.data ) { | |
87342aad | 376 | case 0x0D: frame_sendAsReader(0x19, 6); break; |
377 | case 0x1D: | |
378 | case 0x3D: frame_sendAsReader(0x39, 6); break; | |
379 | default: break; | |
f7b42573 | 380 | } |
d7e24e7c | 381 | |
382 | legic_prng_forward(2); | |
8e220a91 | 383 | return current_frame.data; |
2561caa2 | 384 | } |
385 | ||
22f4dca8 | 386 | static void LegicCommonInit(void) { |
387 | ||
7cc204bf | 388 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
b4a6775b | 389 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); |
dcc10e5e | 390 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
e30c654b | 391 | |
dcc10e5e | 392 | /* Bitbang the transmitter */ |
ad5bc8cc | 393 | LOW(GPIO_SSC_DOUT); |
dcc10e5e | 394 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
395 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
e30c654b | 396 | |
c71c5ee1 | 397 | // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier. |
398 | cardmem = BigBuf_malloc(LEGIC_CARD_MEMSIZE); | |
399 | memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE); | |
400 | ||
401 | clear_trace(); | |
402 | set_tracing(TRUE); | |
8e220a91 | 403 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
ad5bc8cc | 404 | |
22f4dca8 | 405 | StartTicks(); |
8e220a91 | 406 | } |
407 | ||
111c6934 | 408 | // Switch off carrier, make sure tag is reset |
c71c5ee1 | 409 | static void switch_off_tag_rwd(void) { |
ad5bc8cc | 410 | LOW(GPIO_SSC_DOUT); |
3e750be3 | 411 | WaitUS(20); |
8e220a91 | 412 | WDT_HIT(); |
413 | } | |
c71c5ee1 | 414 | |
f7b42573 | 415 | // calculate crc4 for a legic READ command |
416 | // 5,8,10 address size. | |
111c6934 | 417 | static uint32_t legic4Crc(uint8_t legicCmd, uint16_t byte_index, uint8_t value, uint8_t cmd_sz) { |
ad5bc8cc | 418 | crc_clear(&legic_crc); |
87342aad | 419 | //uint32_t temp = (value << cmd_sz) | (byte_index << 1) | legicCmd; |
420 | //crc_update(&legic_crc, temp, cmd_sz + 8 ); | |
421 | crc_update(&legic_crc, 1, 1); /* CMD_READ */ | |
422 | crc_update(&legic_crc, byte_index, cmd_sz-1); | |
423 | crc_update(&legic_crc, value, 8); | |
8e220a91 | 424 | return crc_finish(&legic_crc); |
425 | } | |
426 | ||
f7b42573 | 427 | int legic_read_byte(int byte_index, int cmd_sz) { |
8e220a91 | 428 | |
a3994421 | 429 | uint8_t byte = 0; //, crc = 0, calcCrc = 0; |
3e750be3 | 430 | uint32_t cmd = (byte_index << 1) | LEGIC_READ; |
431 | ||
22f4dca8 | 432 | // (us)| ticks |
433 | // ------------- | |
434 | // 330 | 495 | |
22f4dca8 | 435 | // 244 | 366 |
d7e24e7c | 436 | WaitTicks(366); |
3e750be3 | 437 | |
ad5bc8cc | 438 | frame_sendAsReader(cmd, cmd_sz); |
111c6934 | 439 | frame_receiveAsReader(¤t_frame, 12); |
c71c5ee1 | 440 | |
111c6934 | 441 | byte = BYTEx(current_frame.data, 0); |
d7e24e7c | 442 | |
a3994421 | 443 | // calcCrc = legic4Crc(LEGIC_READ, byte_index, byte, cmd_sz); |
444 | // crc = BYTEx(current_frame.data, 1); | |
65c2d21d | 445 | |
a3994421 | 446 | // if( calcCrc != crc ) { |
447 | // Dbprintf("!!! crc mismatch: expected %x but got %x !!!", calcCrc, crc); | |
448 | // return -1; | |
449 | // } | |
d7e24e7c | 450 | |
451 | legic_prng_forward(4); | |
452 | WaitTicks(40); | |
8e220a91 | 453 | return byte; |
454 | } | |
455 | ||
c71c5ee1 | 456 | /* |
457 | * - assemble a write_cmd_frame with crc and send it | |
458 | * - wait until the tag sends back an ACK ('1' bit unencrypted) | |
459 | * - forward the prng based on the timing | |
8e220a91 | 460 | */ |
3e134b4c | 461 | //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) { |
111c6934 | 462 | int legic_write_byte(uint8_t byte, uint16_t addr, uint8_t addr_sz) { |
c71c5ee1 | 463 | |
464 | //do not write UID, CRC at offset 0-4. | |
111c6934 | 465 | if (addr <= 4) return 0; |
c71c5ee1 | 466 | |
467 | // crc | |
3612a8a8 | 468 | crc_clear(&legic_crc); |
469 | crc_update(&legic_crc, 0, 1); /* CMD_WRITE */ | |
470 | crc_update(&legic_crc, addr, addr_sz); | |
471 | crc_update(&legic_crc, byte, 8); | |
3612a8a8 | 472 | uint32_t crc = crc_finish(&legic_crc); |
c71c5ee1 | 473 | |
111c6934 | 474 | uint32_t crc2 = legic4Crc(LEGIC_WRITE, addr, byte, addr_sz+1); |
475 | if ( crc != crc2 ) | |
476 | Dbprintf("crc is missmatch"); | |
477 | ||
c71c5ee1 | 478 | // send write command |
3612a8a8 | 479 | uint32_t cmd = ((crc <<(addr_sz+1+8)) //CRC |
480 | |(byte <<(addr_sz+1)) //Data | |
481 | |(addr <<1) //Address | |
111c6934 | 482 | | LEGIC_WRITE); //CMD = Write |
483 | ||
3612a8a8 | 484 | uint32_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd |
485 | ||
cc708897 | 486 | legic_prng_forward(2); /* we wait anyways */ |
c71c5ee1 | 487 | |
22f4dca8 | 488 | WaitUS(TAG_FRAME_WAIT); |
c71c5ee1 | 489 | |
ad5bc8cc | 490 | frame_sendAsReader(cmd, cmd_sz); |
c71c5ee1 | 491 | |
111c6934 | 492 | // wllm-rbnt doesnt have these |
493 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; | |
494 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
3612a8a8 | 495 | |
c71c5ee1 | 496 | // wait for ack |
497 | int t, old_level = 0, edges = 0; | |
498 | int next_bit_at = 0; | |
3e134b4c | 499 | |
22f4dca8 | 500 | WaitUS(TAG_FRAME_WAIT); |
c71c5ee1 | 501 | |
111c6934 | 502 | for( t = 0; t < 80; ++t) { |
3612a8a8 | 503 | edges = 0; |
ad5bc8cc | 504 | next_bit_at += TAG_BIT_PERIOD; |
3612a8a8 | 505 | while(timer->TC_CV < next_bit_at) { |
506 | int level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); | |
111c6934 | 507 | if(level != old_level) |
3612a8a8 | 508 | edges++; |
111c6934 | 509 | |
3612a8a8 | 510 | old_level = level; |
511 | } | |
512 | if(edges > 20 && edges < 60) { /* expected are 42 edges */ | |
513 | int t = timer->TC_CV; | |
ad5bc8cc | 514 | int c = t / TAG_BIT_PERIOD; |
c71c5ee1 | 515 | |
22f4dca8 | 516 | ResetTimer(timer); |
cc708897 | 517 | legic_prng_forward(c); |
3612a8a8 | 518 | return 0; |
519 | } | |
520 | } | |
c71c5ee1 | 521 | |
22f4dca8 | 522 | ResetTimer(timer); |
3612a8a8 | 523 | return -1; |
524 | } | |
8e220a91 | 525 | |
cc708897 | 526 | int LegicRfReader(int offset, int bytes, int iv) { |
3e134b4c | 527 | |
111c6934 | 528 | uint16_t byte_index = 0; |
a3994421 | 529 | uint8_t isOK = 1; |
530 | legic_card_select_t card; | |
531 | ||
8e220a91 | 532 | LegicCommonInit(); |
faabfafe | 533 | |
a3994421 | 534 | if ( legic_select_card(&card) ) { |
535 | isOK = 0; | |
536 | goto OUT; | |
537 | } | |
538 | ||
c71c5ee1 | 539 | switch_off_tag_rwd(); |
ad5bc8cc | 540 | |
111c6934 | 541 | if (bytes == -1) |
a3994421 | 542 | bytes = card.cardsize; |
edaf10af | 543 | |
a3994421 | 544 | if (bytes + offset >= card.cardsize) |
545 | bytes = card.cardsize - offset; | |
a2b1414f | 546 | |
ad5bc8cc | 547 | // Start setup and read bytes. |
87342aad | 548 | setup_phase_reader(iv); |
d7e24e7c | 549 | |
3612a8a8 | 550 | LED_B_ON(); |
ad5bc8cc | 551 | while (byte_index < bytes) { |
a3994421 | 552 | int r = legic_read_byte(byte_index + offset, card.cmdsize); |
ad5bc8cc | 553 | |
554 | if (r == -1 || BUTTON_PRESS()) { | |
faabfafe | 555 | if ( MF_DBGLEVEL >= 3) DbpString("operation aborted"); |
87342aad | 556 | isOK = 0; |
557 | goto OUT; | |
a2b1414f | 558 | } |
a3994421 | 559 | cardmem[byte_index++] = r; |
3612a8a8 | 560 | WDT_HIT(); |
2561caa2 | 561 | } |
c71c5ee1 | 562 | |
87342aad | 563 | OUT: |
faabfafe | 564 | WDT_HIT(); |
3612a8a8 | 565 | switch_off_tag_rwd(); |
c71c5ee1 | 566 | LEDsoff(); |
ad5bc8cc | 567 | uint8_t len = (bytes & 0x3FF); |
87342aad | 568 | cmd_send(CMD_ACK,isOK,len,0,cardmem,len); |
3612a8a8 | 569 | return 0; |
570 | } | |
571 | ||
cc708897 | 572 | /*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) { |
3e134b4c | 573 | int byte_index=0; |
574 | ||
575 | LED_B_ON(); | |
87342aad | 576 | setup_phase_reader(iv); |
3e134b4c | 577 | //legic_prng_forward(2); |
578 | while(byte_index < bytes) { | |
579 | int r; | |
580 | ||
581 | //check if the DCF should be changed | |
582 | if ( (offset == 0x05) && (bytes == 0x02) ) { | |
583 | //write DCF in reverse order (addr 0x06 before 0x05) | |
584 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); | |
585 | //legic_prng_forward(1); | |
586 | if(r == 0) { | |
587 | byte_index++; | |
588 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); | |
589 | } | |
590 | //legic_prng_forward(1); | |
591 | } | |
592 | else { | |
593 | r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue); | |
594 | } | |
595 | if((r != 0) || BUTTON_PRESS()) { | |
596 | Dbprintf("operation aborted @ 0x%03.3x", byte_index); | |
597 | switch_off_tag_rwd(); | |
598 | LED_B_OFF(); | |
599 | LED_C_OFF(); | |
600 | return -1; | |
601 | } | |
602 | ||
603 | WDT_HIT(); | |
604 | byte_index++; | |
605 | if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); | |
606 | } | |
607 | LED_B_OFF(); | |
608 | LED_C_OFF(); | |
609 | DbpString("write successful"); | |
610 | return 0; | |
611 | }*/ | |
612 | ||
cc708897 | 613 | void LegicRfWriter(int offset, int bytes, int iv) { |
614 | ||
ad5bc8cc | 615 | int byte_index = 0, addr_sz = 0; |
117d9ec2 | 616 | |
3612a8a8 | 617 | LegicCommonInit(); |
618 | ||
c71c5ee1 | 619 | if ( MF_DBGLEVEL >= 2) DbpString("setting up legic card"); |
620 | ||
87342aad | 621 | uint32_t tag_type = setup_phase_reader(iv); |
c71c5ee1 | 622 | |
8e220a91 | 623 | switch_off_tag_rwd(); |
c71c5ee1 | 624 | |
3612a8a8 | 625 | switch(tag_type) { |
3e134b4c | 626 | case 0x0d: |
627 | if(offset+bytes > 22) { | |
111c6934 | 628 | Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset + bytes); |
3e134b4c | 629 | return; |
630 | } | |
631 | addr_sz = 5; | |
111c6934 | 632 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset + bytes); |
3e134b4c | 633 | break; |
3612a8a8 | 634 | case 0x1d: |
635 | if(offset+bytes > 0x100) { | |
111c6934 | 636 | Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset + bytes); |
3612a8a8 | 637 | return; |
638 | } | |
639 | addr_sz = 8; | |
111c6934 | 640 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset + bytes); |
3612a8a8 | 641 | break; |
642 | case 0x3d: | |
643 | if(offset+bytes > 0x400) { | |
111c6934 | 644 | Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset + bytes); |
3612a8a8 | 645 | return; |
646 | } | |
647 | addr_sz = 10; | |
111c6934 | 648 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset, offset + bytes); |
3612a8a8 | 649 | break; |
650 | default: | |
651 | Dbprintf("No or unknown card found, aborting"); | |
652 | return; | |
653 | } | |
654 | ||
655 | LED_B_ON(); | |
87342aad | 656 | setup_phase_reader(iv); |
111c6934 | 657 | int r = 0; |
3612a8a8 | 658 | while(byte_index < bytes) { |
3e134b4c | 659 | |
660 | //check if the DCF should be changed | |
661 | if ( ((byte_index+offset) == 0x05) && (bytes >= 0x02) ) { | |
662 | //write DCF in reverse order (addr 0x06 before 0x05) | |
c71c5ee1 | 663 | r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), addr_sz); |
3e134b4c | 664 | |
665 | // write second byte on success... | |
666 | if(r == 0) { | |
667 | byte_index++; | |
c71c5ee1 | 668 | r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), addr_sz); |
3e134b4c | 669 | } |
670 | } | |
671 | else { | |
c71c5ee1 | 672 | r = legic_write_byte(cardmem[byte_index+offset], byte_index+offset, addr_sz); |
3e134b4c | 673 | } |
c71c5ee1 | 674 | |
111c6934 | 675 | if ((r != 0) || BUTTON_PRESS()) { |
3612a8a8 | 676 | Dbprintf("operation aborted @ 0x%03.3x", byte_index); |
677 | switch_off_tag_rwd(); | |
c71c5ee1 | 678 | LEDsoff(); |
3612a8a8 | 679 | return; |
680 | } | |
3e134b4c | 681 | |
682 | WDT_HIT(); | |
683 | byte_index++; | |
3e134b4c | 684 | } |
c71c5ee1 | 685 | LEDsoff(); |
686 | if ( MF_DBGLEVEL >= 1) DbpString("write successful"); | |
3e134b4c | 687 | } |
688 | ||
cc708897 | 689 | void LegicRfRawWriter(int address, int byte, int iv) { |
c71c5ee1 | 690 | |
691 | int byte_index = 0, addr_sz = 0; | |
3e134b4c | 692 | |
693 | LegicCommonInit(); | |
694 | ||
c71c5ee1 | 695 | if ( MF_DBGLEVEL >= 2) DbpString("setting up legic card"); |
696 | ||
87342aad | 697 | uint32_t tag_type = setup_phase_reader(iv); |
c71c5ee1 | 698 | |
3e134b4c | 699 | switch_off_tag_rwd(); |
c71c5ee1 | 700 | |
3e134b4c | 701 | switch(tag_type) { |
702 | case 0x0d: | |
cc708897 | 703 | if(address > 22) { |
704 | Dbprintf("Error: can not write to 0x%03.3x on MIM22", address); | |
3e134b4c | 705 | return; |
706 | } | |
707 | addr_sz = 5; | |
c71c5ee1 | 708 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte); |
3e134b4c | 709 | break; |
710 | case 0x1d: | |
cc708897 | 711 | if(address > 0x100) { |
712 | Dbprintf("Error: can not write to 0x%03.3x on MIM256", address); | |
3e134b4c | 713 | return; |
714 | } | |
715 | addr_sz = 8; | |
c71c5ee1 | 716 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte); |
3e134b4c | 717 | break; |
718 | case 0x3d: | |
cc708897 | 719 | if(address > 0x400) { |
720 | Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address); | |
3e134b4c | 721 | return; |
722 | } | |
723 | addr_sz = 10; | |
c71c5ee1 | 724 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address, byte); |
3e134b4c | 725 | break; |
726 | default: | |
727 | Dbprintf("No or unknown card found, aborting"); | |
728 | return; | |
729 | } | |
c71c5ee1 | 730 | |
cc708897 | 731 | Dbprintf("integer value: %d address: %d addr_sz: %d", byte, address, addr_sz); |
3e134b4c | 732 | LED_B_ON(); |
c71c5ee1 | 733 | |
87342aad | 734 | setup_phase_reader(iv); |
111c6934 | 735 | |
cc708897 | 736 | int r = legic_write_byte(byte, address, addr_sz); |
3e134b4c | 737 | |
738 | if((r != 0) || BUTTON_PRESS()) { | |
739 | Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index, r); | |
740 | switch_off_tag_rwd(); | |
c71c5ee1 | 741 | LEDsoff(); |
3e134b4c | 742 | return; |
3612a8a8 | 743 | } |
3612a8a8 | 744 | |
c71c5ee1 | 745 | LEDsoff(); |
746 | if ( MF_DBGLEVEL >= 1) DbpString("write successful"); | |
747 | } | |
3612a8a8 | 748 | |
a3994421 | 749 | int legic_select_card(legic_card_select_t *p_card){ |
3e750be3 | 750 | |
a3994421 | 751 | if ( p_card == NULL ) return 1; |
3e750be3 | 752 | |
a3994421 | 753 | p_card->tagtype = setup_phase_reader(0x1); |
754 | ||
755 | switch(p_card->tagtype) { | |
3e750be3 | 756 | case 0x0d: |
a3994421 | 757 | p_card->cmdsize = 6; |
758 | p_card->cardsize = 22; | |
3e750be3 | 759 | break; |
760 | case 0x1d: | |
a3994421 | 761 | p_card->cmdsize = 9; |
762 | p_card->cardsize = 256; | |
3e750be3 | 763 | break; |
764 | case 0x3d: | |
a3994421 | 765 | p_card->cmdsize = 11; |
766 | p_card->cardsize = 1024; | |
3e750be3 | 767 | break; |
768 | default: | |
a3994421 | 769 | p_card->cmdsize = 0; |
770 | p_card->cardsize = 0; | |
771 | return 2; | |
772 | break; | |
773 | } | |
774 | return 0; | |
775 | } | |
776 | ||
777 | void LegicRfInfo(void){ | |
778 | ||
779 | uint8_t buf[sizeof(legic_card_select_t)] = {0x00}; | |
780 | legic_card_select_t *card = (legic_card_select_t*) buf; | |
781 | ||
782 | LegicCommonInit(); | |
783 | ||
784 | if ( legic_select_card(card) ) { | |
785 | cmd_send(CMD_ACK,0,0,0,0,0); | |
786 | goto OUT; | |
3e750be3 | 787 | } |
788 | ||
789 | // read UID bytes. | |
a3994421 | 790 | for ( uint8_t i = 0; i < sizeof(card->uid); ++i) { |
791 | int r = legic_read_byte(i, card->cmdsize); | |
3e750be3 | 792 | if ( r == -1 ) { |
793 | cmd_send(CMD_ACK,0,0,0,0,0); | |
794 | goto OUT; | |
795 | } | |
a3994421 | 796 | card->uid[i] = r & 0xFF; |
3e750be3 | 797 | } |
798 | ||
a3994421 | 799 | cmd_send(CMD_ACK, 1 ,0 , 0, buf, sizeof(legic_card_select_t)); |
800 | ||
801 | OUT: | |
3e750be3 | 802 | switch_off_tag_rwd(); |
803 | LEDsoff(); | |
3e750be3 | 804 | } |
805 | ||
c71c5ee1 | 806 | /* Handle (whether to respond) a frame in tag mode |
807 | * Only called when simulating a tag. | |
808 | */ | |
3612a8a8 | 809 | static void frame_handle_tag(struct legic_frame const * const f) |
810 | { | |
117d9ec2 | 811 | uint8_t *BigBuf = BigBuf_get_addr(); |
812 | ||
3612a8a8 | 813 | /* First Part of Handshake (IV) */ |
814 | if(f->bits == 7) { | |
c71c5ee1 | 815 | |
3612a8a8 | 816 | LED_C_ON(); |
c71c5ee1 | 817 | |
ad5bc8cc | 818 | // Reset prng timer |
22f4dca8 | 819 | ResetTimer(prng_timer); |
c71c5ee1 | 820 | |
3612a8a8 | 821 | legic_prng_init(f->data); |
ad5bc8cc | 822 | frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1B */ |
3612a8a8 | 823 | legic_state = STATE_IV; |
824 | legic_read_count = 0; | |
825 | legic_prng_bc = 0; | |
826 | legic_prng_iv = f->data; | |
827 | ||
111c6934 | 828 | |
22f4dca8 | 829 | ResetTimer(timer); |
830 | WaitUS(280); | |
3612a8a8 | 831 | return; |
3612a8a8 | 832 | } |
833 | ||
834 | /* 0x19==??? */ | |
835 | if(legic_state == STATE_IV) { | |
cc708897 | 836 | int local_key = get_key_stream(3, 6); |
837 | int xored = 0x39 ^ local_key; | |
838 | if((f->bits == 6) && (f->data == xored)) { | |
3612a8a8 | 839 | legic_state = STATE_CON; |
840 | ||
22f4dca8 | 841 | ResetTimer(timer); |
842 | WaitUS(200); | |
3612a8a8 | 843 | return; |
111c6934 | 844 | |
845 | } else { | |
3612a8a8 | 846 | legic_state = STATE_DISCON; |
847 | LED_C_OFF(); | |
cc708897 | 848 | Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored); |
3612a8a8 | 849 | return; |
850 | } | |
851 | } | |
852 | ||
853 | /* Read */ | |
854 | if(f->bits == 11) { | |
855 | if(legic_state == STATE_CON) { | |
cc708897 | 856 | int key = get_key_stream(2, 11); //legic_phase_drift, 11); |
3612a8a8 | 857 | int addr = f->data ^ key; addr = addr >> 1; |
117d9ec2 | 858 | int data = BigBuf[addr]; |
111c6934 | 859 | int hash = legic4Crc(LEGIC_READ, addr, data, 11) << 8; |
117d9ec2 | 860 | BigBuf[OFFSET_LOG+legic_read_count] = (uint8_t)addr; |
3612a8a8 | 861 | legic_read_count++; |
862 | ||
863 | //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c); | |
864 | legic_prng_forward(legic_reqresp_drift); | |
865 | ||
866 | frame_send_tag(hash | data, 12, 1); | |
867 | ||
22f4dca8 | 868 | ResetTimer(timer); |
cc708897 | 869 | legic_prng_forward(2); |
22f4dca8 | 870 | WaitUS(180); |
3612a8a8 | 871 | return; |
872 | } | |
873 | } | |
874 | ||
875 | /* Write */ | |
876 | if(f->bits == 23) { | |
877 | int key = get_key_stream(-1, 23); //legic_frame_drift, 23); | |
878 | int addr = f->data ^ key; addr = addr >> 1; addr = addr & 0x3ff; | |
879 | int data = f->data ^ key; data = data >> 11; data = data & 0xff; | |
880 | ||
881 | /* write command */ | |
882 | legic_state = STATE_DISCON; | |
883 | LED_C_OFF(); | |
884 | Dbprintf("write - addr: %x, data: %x", addr, data); | |
885 | return; | |
886 | } | |
887 | ||
888 | if(legic_state != STATE_DISCON) { | |
889 | Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count); | |
890 | int i; | |
891 | Dbprintf("IV: %03.3x", legic_prng_iv); | |
892 | for(i = 0; i<legic_read_count; i++) { | |
117d9ec2 | 893 | Dbprintf("Read Nb: %u, Addr: %u", i, BigBuf[OFFSET_LOG+i]); |
3612a8a8 | 894 | } |
895 | ||
896 | for(i = -1; i<legic_read_count; i++) { | |
897 | uint32_t t; | |
117d9ec2 | 898 | t = BigBuf[OFFSET_LOG+256+i*4]; |
899 | t |= BigBuf[OFFSET_LOG+256+i*4+1] << 8; | |
900 | t |= BigBuf[OFFSET_LOG+256+i*4+2] <<16; | |
901 | t |= BigBuf[OFFSET_LOG+256+i*4+3] <<24; | |
3612a8a8 | 902 | |
903 | Dbprintf("Cycles: %u, Frame Length: %u, Time: %u", | |
117d9ec2 | 904 | BigBuf[OFFSET_LOG+128+i], |
905 | BigBuf[OFFSET_LOG+384+i], | |
3612a8a8 | 906 | t); |
907 | } | |
908 | } | |
909 | legic_state = STATE_DISCON; | |
910 | legic_read_count = 0; | |
911 | SpinDelay(10); | |
912 | LED_C_OFF(); | |
913 | return; | |
914 | } | |
915 | ||
916 | /* Read bit by bit untill full frame is received | |
917 | * Call to process frame end answer | |
918 | */ | |
c71c5ee1 | 919 | static void emit(int bit) { |
920 | ||
921 | switch (bit) { | |
922 | case 1: | |
923 | frame_append_bit(¤t_frame, 1); | |
924 | break; | |
925 | case 0: | |
926 | frame_append_bit(¤t_frame, 0); | |
927 | break; | |
928 | default: | |
929 | if(current_frame.bits <= 4) { | |
930 | frame_clean(¤t_frame); | |
931 | } else { | |
932 | frame_handle_tag(¤t_frame); | |
933 | frame_clean(¤t_frame); | |
934 | } | |
935 | WDT_HIT(); | |
936 | break; | |
937 | } | |
3612a8a8 | 938 | } |
939 | ||
940 | void LegicRfSimulate(int phase, int frame, int reqresp) | |
941 | { | |
942 | /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode, | |
943 | * modulation mode set to 212kHz subcarrier. We are getting the incoming raw | |
944 | * envelope waveform on DIN and should send our response on DOUT. | |
945 | * | |
946 | * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll | |
947 | * measure the time between two rising edges on DIN, and no encoding on the | |
948 | * subcarrier from card to reader, so we'll just shift out our verbatim data | |
949 | * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear, | |
950 | * seems to be 300us-ish. | |
951 | */ | |
952 | ||
c71c5ee1 | 953 | legic_phase_drift = phase; |
954 | legic_frame_drift = frame; | |
955 | legic_reqresp_drift = reqresp; | |
956 | ||
957 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
958 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
959 | FpgaSetupSsc(); | |
960 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K); | |
961 | ||
962 | /* Bitbang the receiver */ | |
963 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; | |
964 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
965 | ||
ad5bc8cc | 966 | //setup_timer(); |
c71c5ee1 | 967 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
968 | ||
969 | int old_level = 0; | |
970 | int active = 0; | |
971 | legic_state = STATE_DISCON; | |
972 | ||
973 | LED_B_ON(); | |
974 | DbpString("Starting Legic emulator, press button to end"); | |
3612a8a8 | 975 | |
c71c5ee1 | 976 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
977 | int level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); | |
978 | int time = timer->TC_CV; | |
979 | ||
980 | if(level != old_level) { | |
981 | if(level == 1) { | |
982 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
983 | ||
984 | if (FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) { | |
985 | /* 1 bit */ | |
986 | emit(1); | |
987 | active = 1; | |
988 | LED_A_ON(); | |
989 | } else if (FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) { | |
990 | /* 0 bit */ | |
991 | emit(0); | |
992 | active = 1; | |
993 | LED_A_ON(); | |
994 | } else if (active) { | |
995 | /* invalid */ | |
996 | emit(-1); | |
997 | active = 0; | |
998 | LED_A_OFF(); | |
999 | } | |
1000 | } | |
1001 | } | |
3612a8a8 | 1002 | |
c71c5ee1 | 1003 | /* Frame end */ |
1004 | if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) { | |
1005 | emit(-1); | |
1006 | active = 0; | |
1007 | LED_A_OFF(); | |
1008 | } | |
a2b1414f | 1009 | |
c71c5ee1 | 1010 | if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) { |
1011 | timer->TC_CCR = AT91C_TC_CLKDIS; | |
1012 | } | |
1013 | ||
1014 | old_level = level; | |
1015 | WDT_HIT(); | |
1016 | } | |
1017 | if ( MF_DBGLEVEL >= 1) DbpString("Stopped"); | |
1018 | LEDsoff(); | |
1019 | } | |
3e134b4c | 1020 | |
3e134b4c | 1021 | //----------------------------------------------------------------------------- |
1022 | // Code up a string of octets at layer 2 (including CRC, we don't generate | |
1023 | // that here) so that they can be transmitted to the reader. Doesn't transmit | |
1024 | // them yet, just leaves them ready to send in ToSend[]. | |
1025 | //----------------------------------------------------------------------------- | |
1026 | // static void CodeLegicAsTag(const uint8_t *cmd, int len) | |
1027 | // { | |
1028 | // int i; | |
1029 | ||
1030 | // ToSendReset(); | |
1031 | ||
1032 | // // Transmit a burst of ones, as the initial thing that lets the | |
1033 | // // reader get phase sync. This (TR1) must be > 80/fs, per spec, | |
1034 | // // but tag that I've tried (a Paypass) exceeds that by a fair bit, | |
1035 | // // so I will too. | |
1036 | // for(i = 0; i < 20; i++) { | |
1037 | // ToSendStuffBit(1); | |
1038 | // ToSendStuffBit(1); | |
1039 | // ToSendStuffBit(1); | |
1040 | // ToSendStuffBit(1); | |
1041 | // } | |
1042 | ||
1043 | // // Send SOF. | |
1044 | // for(i = 0; i < 10; i++) { | |
1045 | // ToSendStuffBit(0); | |
1046 | // ToSendStuffBit(0); | |
1047 | // ToSendStuffBit(0); | |
1048 | // ToSendStuffBit(0); | |
1049 | // } | |
1050 | // for(i = 0; i < 2; i++) { | |
1051 | // ToSendStuffBit(1); | |
1052 | // ToSendStuffBit(1); | |
1053 | // ToSendStuffBit(1); | |
1054 | // ToSendStuffBit(1); | |
1055 | // } | |
1056 | ||
1057 | // for(i = 0; i < len; i++) { | |
1058 | // int j; | |
1059 | // uint8_t b = cmd[i]; | |
1060 | ||
1061 | // // Start bit | |
1062 | // ToSendStuffBit(0); | |
1063 | // ToSendStuffBit(0); | |
1064 | // ToSendStuffBit(0); | |
1065 | // ToSendStuffBit(0); | |
1066 | ||
1067 | // // Data bits | |
1068 | // for(j = 0; j < 8; j++) { | |
1069 | // if(b & 1) { | |
1070 | // ToSendStuffBit(1); | |
1071 | // ToSendStuffBit(1); | |
1072 | // ToSendStuffBit(1); | |
1073 | // ToSendStuffBit(1); | |
1074 | // } else { | |
1075 | // ToSendStuffBit(0); | |
1076 | // ToSendStuffBit(0); | |
1077 | // ToSendStuffBit(0); | |
1078 | // ToSendStuffBit(0); | |
1079 | // } | |
1080 | // b >>= 1; | |
1081 | // } | |
1082 | ||
1083 | // // Stop bit | |
1084 | // ToSendStuffBit(1); | |
1085 | // ToSendStuffBit(1); | |
1086 | // ToSendStuffBit(1); | |
1087 | // ToSendStuffBit(1); | |
1088 | // } | |
1089 | ||
1090 | // // Send EOF. | |
1091 | // for(i = 0; i < 10; i++) { | |
1092 | // ToSendStuffBit(0); | |
1093 | // ToSendStuffBit(0); | |
1094 | // ToSendStuffBit(0); | |
1095 | // ToSendStuffBit(0); | |
1096 | // } | |
1097 | // for(i = 0; i < 2; i++) { | |
1098 | // ToSendStuffBit(1); | |
1099 | // ToSendStuffBit(1); | |
1100 | // ToSendStuffBit(1); | |
1101 | // ToSendStuffBit(1); | |
1102 | // } | |
1103 | ||
1104 | // // Convert from last byte pos to length | |
1105 | // ToSendMax++; | |
1106 | // } | |
1107 | ||
1108 | //----------------------------------------------------------------------------- | |
1109 | // The software UART that receives commands from the reader, and its state | |
1110 | // variables. | |
1111 | //----------------------------------------------------------------------------- | |
62577a62 | 1112 | /* |
3e134b4c | 1113 | static struct { |
1114 | enum { | |
1115 | STATE_UNSYNCD, | |
1116 | STATE_GOT_FALLING_EDGE_OF_SOF, | |
1117 | STATE_AWAITING_START_BIT, | |
1118 | STATE_RECEIVING_DATA | |
1119 | } state; | |
1120 | uint16_t shiftReg; | |
1121 | int bitCnt; | |
1122 | int byteCnt; | |
1123 | int byteCntMax; | |
1124 | int posCnt; | |
1125 | uint8_t *output; | |
1126 | } Uart; | |
62577a62 | 1127 | */ |
3e134b4c | 1128 | /* Receive & handle a bit coming from the reader. |
1129 | * | |
1130 | * This function is called 4 times per bit (every 2 subcarrier cycles). | |
1131 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us | |
1132 | * | |
1133 | * LED handling: | |
1134 | * LED A -> ON once we have received the SOF and are expecting the rest. | |
1135 | * LED A -> OFF once we have received EOF or are in error state or unsynced | |
1136 | * | |
1137 | * Returns: true if we received a EOF | |
1138 | * false if we are still waiting for some more | |
1139 | */ | |
1140 | // static RAMFUNC int HandleLegicUartBit(uint8_t bit) | |
1141 | // { | |
1142 | // switch(Uart.state) { | |
1143 | // case STATE_UNSYNCD: | |
1144 | // if(!bit) { | |
1145 | // // we went low, so this could be the beginning of an SOF | |
1146 | // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; | |
1147 | // Uart.posCnt = 0; | |
1148 | // Uart.bitCnt = 0; | |
1149 | // } | |
1150 | // break; | |
1151 | ||
1152 | // case STATE_GOT_FALLING_EDGE_OF_SOF: | |
1153 | // Uart.posCnt++; | |
1154 | // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit | |
1155 | // if(bit) { | |
1156 | // if(Uart.bitCnt > 9) { | |
1157 | // // we've seen enough consecutive | |
1158 | // // zeros that it's a valid SOF | |
1159 | // Uart.posCnt = 0; | |
1160 | // Uart.byteCnt = 0; | |
1161 | // Uart.state = STATE_AWAITING_START_BIT; | |
1162 | // LED_A_ON(); // Indicate we got a valid SOF | |
1163 | // } else { | |
1164 | // // didn't stay down long enough | |
1165 | // // before going high, error | |
1166 | // Uart.state = STATE_UNSYNCD; | |
1167 | // } | |
1168 | // } else { | |
1169 | // // do nothing, keep waiting | |
1170 | // } | |
1171 | // Uart.bitCnt++; | |
1172 | // } | |
1173 | // if(Uart.posCnt >= 4) Uart.posCnt = 0; | |
1174 | // if(Uart.bitCnt > 12) { | |
1175 | // // Give up if we see too many zeros without | |
1176 | // // a one, too. | |
1177 | // LED_A_OFF(); | |
1178 | // Uart.state = STATE_UNSYNCD; | |
1179 | // } | |
1180 | // break; | |
1181 | ||
1182 | // case STATE_AWAITING_START_BIT: | |
1183 | // Uart.posCnt++; | |
1184 | // if(bit) { | |
1185 | // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs | |
1186 | // // stayed high for too long between | |
1187 | // // characters, error | |
1188 | // Uart.state = STATE_UNSYNCD; | |
1189 | // } | |
1190 | // } else { | |
1191 | // // falling edge, this starts the data byte | |
1192 | // Uart.posCnt = 0; | |
1193 | // Uart.bitCnt = 0; | |
1194 | // Uart.shiftReg = 0; | |
1195 | // Uart.state = STATE_RECEIVING_DATA; | |
1196 | // } | |
1197 | // break; | |
1198 | ||
1199 | // case STATE_RECEIVING_DATA: | |
1200 | // Uart.posCnt++; | |
1201 | // if(Uart.posCnt == 2) { | |
1202 | // // time to sample a bit | |
1203 | // Uart.shiftReg >>= 1; | |
1204 | // if(bit) { | |
1205 | // Uart.shiftReg |= 0x200; | |
1206 | // } | |
1207 | // Uart.bitCnt++; | |
1208 | // } | |
1209 | // if(Uart.posCnt >= 4) { | |
1210 | // Uart.posCnt = 0; | |
1211 | // } | |
1212 | // if(Uart.bitCnt == 10) { | |
1213 | // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) | |
1214 | // { | |
1215 | // // this is a data byte, with correct | |
1216 | // // start and stop bits | |
1217 | // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; | |
1218 | // Uart.byteCnt++; | |
1219 | ||
1220 | // if(Uart.byteCnt >= Uart.byteCntMax) { | |
1221 | // // Buffer overflowed, give up | |
1222 | // LED_A_OFF(); | |
1223 | // Uart.state = STATE_UNSYNCD; | |
1224 | // } else { | |
1225 | // // so get the next byte now | |
1226 | // Uart.posCnt = 0; | |
1227 | // Uart.state = STATE_AWAITING_START_BIT; | |
1228 | // } | |
1229 | // } else if (Uart.shiftReg == 0x000) { | |
1230 | // // this is an EOF byte | |
1231 | // LED_A_OFF(); // Finished receiving | |
1232 | // Uart.state = STATE_UNSYNCD; | |
1233 | // if (Uart.byteCnt != 0) { | |
1234 | // return TRUE; | |
1235 | // } | |
1236 | // } else { | |
1237 | // // this is an error | |
1238 | // LED_A_OFF(); | |
1239 | // Uart.state = STATE_UNSYNCD; | |
1240 | // } | |
1241 | // } | |
1242 | // break; | |
1243 | ||
1244 | // default: | |
1245 | // LED_A_OFF(); | |
1246 | // Uart.state = STATE_UNSYNCD; | |
1247 | // break; | |
1248 | // } | |
1249 | ||
1250 | // return FALSE; | |
1251 | // } | |
62577a62 | 1252 | /* |
3e134b4c | 1253 | |
f7b42573 | 1254 | static void UartReset() { |
1255 | Uart.byteCntMax = 3; | |
3e134b4c | 1256 | Uart.state = STATE_UNSYNCD; |
1257 | Uart.byteCnt = 0; | |
1258 | Uart.bitCnt = 0; | |
1259 | Uart.posCnt = 0; | |
f7b42573 | 1260 | memset(Uart.output, 0x00, 3); |
3e134b4c | 1261 | } |
62577a62 | 1262 | */ |
f7b42573 | 1263 | // static void UartInit(uint8_t *data) { |
3e134b4c | 1264 | // Uart.output = data; |
1265 | // UartReset(); | |
1266 | // } | |
1267 | ||
1268 | //============================================================================= | |
1269 | // An LEGIC reader. We take layer two commands, code them | |
1270 | // appropriately, and then send them to the tag. We then listen for the | |
1271 | // tag's response, which we leave in the buffer to be demodulated on the | |
1272 | // PC side. | |
1273 | //============================================================================= | |
62577a62 | 1274 | /* |
3e134b4c | 1275 | static struct { |
1276 | enum { | |
1277 | DEMOD_UNSYNCD, | |
1278 | DEMOD_PHASE_REF_TRAINING, | |
1279 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, | |
1280 | DEMOD_GOT_FALLING_EDGE_OF_SOF, | |
1281 | DEMOD_AWAITING_START_BIT, | |
1282 | DEMOD_RECEIVING_DATA | |
1283 | } state; | |
1284 | int bitCount; | |
1285 | int posCount; | |
1286 | int thisBit; | |
1287 | uint16_t shiftReg; | |
1288 | uint8_t *output; | |
1289 | int len; | |
1290 | int sumI; | |
1291 | int sumQ; | |
1292 | } Demod; | |
62577a62 | 1293 | */ |
3e134b4c | 1294 | /* |
1295 | * Handles reception of a bit from the tag | |
1296 | * | |
1297 | * This function is called 2 times per bit (every 4 subcarrier cycles). | |
1298 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us | |
1299 | * | |
1300 | * LED handling: | |
1301 | * LED C -> ON once we have received the SOF and are expecting the rest. | |
1302 | * LED C -> OFF once we have received EOF or are unsynced | |
1303 | * | |
1304 | * Returns: true if we received a EOF | |
1305 | * false if we are still waiting for some more | |
1306 | * | |
1307 | */ | |
3e134b4c | 1308 | |
62577a62 | 1309 | /* |
3e134b4c | 1310 | static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq) |
1311 | { | |
1312 | int v = 0; | |
1313 | int ai = ABS(ci); | |
1314 | int aq = ABS(cq); | |
1315 | int halfci = (ai >> 1); | |
1316 | int halfcq = (aq >> 1); | |
1317 | ||
1318 | switch(Demod.state) { | |
1319 | case DEMOD_UNSYNCD: | |
1320 | ||
1321 | CHECK_FOR_SUBCARRIER() | |
1322 | ||
1323 | if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected | |
1324 | Demod.state = DEMOD_PHASE_REF_TRAINING; | |
1325 | Demod.sumI = ci; | |
1326 | Demod.sumQ = cq; | |
1327 | Demod.posCount = 1; | |
1328 | } | |
1329 | break; | |
1330 | ||
1331 | case DEMOD_PHASE_REF_TRAINING: | |
1332 | if(Demod.posCount < 8) { | |
1333 | ||
1334 | CHECK_FOR_SUBCARRIER() | |
1335 | ||
1336 | if (v > SUBCARRIER_DETECT_THRESHOLD) { | |
1337 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. | |
1338 | // note: synchronization time > 80 1/fs | |
1339 | Demod.sumI += ci; | |
1340 | Demod.sumQ += cq; | |
1341 | ++Demod.posCount; | |
1342 | } else { | |
1343 | // subcarrier lost | |
1344 | Demod.state = DEMOD_UNSYNCD; | |
1345 | } | |
1346 | } else { | |
1347 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; | |
1348 | } | |
1349 | break; | |
1350 | ||
1351 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: | |
1352 | ||
1353 | MAKE_SOFT_DECISION() | |
1354 | ||
1355 | //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq ); | |
1356 | // logic '0' detected | |
1357 | if (v <= 0) { | |
1358 | ||
1359 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; | |
1360 | ||
1361 | // start of SOF sequence | |
1362 | Demod.posCount = 0; | |
1363 | } else { | |
1364 | // maximum length of TR1 = 200 1/fs | |
1365 | if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD; | |
1366 | } | |
1367 | ++Demod.posCount; | |
1368 | break; | |
1369 | ||
1370 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: | |
1371 | ++Demod.posCount; | |
1372 | ||
1373 | MAKE_SOFT_DECISION() | |
1374 | ||
1375 | if(v > 0) { | |
1376 | // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges | |
1377 | if(Demod.posCount < 10*2) { | |
1378 | Demod.state = DEMOD_UNSYNCD; | |
1379 | } else { | |
1380 | LED_C_ON(); // Got SOF | |
1381 | Demod.state = DEMOD_AWAITING_START_BIT; | |
1382 | Demod.posCount = 0; | |
1383 | Demod.len = 0; | |
1384 | } | |
1385 | } else { | |
1386 | // low phase of SOF too long (> 12 etu) | |
1387 | if(Demod.posCount > 13*2) { | |
1388 | Demod.state = DEMOD_UNSYNCD; | |
1389 | LED_C_OFF(); | |
1390 | } | |
1391 | } | |
1392 | break; | |
1393 | ||
1394 | case DEMOD_AWAITING_START_BIT: | |
1395 | ++Demod.posCount; | |
1396 | ||
1397 | MAKE_SOFT_DECISION() | |
1398 | ||
1399 | if(v > 0) { | |
1400 | // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs | |
1401 | if(Demod.posCount > 3*2) { | |
1402 | Demod.state = DEMOD_UNSYNCD; | |
1403 | LED_C_OFF(); | |
1404 | } | |
1405 | } else { | |
1406 | // start bit detected | |
1407 | Demod.bitCount = 0; | |
1408 | Demod.posCount = 1; // this was the first half | |
1409 | Demod.thisBit = v; | |
1410 | Demod.shiftReg = 0; | |
1411 | Demod.state = DEMOD_RECEIVING_DATA; | |
1412 | } | |
1413 | break; | |
1414 | ||
1415 | case DEMOD_RECEIVING_DATA: | |
1416 | ||
1417 | MAKE_SOFT_DECISION() | |
1418 | ||
1419 | if(Demod.posCount == 0) { | |
1420 | // first half of bit | |
1421 | Demod.thisBit = v; | |
1422 | Demod.posCount = 1; | |
1423 | } else { | |
1424 | // second half of bit | |
1425 | Demod.thisBit += v; | |
1426 | Demod.shiftReg >>= 1; | |
1427 | // logic '1' | |
1428 | if(Demod.thisBit > 0) | |
1429 | Demod.shiftReg |= 0x200; | |
1430 | ||
1431 | ++Demod.bitCount; | |
1432 | ||
1433 | if(Demod.bitCount == 10) { | |
1434 | ||
1435 | uint16_t s = Demod.shiftReg; | |
1436 | ||
1437 | if((s & 0x200) && !(s & 0x001)) { | |
1438 | // stop bit == '1', start bit == '0' | |
1439 | uint8_t b = (s >> 1); | |
1440 | Demod.output[Demod.len] = b; | |
1441 | ++Demod.len; | |
1442 | Demod.state = DEMOD_AWAITING_START_BIT; | |
1443 | } else { | |
1444 | Demod.state = DEMOD_UNSYNCD; | |
1445 | LED_C_OFF(); | |
1446 | ||
1447 | if(s == 0x000) { | |
1448 | // This is EOF (start, stop and all data bits == '0' | |
1449 | return TRUE; | |
1450 | } | |
1451 | } | |
1452 | } | |
1453 | Demod.posCount = 0; | |
1454 | } | |
1455 | break; | |
1456 | ||
1457 | default: | |
1458 | Demod.state = DEMOD_UNSYNCD; | |
1459 | LED_C_OFF(); | |
1460 | break; | |
1461 | } | |
1462 | return FALSE; | |
1463 | } | |
62577a62 | 1464 | */ |
1465 | /* | |
3e134b4c | 1466 | // Clear out the state of the "UART" that receives from the tag. |
1467 | static void DemodReset() { | |
1468 | Demod.len = 0; | |
1469 | Demod.state = DEMOD_UNSYNCD; | |
1470 | Demod.posCount = 0; | |
1471 | Demod.sumI = 0; | |
1472 | Demod.sumQ = 0; | |
1473 | Demod.bitCount = 0; | |
1474 | Demod.thisBit = 0; | |
1475 | Demod.shiftReg = 0; | |
f7b42573 | 1476 | memset(Demod.output, 0x00, 3); |
3e134b4c | 1477 | } |
1478 | ||
1479 | static void DemodInit(uint8_t *data) { | |
1480 | Demod.output = data; | |
1481 | DemodReset(); | |
1482 | } | |
62577a62 | 1483 | */ |
3e134b4c | 1484 | |
1485 | /* | |
1486 | * Demodulate the samples we received from the tag, also log to tracebuffer | |
1487 | * quiet: set to 'TRUE' to disable debug output | |
1488 | */ | |
62577a62 | 1489 | |
1490 | /* | |
3e134b4c | 1491 | #define LEGIC_DMA_BUFFER_SIZE 256 |
62577a62 | 1492 | |
1493 | static void GetSamplesForLegicDemod(int n, bool quiet) | |
3e134b4c | 1494 | { |
1495 | int max = 0; | |
1496 | bool gotFrame = FALSE; | |
1497 | int lastRxCounter = LEGIC_DMA_BUFFER_SIZE; | |
1498 | int ci, cq, samples = 0; | |
1499 | ||
1500 | BigBuf_free(); | |
1501 | ||
1502 | // And put the FPGA in the appropriate mode | |
1503 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ); | |
1504 | ||
1505 | // The response (tag -> reader) that we're receiving. | |
1506 | // Set up the demodulator for tag -> reader responses. | |
1507 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1508 | ||
1509 | // The DMA buffer, used to stream samples from the FPGA | |
1510 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE); | |
1511 | int8_t *upTo = dmaBuf; | |
1512 | ||
1513 | // Setup and start DMA. | |
1514 | if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){ | |
1515 | if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); | |
1516 | return; | |
1517 | } | |
1518 | ||
1519 | // Signal field is ON with the appropriate LED: | |
1520 | LED_D_ON(); | |
1521 | for(;;) { | |
1522 | int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; | |
1523 | if(behindBy > max) max = behindBy; | |
1524 | ||
1525 | while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) { | |
1526 | ci = upTo[0]; | |
1527 | cq = upTo[1]; | |
1528 | upTo += 2; | |
1529 | if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) { | |
1530 | upTo = dmaBuf; | |
1531 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
1532 | AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE; | |
1533 | } | |
1534 | lastRxCounter -= 2; | |
1535 | if(lastRxCounter <= 0) | |
1536 | lastRxCounter = LEGIC_DMA_BUFFER_SIZE; | |
1537 | ||
1538 | samples += 2; | |
1539 | ||
1540 | gotFrame = HandleLegicSamplesDemod(ci , cq ); | |
1541 | if ( gotFrame ) | |
1542 | break; | |
1543 | } | |
1544 | ||
1545 | if(samples > n || gotFrame) | |
1546 | break; | |
1547 | } | |
1548 | ||
1549 | FpgaDisableSscDma(); | |
1550 | ||
1551 | if (!quiet && Demod.len == 0) { | |
1552 | Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", | |
1553 | max, | |
1554 | samples, | |
1555 | gotFrame, | |
1556 | Demod.len, | |
1557 | Demod.sumI, | |
1558 | Demod.sumQ | |
1559 | ); | |
1560 | } | |
1561 | ||
1562 | //Tracing | |
1563 | if (Demod.len > 0) { | |
1564 | uint8_t parity[MAX_PARITY_SIZE] = {0x00}; | |
1565 | LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE); | |
1566 | } | |
1567 | } | |
62577a62 | 1568 | |
1569 | */ | |
1570 | ||
3e134b4c | 1571 | //----------------------------------------------------------------------------- |
1572 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1573 | //----------------------------------------------------------------------------- | |
62577a62 | 1574 | /* |
3e134b4c | 1575 | static void TransmitForLegic(void) |
1576 | { | |
1577 | int c; | |
1578 | ||
1579 | FpgaSetupSsc(); | |
1580 | ||
1581 | while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) | |
1582 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
1583 | ||
1584 | // Signal field is ON with the appropriate Red LED | |
1585 | LED_D_ON(); | |
1586 | ||
1587 | // Signal we are transmitting with the Green LED | |
1588 | LED_B_ON(); | |
1589 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
1590 | ||
1591 | for(c = 0; c < 10;) { | |
1592 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1593 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
1594 | c++; | |
1595 | } | |
1596 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1597 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1598 | (void)r; | |
1599 | } | |
1600 | WDT_HIT(); | |
1601 | } | |
1602 | ||
1603 | c = 0; | |
1604 | for(;;) { | |
1605 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1606 | AT91C_BASE_SSC->SSC_THR = ToSend[c]; | |
1607 | legic_prng_forward(1); // forward the lfsr | |
1608 | c++; | |
1609 | if(c >= ToSendMax) { | |
1610 | break; | |
1611 | } | |
1612 | } | |
1613 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1614 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1615 | (void)r; | |
1616 | } | |
1617 | WDT_HIT(); | |
1618 | } | |
1619 | LED_B_OFF(); | |
1620 | } | |
62577a62 | 1621 | */ |
3e134b4c | 1622 | |
1623 | //----------------------------------------------------------------------------- | |
1624 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], | |
1625 | // so that it is ready to transmit to the tag using TransmitForLegic(). | |
1626 | //----------------------------------------------------------------------------- | |
62577a62 | 1627 | /* |
bf2cd644 | 1628 | static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) |
3e134b4c | 1629 | { |
1630 | int i, j; | |
1631 | uint8_t b; | |
1632 | ||
1633 | ToSendReset(); | |
1634 | ||
1635 | // Send SOF | |
bf2cd644 | 1636 | for(i = 0; i < 7; i++) |
3e134b4c | 1637 | ToSendStuffBit(1); |
3e134b4c | 1638 | |
bf2cd644 | 1639 | |
1640 | for(i = 0; i < cmdlen; i++) { | |
3e134b4c | 1641 | // Start bit |
1642 | ToSendStuffBit(0); | |
1643 | ||
1644 | // Data bits | |
1645 | b = cmd[i]; | |
bf2cd644 | 1646 | for(j = 0; j < bits; j++) { |
3e134b4c | 1647 | if(b & 1) { |
1648 | ToSendStuffBit(1); | |
1649 | } else { | |
1650 | ToSendStuffBit(0); | |
1651 | } | |
1652 | b >>= 1; | |
1653 | } | |
1654 | } | |
1655 | ||
1656 | // Convert from last character reference to length | |
1657 | ++ToSendMax; | |
1658 | } | |
62577a62 | 1659 | */ |
3e134b4c | 1660 | /** |
1661 | Convenience function to encode, transmit and trace Legic comms | |
1662 | **/ | |
62577a62 | 1663 | /* |
1664 | static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) | |
3e134b4c | 1665 | { |
bf2cd644 | 1666 | CodeLegicBitsAsReader(cmd, cmdlen, bits); |
3e134b4c | 1667 | TransmitForLegic(); |
1668 | if (tracing) { | |
1669 | uint8_t parity[1] = {0x00}; | |
3e82f956 | 1670 | LogTrace(cmd, cmdlen, 0, 0, parity, TRUE); |
3e134b4c | 1671 | } |
1672 | } | |
1673 | ||
62577a62 | 1674 | */ |
3e134b4c | 1675 | // Set up LEGIC communication |
62577a62 | 1676 | /* |
3e134b4c | 1677 | void ice_legic_setup() { |
1678 | ||
1679 | // standard things. | |
1680 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1681 | BigBuf_free(); BigBuf_Clear_ext(false); | |
1682 | clear_trace(); | |
1683 | set_tracing(TRUE); | |
1684 | DemodReset(); | |
1685 | UartReset(); | |
1686 | ||
1687 | // Set up the synchronous serial port | |
1688 | FpgaSetupSsc(); | |
1689 | ||
1690 | // connect Demodulated Signal to ADC: | |
1691 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1692 | ||
1693 | // Signal field is on with the appropriate LED | |
1694 | LED_D_ON(); | |
1695 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
f7b42573 | 1696 | SpinDelay(20); |
3e134b4c | 1697 | // Start the timer |
1698 | //StartCountSspClk(); | |
1699 | ||
1700 | // initalize CRC | |
1701 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); | |
1702 | ||
1703 | // initalize prng | |
1704 | legic_prng_init(0); | |
62577a62 | 1705 | } |
1706 | */ |