]>
Commit | Line | Data |
---|---|---|
bd20f8f4 | 1 | //----------------------------------------------------------------------------- |
2 | // (c) 2009 Henryk Plötz <henryk@ploetzli.ch> | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // LEGIC RF simulation code | |
9 | //----------------------------------------------------------------------------- | |
f7e3ed82 | 10 | #include "legicrf.h" |
8e220a91 | 11 | |
a7247d85 | 12 | static struct legic_frame { |
a3994421 | 13 | uint8_t bits; |
a2b1414f | 14 | uint32_t data; |
a7247d85 | 15 | } current_frame; |
8e220a91 | 16 | |
3612a8a8 | 17 | static enum { |
18 | STATE_DISCON, | |
19 | STATE_IV, | |
20 | STATE_CON, | |
21 | } legic_state; | |
22 | ||
23 | static crc_t legic_crc; | |
24 | static int legic_read_count; | |
25 | static uint32_t legic_prng_bc; | |
26 | static uint32_t legic_prng_iv; | |
27 | ||
28 | static int legic_phase_drift; | |
29 | static int legic_frame_drift; | |
30 | static int legic_reqresp_drift; | |
8e220a91 | 31 | |
add16a62 | 32 | AT91PS_TC timer; |
3612a8a8 | 33 | AT91PS_TC prng_timer; |
add16a62 | 34 | |
ad5bc8cc | 35 | /* |
c71c5ee1 | 36 | static void setup_timer(void) { |
ad5bc8cc | 37 | // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging |
38 | // this it won't be terribly accurate but should be good enough. | |
39 | // | |
add16a62 | 40 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); |
41 | timer = AT91C_BASE_TC1; | |
42 | timer->TC_CCR = AT91C_TC_CLKDIS; | |
0aa4cfc2 | 43 | timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; |
add16a62 | 44 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; |
45 | ||
ad5bc8cc | 46 | // |
47 | // Set up Timer 2 to use for measuring time between frames in | |
48 | // tag simulation mode. Runs 4x faster as Timer 1 | |
49 | // | |
3612a8a8 | 50 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2); |
51 | prng_timer = AT91C_BASE_TC2; | |
52 | prng_timer->TC_CCR = AT91C_TC_CLKDIS; | |
53 | prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK; | |
54 | prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
55 | } | |
111c6934 | 56 | |
57 | AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14); | |
58 | AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE; | |
59 | ||
60 | // fast clock | |
61 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable | |
62 | AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks | |
63 | AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR | | |
64 | AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET; | |
65 | AT91C_BASE_TC0->TC_RA = 1; | |
66 | AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000 | |
67 | ||
ad5bc8cc | 68 | */ |
69 | ||
70 | // At TIMER_CLOCK3 (MCK/32) | |
22f4dca8 | 71 | // testing calculating in (us) microseconds. |
111c6934 | 72 | #define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks |
73 | #define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks | |
76471e5d | 74 | #define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */ |
7a8db2f6 | 75 | #define TAG_BIT_PERIOD 142 // 100us == 100 * 1.5 == 150ticks |
111c6934 | 76 | #define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495 |
ad5bc8cc | 77 | |
76471e5d | 78 | #define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit |
add16a62 | 79 | |
3612a8a8 | 80 | #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */ |
81 | #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */ | |
82 | ||
3612a8a8 | 83 | #define OFFSET_LOG 1024 |
add16a62 | 84 | |
85 | #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz))) | |
aac23b24 | 86 | |
ad5bc8cc | 87 | #ifndef SHORT_COIL |
b4a6775b | 88 | # define SHORT_COIL LOW(GPIO_SSC_DOUT); |
ad5bc8cc | 89 | #endif |
90 | #ifndef OPEN_COIL | |
b4a6775b | 91 | # define OPEN_COIL HIGH(GPIO_SSC_DOUT); |
ad5bc8cc | 92 | #endif |
93 | ||
111c6934 | 94 | // Pause pulse, off in 20us / 30ticks, |
95 | // ONE / ZERO bit pulse, | |
96 | // one == 80us / 120ticks | |
97 | // zero == 40us / 60ticks | |
98 | #ifndef COIL_PULSE | |
25d52dd2 | 99 | # define COIL_PULSE(x) \ |
100 | do { \ | |
76471e5d | 101 | SHORT_COIL; \ |
25d52dd2 | 102 | WaitTicks( (RWD_TIME_PAUSE) ); \ |
76471e5d | 103 | OPEN_COIL; \ |
22f4dca8 | 104 | WaitTicks((x)); \ |
25d52dd2 | 105 | } while (0) |
111c6934 | 106 | #endif |
c71c5ee1 | 107 | |
108 | // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces. | |
109 | // Historically it used to be FREE_BUFFER_SIZE, which was 2744. | |
110 | #define LEGIC_CARD_MEMSIZE 1024 | |
111 | static uint8_t* cardmem; | |
112 | ||
faabfafe | 113 | static void frame_append_bit(struct legic_frame * const f, uint8_t bit) { |
b4a6775b | 114 | // Overflow, won't happen |
115 | if (f->bits >= 31) return; | |
116 | ||
117 | f->data |= (bit << f->bits); | |
118 | f->bits++; | |
119 | } | |
120 | ||
121 | static void frame_clean(struct legic_frame * const f) { | |
122 | f->data = 0; | |
123 | f->bits = 0; | |
124 | } | |
125 | ||
ad5bc8cc | 126 | // Prng works when waiting in 99.1us cycles. |
127 | // and while sending/receiving in bit frames (100, 60) | |
b4a6775b | 128 | /*static void CalibratePrng( uint32_t time){ |
ad5bc8cc | 129 | // Calculate Cycles based on timer 100us |
87342aad | 130 | uint32_t i = (time - sendFrameStop) / 100 ; |
ad5bc8cc | 131 | |
132 | // substract cycles of finished frames | |
133 | int k = i - legic_prng_count()+1; | |
134 | ||
135 | // substract current frame length, rewind to beginning | |
136 | if ( k > 0 ) | |
137 | legic_prng_forward(k); | |
138 | } | |
b4a6775b | 139 | */ |
ad5bc8cc | 140 | |
3612a8a8 | 141 | /* Generate Keystream */ |
22f4dca8 | 142 | uint32_t get_key_stream(int skip, int count) { |
633d0686 | 143 | |
c71c5ee1 | 144 | int i; |
edaf10af | 145 | |
c71c5ee1 | 146 | // Use int to enlarge timer tc to 32bit |
edaf10af | 147 | legic_prng_bc += prng_timer->TC_CV; |
c71c5ee1 | 148 | |
149 | // reset the prng timer. | |
edaf10af | 150 | |
151 | /* If skip == -1, forward prng time based */ | |
152 | if(skip == -1) { | |
c71c5ee1 | 153 | i = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */ |
edaf10af | 154 | i -= legic_prng_count(); /* substract cycles of finished frames */ |
c71c5ee1 | 155 | i -= count; /* substract current frame length, rewind to beginning */ |
edaf10af | 156 | legic_prng_forward(i); |
157 | } else { | |
158 | legic_prng_forward(skip); | |
159 | } | |
160 | ||
edaf10af | 161 | i = (count == 6) ? -1 : legic_read_count; |
162 | ||
633d0686 | 163 | // log |
164 | //uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1), BYTEx(send, 0), BYTEx(send, 1), legic_prng_count()}; | |
165 | //LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, TRUE); | |
edaf10af | 166 | |
167 | /* Generate KeyStream */ | |
633d0686 | 168 | return legic_prng_get_bits(count); |
3612a8a8 | 169 | } |
170 | ||
171 | /* Send a frame in tag mode, the FPGA must have been set up by | |
172 | * LegicRfSimulate | |
173 | */ | |
633d0686 | 174 | void frame_send_tag(uint16_t response, uint8_t bits) { |
175 | ||
176 | uint16_t mask = 1; | |
177 | ||
ad5bc8cc | 178 | /* Bitbang the response */ |
633d0686 | 179 | SHORT_COIL; |
ad5bc8cc | 180 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
181 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
3612a8a8 | 182 | |
633d0686 | 183 | /* TAG_FRAME_WAIT -> shift by 2 */ |
184 | legic_prng_forward(2); | |
185 | response ^= legic_prng_get_bits(bits); | |
c71c5ee1 | 186 | |
ad5bc8cc | 187 | /* Wait for the frame start */ |
633d0686 | 188 | WaitTicks( TAG_FRAME_WAIT ); |
8e220a91 | 189 | |
633d0686 | 190 | for (; mask < BITMASK(bits); mask <<= 1) { |
00271f77 | 191 | if (response & mask) |
b1cd7d5c | 192 | OPEN_COIL |
edaf10af | 193 | else |
b1cd7d5c | 194 | SHORT_COIL |
633d0686 | 195 | WaitTicks(TAG_BIT_PERIOD); |
ad5bc8cc | 196 | } |
633d0686 | 197 | SHORT_COIL; |
ad5bc8cc | 198 | } |
c71c5ee1 | 199 | |
ad5bc8cc | 200 | /* Send a frame in reader mode, the FPGA must have been set up by |
201 | * LegicRfReader | |
202 | */ | |
22f4dca8 | 203 | void frame_sendAsReader(uint32_t data, uint8_t bits){ |
c71c5ee1 | 204 | |
111c6934 | 205 | uint32_t starttime = GET_TICKS, send = 0; |
ad5bc8cc | 206 | uint16_t mask = 1; |
111c6934 | 207 | |
208 | // xor lsfr onto data. | |
209 | send = data ^ legic_prng_get_bits(bits); | |
ad5bc8cc | 210 | |
211 | for (; mask < BITMASK(bits); mask <<= 1) { | |
fabef615 | 212 | if (send & mask) |
76471e5d | 213 | COIL_PULSE(RWD_TIME_1); |
fabef615 | 214 | else |
76471e5d | 215 | COIL_PULSE(RWD_TIME_0); |
dcc10e5e | 216 | } |
e30c654b | 217 | |
76471e5d | 218 | // Final pause to mark the end of the frame |
76471e5d | 219 | COIL_PULSE(0); |
b4a6775b | 220 | |
fabef615 | 221 | // log |
222 | uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1), BYTEx(send, 0), BYTEx(send, 1)}; | |
223 | LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, TRUE); | |
dcc10e5e | 224 | } |
225 | ||
226 | /* Receive a frame from the card in reader emulation mode, the FPGA and | |
ad5bc8cc | 227 | * timer must have been set up by LegicRfReader and frame_sendAsReader. |
e30c654b | 228 | * |
dcc10e5e | 229 | * The LEGIC RF protocol from card to reader does not include explicit |
230 | * frame start/stop information or length information. The reader must | |
231 | * know beforehand how many bits it wants to receive. (Notably: a card | |
232 | * sending a stream of 0-bits is indistinguishable from no card present.) | |
e30c654b | 233 | * |
dcc10e5e | 234 | * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but |
235 | * I'm not smart enough to use it. Instead I have patched hi_read_tx to output | |
236 | * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look | |
237 | * for edges. Count the edges in each bit interval. If they are approximately | |
238 | * 0 this was a 0-bit, if they are approximately equal to the number of edges | |
239 | * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the | |
ad5bc8cc | 240 | * timer that's still running from frame_sendAsReader in order to get a synchronization |
dcc10e5e | 241 | * with the frame that we just sent. |
e30c654b | 242 | * |
243 | * FIXME: Because we're relying on the hysteresis to just do the right thing | |
dcc10e5e | 244 | * the range is severely reduced (and you'll probably also need a good antenna). |
e30c654b | 245 | * So this should be fixed some time in the future for a proper receiver. |
dcc10e5e | 246 | */ |
111c6934 | 247 | static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) { |
ad5bc8cc | 248 | |
22f4dca8 | 249 | if ( bits > 32 ) return; |
3612a8a8 | 250 | |
22f4dca8 | 251 | uint8_t i = bits, edges = 0; |
d7e24e7c | 252 | uint32_t the_bit = 1, next_bit_at = 0, data = 0; |
fabef615 | 253 | uint32_t old_level = 0; |
254 | volatile uint32_t level = 0; | |
25d52dd2 | 255 | |
fabef615 | 256 | frame_clean(f); |
257 | ||
db44e049 | 258 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; |
259 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
260 | ||
faabfafe | 261 | // calibrate the prng. |
b4a6775b | 262 | legic_prng_forward(2); |
c649c433 | 263 | data = legic_prng_get_bits(bits); |
b4a6775b | 264 | |
b4a6775b | 265 | //FIXED time between sending frame and now listening frame. 330us |
111c6934 | 266 | uint32_t starttime = GET_TICKS; |
0b0b182f | 267 | // its about 9+9 ticks delay from end-send to here. |
0b0b182f | 268 | WaitTicks( 477 ); |
faabfafe | 269 | |
c649c433 | 270 | next_bit_at = GET_TICKS + TAG_BIT_PERIOD; |
25d52dd2 | 271 | |
22f4dca8 | 272 | while ( i-- ){ |
dcc10e5e | 273 | edges = 0; |
111c6934 | 274 | while ( GET_TICKS < next_bit_at) { |
ad5bc8cc | 275 | |
b4a6775b | 276 | level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); |
ad5bc8cc | 277 | |
278 | if (level != old_level) | |
b4a6775b | 279 | ++edges; |
280 | ||
dcc10e5e | 281 | old_level = level; |
25d52dd2 | 282 | } |
283 | ||
ad5bc8cc | 284 | next_bit_at += TAG_BIT_PERIOD; |
3612a8a8 | 285 | |
fabef615 | 286 | // We expect 42 edges (ONE) |
faabfafe | 287 | if ( edges > 20 ) |
8e220a91 | 288 | data ^= the_bit; |
87342aad | 289 | |
290 | the_bit <<= 1; | |
dcc10e5e | 291 | } |
e30c654b | 292 | |
b4a6775b | 293 | // output |
dcc10e5e | 294 | f->data = data; |
295 | f->bits = bits; | |
db44e049 | 296 | |
fabef615 | 297 | // log |
cb7902cd | 298 | uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)}; |
faabfafe | 299 | LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE); |
a7247d85 | 300 | } |
301 | ||
c71c5ee1 | 302 | // Setup pm3 as a Legic Reader |
87342aad | 303 | static uint32_t setup_phase_reader(uint8_t iv) { |
22f4dca8 | 304 | |
f7b42573 | 305 | // Switch on carrier and let the tag charge for 1ms |
ad5bc8cc | 306 | HIGH(GPIO_SSC_DOUT); |
77a689db | 307 | WaitUS(5000); |
ad5bc8cc | 308 | |
22f4dca8 | 309 | ResetTicks(); |
ad5bc8cc | 310 | |
f7b42573 | 311 | // no keystream yet |
c71c5ee1 | 312 | legic_prng_init(0); |
f7b42573 | 313 | |
ad5bc8cc | 314 | // send IV handshake |
315 | frame_sendAsReader(iv, 7); | |
316 | ||
317 | // Now both tag and reader has same IV. Prng can start. | |
3612a8a8 | 318 | legic_prng_init(iv); |
e30c654b | 319 | |
111c6934 | 320 | frame_receiveAsReader(¤t_frame, 6); |
f7b42573 | 321 | |
d7e24e7c | 322 | // 292us (438t) - fixed delay before sending ack. |
323 | // minus log and stuff 100tick? | |
324 | WaitTicks(338); | |
325 | legic_prng_forward(3); | |
ad5bc8cc | 326 | |
f7b42573 | 327 | // Send obsfuscated acknowledgment frame. |
ad5bc8cc | 328 | // 0x19 = 0x18 MIM22, 0x01 LSB READCMD |
329 | // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD | |
330 | switch ( current_frame.data ) { | |
87342aad | 331 | case 0x0D: frame_sendAsReader(0x19, 6); break; |
332 | case 0x1D: | |
333 | case 0x3D: frame_sendAsReader(0x39, 6); break; | |
334 | default: break; | |
f7b42573 | 335 | } |
d7e24e7c | 336 | |
337 | legic_prng_forward(2); | |
8e220a91 | 338 | return current_frame.data; |
2561caa2 | 339 | } |
340 | ||
22f4dca8 | 341 | static void LegicCommonInit(void) { |
342 | ||
7cc204bf | 343 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
b4a6775b | 344 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); |
dcc10e5e | 345 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
e30c654b | 346 | |
dcc10e5e | 347 | /* Bitbang the transmitter */ |
ad5bc8cc | 348 | LOW(GPIO_SSC_DOUT); |
dcc10e5e | 349 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
350 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
e30c654b | 351 | |
c71c5ee1 | 352 | // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier. |
0b0b182f | 353 | cardmem = BigBuf_get_EM_addr(); |
c71c5ee1 | 354 | memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE); |
355 | ||
356 | clear_trace(); | |
357 | set_tracing(TRUE); | |
8e220a91 | 358 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
ad5bc8cc | 359 | |
22f4dca8 | 360 | StartTicks(); |
8e220a91 | 361 | } |
362 | ||
111c6934 | 363 | // Switch off carrier, make sure tag is reset |
c71c5ee1 | 364 | static void switch_off_tag_rwd(void) { |
ad5bc8cc | 365 | LOW(GPIO_SSC_DOUT); |
3e750be3 | 366 | WaitUS(20); |
8e220a91 | 367 | WDT_HIT(); |
368 | } | |
c71c5ee1 | 369 | |
f7b42573 | 370 | // calculate crc4 for a legic READ command |
fabef615 | 371 | static uint32_t legic4Crc(uint8_t cmd, uint16_t byte_index, uint8_t value, uint8_t cmd_sz) { |
ad5bc8cc | 372 | crc_clear(&legic_crc); |
fabef615 | 373 | uint32_t temp = (value << cmd_sz) | (byte_index << 1) | cmd; |
cb7902cd | 374 | crc_update(&legic_crc, temp, cmd_sz + 8 ); |
8e220a91 | 375 | return crc_finish(&legic_crc); |
376 | } | |
377 | ||
fabef615 | 378 | int legic_read_byte( uint16_t index, uint8_t cmd_sz) { |
8e220a91 | 379 | |
fabef615 | 380 | uint8_t byte, crc, calcCrc = 0; |
381 | uint32_t cmd = (index << 1) | LEGIC_READ; | |
635d6e9b | 382 | |
383 | // 90ticks = 60us (should be 100us but crc calc takes time.) | |
384 | //WaitTicks(330); // 330ticks prng(4) - works | |
385 | WaitTicks(240); // 240ticks prng(3) - works | |
3e750be3 | 386 | |
ad5bc8cc | 387 | frame_sendAsReader(cmd, cmd_sz); |
111c6934 | 388 | frame_receiveAsReader(¤t_frame, 12); |
c71c5ee1 | 389 | |
c649c433 | 390 | // CRC check. |
111c6934 | 391 | byte = BYTEx(current_frame.data, 0); |
cb7902cd | 392 | crc = BYTEx(current_frame.data, 1); |
fabef615 | 393 | calcCrc = legic4Crc(LEGIC_READ, index, byte, cmd_sz); |
65c2d21d | 394 | |
cb7902cd | 395 | if( calcCrc != crc ) { |
396 | Dbprintf("!!! crc mismatch: expected %x but got %x !!!", calcCrc, crc); | |
397 | return -1; | |
398 | } | |
d7e24e7c | 399 | |
c15e07f1 | 400 | legic_prng_forward(3); |
8e220a91 | 401 | return byte; |
402 | } | |
403 | ||
c71c5ee1 | 404 | /* |
405 | * - assemble a write_cmd_frame with crc and send it | |
406 | * - wait until the tag sends back an ACK ('1' bit unencrypted) | |
407 | * - forward the prng based on the timing | |
8e220a91 | 408 | */ |
3e134b4c | 409 | //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) { |
111c6934 | 410 | int legic_write_byte(uint8_t byte, uint16_t addr, uint8_t addr_sz) { |
c71c5ee1 | 411 | |
412 | //do not write UID, CRC at offset 0-4. | |
111c6934 | 413 | if (addr <= 4) return 0; |
c71c5ee1 | 414 | |
415 | // crc | |
3612a8a8 | 416 | crc_clear(&legic_crc); |
417 | crc_update(&legic_crc, 0, 1); /* CMD_WRITE */ | |
418 | crc_update(&legic_crc, addr, addr_sz); | |
419 | crc_update(&legic_crc, byte, 8); | |
3612a8a8 | 420 | uint32_t crc = crc_finish(&legic_crc); |
111c6934 | 421 | uint32_t crc2 = legic4Crc(LEGIC_WRITE, addr, byte, addr_sz+1); |
7bc3c99e | 422 | if ( crc != crc2 ) { |
111c6934 | 423 | Dbprintf("crc is missmatch"); |
7bc3c99e | 424 | return 1; |
425 | } | |
c71c5ee1 | 426 | // send write command |
3612a8a8 | 427 | uint32_t cmd = ((crc <<(addr_sz+1+8)) //CRC |
428 | |(byte <<(addr_sz+1)) //Data | |
429 | |(addr <<1) //Address | |
111c6934 | 430 | | LEGIC_WRITE); //CMD = Write |
431 | ||
3612a8a8 | 432 | uint32_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd |
433 | ||
00271f77 | 434 | legic_prng_forward(2); |
c71c5ee1 | 435 | |
7bc3c99e | 436 | WaitTicks(330); |
c71c5ee1 | 437 | |
ad5bc8cc | 438 | frame_sendAsReader(cmd, cmd_sz); |
7bc3c99e | 439 | |
111c6934 | 440 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; |
441 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
3612a8a8 | 442 | |
c71c5ee1 | 443 | // wait for ack |
444 | int t, old_level = 0, edges = 0; | |
445 | int next_bit_at = 0; | |
3e134b4c | 446 | |
00271f77 | 447 | WaitTicks(TAG_FRAME_WAIT); |
c71c5ee1 | 448 | |
111c6934 | 449 | for( t = 0; t < 80; ++t) { |
3612a8a8 | 450 | edges = 0; |
ad5bc8cc | 451 | next_bit_at += TAG_BIT_PERIOD; |
3612a8a8 | 452 | while(timer->TC_CV < next_bit_at) { |
0b0b182f | 453 | volatile uint32_t level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); |
111c6934 | 454 | if(level != old_level) |
3612a8a8 | 455 | edges++; |
111c6934 | 456 | |
3612a8a8 | 457 | old_level = level; |
458 | } | |
0b0b182f | 459 | if(edges > 20 ) { /* expected are 42 edges */ |
3612a8a8 | 460 | int t = timer->TC_CV; |
ad5bc8cc | 461 | int c = t / TAG_BIT_PERIOD; |
c71c5ee1 | 462 | |
22f4dca8 | 463 | ResetTimer(timer); |
cc708897 | 464 | legic_prng_forward(c); |
3612a8a8 | 465 | return 0; |
466 | } | |
467 | } | |
c71c5ee1 | 468 | |
22f4dca8 | 469 | ResetTimer(timer); |
3612a8a8 | 470 | return -1; |
471 | } | |
8e220a91 | 472 | |
fabef615 | 473 | int LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) { |
3e134b4c | 474 | |
fabef615 | 475 | uint16_t i = 0; |
a3994421 | 476 | uint8_t isOK = 1; |
477 | legic_card_select_t card; | |
478 | ||
8e220a91 | 479 | LegicCommonInit(); |
faabfafe | 480 | |
fabef615 | 481 | if ( legic_select_card_iv(&card, iv) ) { |
a3994421 | 482 | isOK = 0; |
483 | goto OUT; | |
484 | } | |
cb7902cd | 485 | |
c71c5ee1 | 486 | switch_off_tag_rwd(); |
cb7902cd | 487 | |
fabef615 | 488 | if (len + offset >= card.cardsize) |
489 | len = card.cardsize - offset; | |
a2b1414f | 490 | |
87342aad | 491 | setup_phase_reader(iv); |
d7e24e7c | 492 | |
3612a8a8 | 493 | LED_B_ON(); |
c15e07f1 | 494 | while (i < len) { |
fabef615 | 495 | int r = legic_read_byte(offset + i, card.cmdsize); |
ad5bc8cc | 496 | |
497 | if (r == -1 || BUTTON_PRESS()) { | |
fabef615 | 498 | if ( MF_DBGLEVEL >= 2) DbpString("operation aborted"); |
87342aad | 499 | isOK = 0; |
500 | goto OUT; | |
a2b1414f | 501 | } |
fabef615 | 502 | cardmem[i++] = r; |
3612a8a8 | 503 | WDT_HIT(); |
2561caa2 | 504 | } |
c71c5ee1 | 505 | |
87342aad | 506 | OUT: |
faabfafe | 507 | WDT_HIT(); |
3612a8a8 | 508 | switch_off_tag_rwd(); |
c71c5ee1 | 509 | LEDsoff(); |
86087eba | 510 | cmd_send(CMD_ACK, isOK, len, 0, cardmem, len); |
3612a8a8 | 511 | return 0; |
512 | } | |
513 | ||
cc708897 | 514 | /*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) { |
3e134b4c | 515 | int byte_index=0; |
516 | ||
517 | LED_B_ON(); | |
87342aad | 518 | setup_phase_reader(iv); |
3e134b4c | 519 | //legic_prng_forward(2); |
520 | while(byte_index < bytes) { | |
521 | int r; | |
522 | ||
523 | //check if the DCF should be changed | |
524 | if ( (offset == 0x05) && (bytes == 0x02) ) { | |
525 | //write DCF in reverse order (addr 0x06 before 0x05) | |
526 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); | |
527 | //legic_prng_forward(1); | |
528 | if(r == 0) { | |
529 | byte_index++; | |
530 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); | |
531 | } | |
532 | //legic_prng_forward(1); | |
533 | } | |
534 | else { | |
535 | r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue); | |
536 | } | |
537 | if((r != 0) || BUTTON_PRESS()) { | |
538 | Dbprintf("operation aborted @ 0x%03.3x", byte_index); | |
539 | switch_off_tag_rwd(); | |
540 | LED_B_OFF(); | |
541 | LED_C_OFF(); | |
542 | return -1; | |
543 | } | |
544 | ||
545 | WDT_HIT(); | |
546 | byte_index++; | |
547 | if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); | |
548 | } | |
549 | LED_B_OFF(); | |
550 | LED_C_OFF(); | |
551 | DbpString("write successful"); | |
552 | return 0; | |
553 | }*/ | |
554 | ||
fabef615 | 555 | void LegicRfWriter(uint16_t offset, uint16_t bytes, uint8_t iv) { |
117d9ec2 | 556 | |
fabef615 | 557 | int byte_index = 0; |
558 | uint8_t isOK = 1; | |
559 | legic_card_select_t card; | |
3612a8a8 | 560 | |
fabef615 | 561 | LegicCommonInit(); |
c71c5ee1 | 562 | |
fabef615 | 563 | if ( legic_select_card_iv(&card, iv) ) { |
564 | isOK = 0; | |
565 | goto OUT; | |
566 | } | |
c71c5ee1 | 567 | |
8e220a91 | 568 | switch_off_tag_rwd(); |
c71c5ee1 | 569 | |
fabef615 | 570 | switch(card.tagtype) { |
3e134b4c | 571 | case 0x0d: |
572 | if(offset+bytes > 22) { | |
111c6934 | 573 | Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset + bytes); |
3e134b4c | 574 | return; |
575 | } | |
111c6934 | 576 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset + bytes); |
3e134b4c | 577 | break; |
3612a8a8 | 578 | case 0x1d: |
579 | if(offset+bytes > 0x100) { | |
111c6934 | 580 | Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset + bytes); |
3612a8a8 | 581 | return; |
582 | } | |
111c6934 | 583 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset + bytes); |
3612a8a8 | 584 | break; |
585 | case 0x3d: | |
586 | if(offset+bytes > 0x400) { | |
111c6934 | 587 | Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset + bytes); |
3612a8a8 | 588 | return; |
589 | } | |
111c6934 | 590 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset, offset + bytes); |
3612a8a8 | 591 | break; |
592 | default: | |
3612a8a8 | 593 | return; |
594 | } | |
595 | ||
596 | LED_B_ON(); | |
87342aad | 597 | setup_phase_reader(iv); |
0b0b182f | 598 | |
111c6934 | 599 | int r = 0; |
3612a8a8 | 600 | while(byte_index < bytes) { |
3e134b4c | 601 | |
602 | //check if the DCF should be changed | |
603 | if ( ((byte_index+offset) == 0x05) && (bytes >= 0x02) ) { | |
604 | //write DCF in reverse order (addr 0x06 before 0x05) | |
fabef615 | 605 | r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), card.addrsize); |
3e134b4c | 606 | |
fabef615 | 607 | // write second byte on success |
3e134b4c | 608 | if(r == 0) { |
609 | byte_index++; | |
fabef615 | 610 | r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), card.addrsize); |
3e134b4c | 611 | } |
612 | } | |
613 | else { | |
fabef615 | 614 | r = legic_write_byte(cardmem[byte_index+offset], byte_index+offset, card.addrsize); |
3e134b4c | 615 | } |
c71c5ee1 | 616 | |
111c6934 | 617 | if ((r != 0) || BUTTON_PRESS()) { |
3612a8a8 | 618 | Dbprintf("operation aborted @ 0x%03.3x", byte_index); |
fabef615 | 619 | isOK = 0; |
620 | goto OUT; | |
3612a8a8 | 621 | } |
3e134b4c | 622 | |
623 | WDT_HIT(); | |
624 | byte_index++; | |
3e134b4c | 625 | } |
fabef615 | 626 | |
627 | OUT: | |
628 | cmd_send(CMD_ACK, isOK, 0,0,0,0); | |
629 | switch_off_tag_rwd(); | |
630 | LEDsoff(); | |
3e134b4c | 631 | } |
632 | ||
fabef615 | 633 | void LegicRfRawWriter(int address, int byte, uint8_t iv) { |
c71c5ee1 | 634 | |
635 | int byte_index = 0, addr_sz = 0; | |
3e134b4c | 636 | |
637 | LegicCommonInit(); | |
638 | ||
c71c5ee1 | 639 | if ( MF_DBGLEVEL >= 2) DbpString("setting up legic card"); |
640 | ||
87342aad | 641 | uint32_t tag_type = setup_phase_reader(iv); |
c71c5ee1 | 642 | |
3e134b4c | 643 | switch_off_tag_rwd(); |
c71c5ee1 | 644 | |
3e134b4c | 645 | switch(tag_type) { |
646 | case 0x0d: | |
cc708897 | 647 | if(address > 22) { |
648 | Dbprintf("Error: can not write to 0x%03.3x on MIM22", address); | |
3e134b4c | 649 | return; |
650 | } | |
651 | addr_sz = 5; | |
c71c5ee1 | 652 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte); |
3e134b4c | 653 | break; |
654 | case 0x1d: | |
cc708897 | 655 | if(address > 0x100) { |
656 | Dbprintf("Error: can not write to 0x%03.3x on MIM256", address); | |
3e134b4c | 657 | return; |
658 | } | |
659 | addr_sz = 8; | |
c71c5ee1 | 660 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte); |
3e134b4c | 661 | break; |
662 | case 0x3d: | |
cc708897 | 663 | if(address > 0x400) { |
664 | Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address); | |
3e134b4c | 665 | return; |
666 | } | |
667 | addr_sz = 10; | |
c71c5ee1 | 668 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address, byte); |
3e134b4c | 669 | break; |
670 | default: | |
671 | Dbprintf("No or unknown card found, aborting"); | |
672 | return; | |
673 | } | |
c71c5ee1 | 674 | |
cc708897 | 675 | Dbprintf("integer value: %d address: %d addr_sz: %d", byte, address, addr_sz); |
3e134b4c | 676 | LED_B_ON(); |
c71c5ee1 | 677 | |
87342aad | 678 | setup_phase_reader(iv); |
111c6934 | 679 | |
cc708897 | 680 | int r = legic_write_byte(byte, address, addr_sz); |
3e134b4c | 681 | |
682 | if((r != 0) || BUTTON_PRESS()) { | |
683 | Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index, r); | |
684 | switch_off_tag_rwd(); | |
c71c5ee1 | 685 | LEDsoff(); |
3e134b4c | 686 | return; |
3612a8a8 | 687 | } |
3612a8a8 | 688 | |
c71c5ee1 | 689 | LEDsoff(); |
690 | if ( MF_DBGLEVEL >= 1) DbpString("write successful"); | |
691 | } | |
3612a8a8 | 692 | |
fabef615 | 693 | int legic_select_card_iv(legic_card_select_t *p_card, uint8_t iv){ |
3e750be3 | 694 | |
a3994421 | 695 | if ( p_card == NULL ) return 1; |
3e750be3 | 696 | |
fabef615 | 697 | p_card->tagtype = setup_phase_reader(iv); |
a3994421 | 698 | |
699 | switch(p_card->tagtype) { | |
3e750be3 | 700 | case 0x0d: |
a3994421 | 701 | p_card->cmdsize = 6; |
fabef615 | 702 | p_card->addrsize = 5; |
a3994421 | 703 | p_card->cardsize = 22; |
3e750be3 | 704 | break; |
705 | case 0x1d: | |
a3994421 | 706 | p_card->cmdsize = 9; |
fabef615 | 707 | p_card->addrsize = 8; |
a3994421 | 708 | p_card->cardsize = 256; |
3e750be3 | 709 | break; |
710 | case 0x3d: | |
a3994421 | 711 | p_card->cmdsize = 11; |
fabef615 | 712 | p_card->addrsize = 10; |
a3994421 | 713 | p_card->cardsize = 1024; |
3e750be3 | 714 | break; |
715 | default: | |
a3994421 | 716 | p_card->cmdsize = 0; |
fabef615 | 717 | p_card->addrsize = 0; |
a3994421 | 718 | p_card->cardsize = 0; |
719 | return 2; | |
a3994421 | 720 | } |
721 | return 0; | |
722 | } | |
fabef615 | 723 | int legic_select_card(legic_card_select_t *p_card){ |
724 | return legic_select_card_iv(p_card, 0x01); | |
725 | } | |
a3994421 | 726 | |
727 | void LegicRfInfo(void){ | |
728 | ||
729 | uint8_t buf[sizeof(legic_card_select_t)] = {0x00}; | |
730 | legic_card_select_t *card = (legic_card_select_t*) buf; | |
731 | ||
732 | LegicCommonInit(); | |
c649c433 | 733 | |
a3994421 | 734 | if ( legic_select_card(card) ) { |
735 | cmd_send(CMD_ACK,0,0,0,0,0); | |
736 | goto OUT; | |
3e750be3 | 737 | } |
738 | ||
fabef615 | 739 | // read UID bytes |
a3994421 | 740 | for ( uint8_t i = 0; i < sizeof(card->uid); ++i) { |
741 | int r = legic_read_byte(i, card->cmdsize); | |
3e750be3 | 742 | if ( r == -1 ) { |
743 | cmd_send(CMD_ACK,0,0,0,0,0); | |
744 | goto OUT; | |
745 | } | |
a3994421 | 746 | card->uid[i] = r & 0xFF; |
3e750be3 | 747 | } |
748 | ||
fabef615 | 749 | cmd_send(CMD_ACK, 1, 0, 0, buf, sizeof(legic_card_select_t)); |
635d6e9b | 750 | |
a3994421 | 751 | OUT: |
3e750be3 | 752 | switch_off_tag_rwd(); |
753 | LEDsoff(); | |
3e750be3 | 754 | } |
755 | ||
c71c5ee1 | 756 | /* Handle (whether to respond) a frame in tag mode |
757 | * Only called when simulating a tag. | |
758 | */ | |
3612a8a8 | 759 | static void frame_handle_tag(struct legic_frame const * const f) |
760 | { | |
117d9ec2 | 761 | uint8_t *BigBuf = BigBuf_get_addr(); |
762 | ||
633d0686 | 763 | /* First Part of Handshake (IV) */ |
764 | if(f->bits == 7) { | |
765 | ||
766 | LED_C_ON(); | |
c71c5ee1 | 767 | |
ad5bc8cc | 768 | // Reset prng timer |
22f4dca8 | 769 | ResetTimer(prng_timer); |
633d0686 | 770 | |
771 | legic_prng_init(f->data); | |
772 | frame_send_tag(0x3d, 6); /* 0x3d^0x26 = 0x1B */ | |
773 | legic_state = STATE_IV; | |
774 | legic_read_count = 0; | |
775 | legic_prng_bc = 0; | |
776 | legic_prng_iv = f->data; | |
777 | ||
778 | ||
22f4dca8 | 779 | ResetTimer(timer); |
780 | WaitUS(280); | |
633d0686 | 781 | return; |
782 | } | |
3612a8a8 | 783 | |
784 | /* 0x19==??? */ | |
785 | if(legic_state == STATE_IV) { | |
cc708897 | 786 | int local_key = get_key_stream(3, 6); |
787 | int xored = 0x39 ^ local_key; | |
788 | if((f->bits == 6) && (f->data == xored)) { | |
3612a8a8 | 789 | legic_state = STATE_CON; |
790 | ||
22f4dca8 | 791 | ResetTimer(timer); |
792 | WaitUS(200); | |
3612a8a8 | 793 | return; |
111c6934 | 794 | |
795 | } else { | |
3612a8a8 | 796 | legic_state = STATE_DISCON; |
797 | LED_C_OFF(); | |
cc708897 | 798 | Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored); |
3612a8a8 | 799 | return; |
800 | } | |
801 | } | |
802 | ||
803 | /* Read */ | |
804 | if(f->bits == 11) { | |
805 | if(legic_state == STATE_CON) { | |
cc708897 | 806 | int key = get_key_stream(2, 11); //legic_phase_drift, 11); |
3612a8a8 | 807 | int addr = f->data ^ key; addr = addr >> 1; |
117d9ec2 | 808 | int data = BigBuf[addr]; |
111c6934 | 809 | int hash = legic4Crc(LEGIC_READ, addr, data, 11) << 8; |
117d9ec2 | 810 | BigBuf[OFFSET_LOG+legic_read_count] = (uint8_t)addr; |
3612a8a8 | 811 | legic_read_count++; |
812 | ||
813 | //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c); | |
814 | legic_prng_forward(legic_reqresp_drift); | |
815 | ||
633d0686 | 816 | frame_send_tag(hash | data, 12); |
3612a8a8 | 817 | |
22f4dca8 | 818 | ResetTimer(timer); |
cc708897 | 819 | legic_prng_forward(2); |
22f4dca8 | 820 | WaitUS(180); |
3612a8a8 | 821 | return; |
822 | } | |
823 | } | |
824 | ||
825 | /* Write */ | |
826 | if(f->bits == 23) { | |
827 | int key = get_key_stream(-1, 23); //legic_frame_drift, 23); | |
828 | int addr = f->data ^ key; addr = addr >> 1; addr = addr & 0x3ff; | |
829 | int data = f->data ^ key; data = data >> 11; data = data & 0xff; | |
830 | ||
831 | /* write command */ | |
832 | legic_state = STATE_DISCON; | |
833 | LED_C_OFF(); | |
834 | Dbprintf("write - addr: %x, data: %x", addr, data); | |
835 | return; | |
836 | } | |
837 | ||
838 | if(legic_state != STATE_DISCON) { | |
839 | Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count); | |
840 | int i; | |
841 | Dbprintf("IV: %03.3x", legic_prng_iv); | |
842 | for(i = 0; i<legic_read_count; i++) { | |
117d9ec2 | 843 | Dbprintf("Read Nb: %u, Addr: %u", i, BigBuf[OFFSET_LOG+i]); |
3612a8a8 | 844 | } |
845 | ||
846 | for(i = -1; i<legic_read_count; i++) { | |
847 | uint32_t t; | |
117d9ec2 | 848 | t = BigBuf[OFFSET_LOG+256+i*4]; |
849 | t |= BigBuf[OFFSET_LOG+256+i*4+1] << 8; | |
850 | t |= BigBuf[OFFSET_LOG+256+i*4+2] <<16; | |
851 | t |= BigBuf[OFFSET_LOG+256+i*4+3] <<24; | |
3612a8a8 | 852 | |
853 | Dbprintf("Cycles: %u, Frame Length: %u, Time: %u", | |
117d9ec2 | 854 | BigBuf[OFFSET_LOG+128+i], |
855 | BigBuf[OFFSET_LOG+384+i], | |
3612a8a8 | 856 | t); |
857 | } | |
858 | } | |
859 | legic_state = STATE_DISCON; | |
860 | legic_read_count = 0; | |
861 | SpinDelay(10); | |
862 | LED_C_OFF(); | |
863 | return; | |
864 | } | |
865 | ||
866 | /* Read bit by bit untill full frame is received | |
867 | * Call to process frame end answer | |
868 | */ | |
c71c5ee1 | 869 | static void emit(int bit) { |
870 | ||
871 | switch (bit) { | |
872 | case 1: | |
873 | frame_append_bit(¤t_frame, 1); | |
874 | break; | |
875 | case 0: | |
876 | frame_append_bit(¤t_frame, 0); | |
877 | break; | |
878 | default: | |
879 | if(current_frame.bits <= 4) { | |
880 | frame_clean(¤t_frame); | |
881 | } else { | |
882 | frame_handle_tag(¤t_frame); | |
883 | frame_clean(¤t_frame); | |
884 | } | |
885 | WDT_HIT(); | |
886 | break; | |
887 | } | |
3612a8a8 | 888 | } |
889 | ||
890 | void LegicRfSimulate(int phase, int frame, int reqresp) | |
891 | { | |
892 | /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode, | |
893 | * modulation mode set to 212kHz subcarrier. We are getting the incoming raw | |
894 | * envelope waveform on DIN and should send our response on DOUT. | |
895 | * | |
896 | * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll | |
897 | * measure the time between two rising edges on DIN, and no encoding on the | |
898 | * subcarrier from card to reader, so we'll just shift out our verbatim data | |
899 | * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear, | |
900 | * seems to be 300us-ish. | |
901 | */ | |
902 | ||
c71c5ee1 | 903 | legic_phase_drift = phase; |
904 | legic_frame_drift = frame; | |
905 | legic_reqresp_drift = reqresp; | |
906 | ||
907 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
908 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
909 | FpgaSetupSsc(); | |
910 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K); | |
911 | ||
912 | /* Bitbang the receiver */ | |
913 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; | |
914 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
915 | ||
ad5bc8cc | 916 | //setup_timer(); |
c71c5ee1 | 917 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
918 | ||
919 | int old_level = 0; | |
920 | int active = 0; | |
921 | legic_state = STATE_DISCON; | |
922 | ||
923 | LED_B_ON(); | |
924 | DbpString("Starting Legic emulator, press button to end"); | |
3612a8a8 | 925 | |
c71c5ee1 | 926 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
927 | int level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); | |
928 | int time = timer->TC_CV; | |
929 | ||
930 | if(level != old_level) { | |
931 | if(level == 1) { | |
932 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
933 | ||
934 | if (FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) { | |
935 | /* 1 bit */ | |
936 | emit(1); | |
937 | active = 1; | |
938 | LED_A_ON(); | |
939 | } else if (FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) { | |
940 | /* 0 bit */ | |
941 | emit(0); | |
942 | active = 1; | |
943 | LED_A_ON(); | |
944 | } else if (active) { | |
945 | /* invalid */ | |
946 | emit(-1); | |
947 | active = 0; | |
948 | LED_A_OFF(); | |
949 | } | |
950 | } | |
951 | } | |
3612a8a8 | 952 | |
c71c5ee1 | 953 | /* Frame end */ |
954 | if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) { | |
955 | emit(-1); | |
956 | active = 0; | |
957 | LED_A_OFF(); | |
958 | } | |
a2b1414f | 959 | |
c71c5ee1 | 960 | if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) { |
961 | timer->TC_CCR = AT91C_TC_CLKDIS; | |
962 | } | |
963 | ||
964 | old_level = level; | |
965 | WDT_HIT(); | |
966 | } | |
967 | if ( MF_DBGLEVEL >= 1) DbpString("Stopped"); | |
968 | LEDsoff(); | |
969 | } | |
3e134b4c | 970 | |
3e134b4c | 971 | //----------------------------------------------------------------------------- |
972 | // Code up a string of octets at layer 2 (including CRC, we don't generate | |
973 | // that here) so that they can be transmitted to the reader. Doesn't transmit | |
974 | // them yet, just leaves them ready to send in ToSend[]. | |
975 | //----------------------------------------------------------------------------- | |
976 | // static void CodeLegicAsTag(const uint8_t *cmd, int len) | |
977 | // { | |
978 | // int i; | |
979 | ||
980 | // ToSendReset(); | |
981 | ||
982 | // // Transmit a burst of ones, as the initial thing that lets the | |
983 | // // reader get phase sync. This (TR1) must be > 80/fs, per spec, | |
984 | // // but tag that I've tried (a Paypass) exceeds that by a fair bit, | |
985 | // // so I will too. | |
986 | // for(i = 0; i < 20; i++) { | |
987 | // ToSendStuffBit(1); | |
988 | // ToSendStuffBit(1); | |
989 | // ToSendStuffBit(1); | |
990 | // ToSendStuffBit(1); | |
991 | // } | |
992 | ||
993 | // // Send SOF. | |
994 | // for(i = 0; i < 10; i++) { | |
995 | // ToSendStuffBit(0); | |
996 | // ToSendStuffBit(0); | |
997 | // ToSendStuffBit(0); | |
998 | // ToSendStuffBit(0); | |
999 | // } | |
1000 | // for(i = 0; i < 2; i++) { | |
1001 | // ToSendStuffBit(1); | |
1002 | // ToSendStuffBit(1); | |
1003 | // ToSendStuffBit(1); | |
1004 | // ToSendStuffBit(1); | |
1005 | // } | |
1006 | ||
1007 | // for(i = 0; i < len; i++) { | |
1008 | // int j; | |
1009 | // uint8_t b = cmd[i]; | |
1010 | ||
1011 | // // Start bit | |
1012 | // ToSendStuffBit(0); | |
1013 | // ToSendStuffBit(0); | |
1014 | // ToSendStuffBit(0); | |
1015 | // ToSendStuffBit(0); | |
1016 | ||
1017 | // // Data bits | |
1018 | // for(j = 0; j < 8; j++) { | |
1019 | // if(b & 1) { | |
1020 | // ToSendStuffBit(1); | |
1021 | // ToSendStuffBit(1); | |
1022 | // ToSendStuffBit(1); | |
1023 | // ToSendStuffBit(1); | |
1024 | // } else { | |
1025 | // ToSendStuffBit(0); | |
1026 | // ToSendStuffBit(0); | |
1027 | // ToSendStuffBit(0); | |
1028 | // ToSendStuffBit(0); | |
1029 | // } | |
1030 | // b >>= 1; | |
1031 | // } | |
1032 | ||
1033 | // // Stop bit | |
1034 | // ToSendStuffBit(1); | |
1035 | // ToSendStuffBit(1); | |
1036 | // ToSendStuffBit(1); | |
1037 | // ToSendStuffBit(1); | |
1038 | // } | |
1039 | ||
1040 | // // Send EOF. | |
1041 | // for(i = 0; i < 10; i++) { | |
1042 | // ToSendStuffBit(0); | |
1043 | // ToSendStuffBit(0); | |
1044 | // ToSendStuffBit(0); | |
1045 | // ToSendStuffBit(0); | |
1046 | // } | |
1047 | // for(i = 0; i < 2; i++) { | |
1048 | // ToSendStuffBit(1); | |
1049 | // ToSendStuffBit(1); | |
1050 | // ToSendStuffBit(1); | |
1051 | // ToSendStuffBit(1); | |
1052 | // } | |
1053 | ||
1054 | // // Convert from last byte pos to length | |
1055 | // ToSendMax++; | |
1056 | // } | |
1057 | ||
1058 | //----------------------------------------------------------------------------- | |
1059 | // The software UART that receives commands from the reader, and its state | |
1060 | // variables. | |
1061 | //----------------------------------------------------------------------------- | |
62577a62 | 1062 | /* |
3e134b4c | 1063 | static struct { |
1064 | enum { | |
1065 | STATE_UNSYNCD, | |
1066 | STATE_GOT_FALLING_EDGE_OF_SOF, | |
1067 | STATE_AWAITING_START_BIT, | |
1068 | STATE_RECEIVING_DATA | |
1069 | } state; | |
1070 | uint16_t shiftReg; | |
1071 | int bitCnt; | |
1072 | int byteCnt; | |
1073 | int byteCntMax; | |
1074 | int posCnt; | |
1075 | uint8_t *output; | |
1076 | } Uart; | |
62577a62 | 1077 | */ |
3e134b4c | 1078 | /* Receive & handle a bit coming from the reader. |
1079 | * | |
1080 | * This function is called 4 times per bit (every 2 subcarrier cycles). | |
1081 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us | |
1082 | * | |
1083 | * LED handling: | |
1084 | * LED A -> ON once we have received the SOF and are expecting the rest. | |
1085 | * LED A -> OFF once we have received EOF or are in error state or unsynced | |
1086 | * | |
1087 | * Returns: true if we received a EOF | |
1088 | * false if we are still waiting for some more | |
1089 | */ | |
1090 | // static RAMFUNC int HandleLegicUartBit(uint8_t bit) | |
1091 | // { | |
1092 | // switch(Uart.state) { | |
1093 | // case STATE_UNSYNCD: | |
1094 | // if(!bit) { | |
1095 | // // we went low, so this could be the beginning of an SOF | |
1096 | // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; | |
1097 | // Uart.posCnt = 0; | |
1098 | // Uart.bitCnt = 0; | |
1099 | // } | |
1100 | // break; | |
1101 | ||
1102 | // case STATE_GOT_FALLING_EDGE_OF_SOF: | |
1103 | // Uart.posCnt++; | |
1104 | // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit | |
1105 | // if(bit) { | |
1106 | // if(Uart.bitCnt > 9) { | |
1107 | // // we've seen enough consecutive | |
1108 | // // zeros that it's a valid SOF | |
1109 | // Uart.posCnt = 0; | |
1110 | // Uart.byteCnt = 0; | |
1111 | // Uart.state = STATE_AWAITING_START_BIT; | |
1112 | // LED_A_ON(); // Indicate we got a valid SOF | |
1113 | // } else { | |
1114 | // // didn't stay down long enough | |
1115 | // // before going high, error | |
1116 | // Uart.state = STATE_UNSYNCD; | |
1117 | // } | |
1118 | // } else { | |
1119 | // // do nothing, keep waiting | |
1120 | // } | |
1121 | // Uart.bitCnt++; | |
1122 | // } | |
1123 | // if(Uart.posCnt >= 4) Uart.posCnt = 0; | |
1124 | // if(Uart.bitCnt > 12) { | |
1125 | // // Give up if we see too many zeros without | |
1126 | // // a one, too. | |
1127 | // LED_A_OFF(); | |
1128 | // Uart.state = STATE_UNSYNCD; | |
1129 | // } | |
1130 | // break; | |
1131 | ||
1132 | // case STATE_AWAITING_START_BIT: | |
1133 | // Uart.posCnt++; | |
1134 | // if(bit) { | |
1135 | // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs | |
1136 | // // stayed high for too long between | |
1137 | // // characters, error | |
1138 | // Uart.state = STATE_UNSYNCD; | |
1139 | // } | |
1140 | // } else { | |
1141 | // // falling edge, this starts the data byte | |
1142 | // Uart.posCnt = 0; | |
1143 | // Uart.bitCnt = 0; | |
1144 | // Uart.shiftReg = 0; | |
1145 | // Uart.state = STATE_RECEIVING_DATA; | |
1146 | // } | |
1147 | // break; | |
1148 | ||
1149 | // case STATE_RECEIVING_DATA: | |
1150 | // Uart.posCnt++; | |
1151 | // if(Uart.posCnt == 2) { | |
1152 | // // time to sample a bit | |
1153 | // Uart.shiftReg >>= 1; | |
1154 | // if(bit) { | |
1155 | // Uart.shiftReg |= 0x200; | |
1156 | // } | |
1157 | // Uart.bitCnt++; | |
1158 | // } | |
1159 | // if(Uart.posCnt >= 4) { | |
1160 | // Uart.posCnt = 0; | |
1161 | // } | |
1162 | // if(Uart.bitCnt == 10) { | |
1163 | // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) | |
1164 | // { | |
1165 | // // this is a data byte, with correct | |
1166 | // // start and stop bits | |
1167 | // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; | |
1168 | // Uart.byteCnt++; | |
1169 | ||
1170 | // if(Uart.byteCnt >= Uart.byteCntMax) { | |
1171 | // // Buffer overflowed, give up | |
1172 | // LED_A_OFF(); | |
1173 | // Uart.state = STATE_UNSYNCD; | |
1174 | // } else { | |
1175 | // // so get the next byte now | |
1176 | // Uart.posCnt = 0; | |
1177 | // Uart.state = STATE_AWAITING_START_BIT; | |
1178 | // } | |
1179 | // } else if (Uart.shiftReg == 0x000) { | |
1180 | // // this is an EOF byte | |
1181 | // LED_A_OFF(); // Finished receiving | |
1182 | // Uart.state = STATE_UNSYNCD; | |
1183 | // if (Uart.byteCnt != 0) { | |
1184 | // return TRUE; | |
1185 | // } | |
1186 | // } else { | |
1187 | // // this is an error | |
1188 | // LED_A_OFF(); | |
1189 | // Uart.state = STATE_UNSYNCD; | |
1190 | // } | |
1191 | // } | |
1192 | // break; | |
1193 | ||
1194 | // default: | |
1195 | // LED_A_OFF(); | |
1196 | // Uart.state = STATE_UNSYNCD; | |
1197 | // break; | |
1198 | // } | |
1199 | ||
1200 | // return FALSE; | |
1201 | // } | |
62577a62 | 1202 | /* |
3e134b4c | 1203 | |
f7b42573 | 1204 | static void UartReset() { |
1205 | Uart.byteCntMax = 3; | |
3e134b4c | 1206 | Uart.state = STATE_UNSYNCD; |
1207 | Uart.byteCnt = 0; | |
1208 | Uart.bitCnt = 0; | |
1209 | Uart.posCnt = 0; | |
f7b42573 | 1210 | memset(Uart.output, 0x00, 3); |
3e134b4c | 1211 | } |
62577a62 | 1212 | */ |
f7b42573 | 1213 | // static void UartInit(uint8_t *data) { |
3e134b4c | 1214 | // Uart.output = data; |
1215 | // UartReset(); | |
1216 | // } | |
1217 | ||
1218 | //============================================================================= | |
1219 | // An LEGIC reader. We take layer two commands, code them | |
1220 | // appropriately, and then send them to the tag. We then listen for the | |
1221 | // tag's response, which we leave in the buffer to be demodulated on the | |
1222 | // PC side. | |
1223 | //============================================================================= | |
62577a62 | 1224 | /* |
3e134b4c | 1225 | static struct { |
1226 | enum { | |
1227 | DEMOD_UNSYNCD, | |
1228 | DEMOD_PHASE_REF_TRAINING, | |
1229 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, | |
1230 | DEMOD_GOT_FALLING_EDGE_OF_SOF, | |
1231 | DEMOD_AWAITING_START_BIT, | |
1232 | DEMOD_RECEIVING_DATA | |
1233 | } state; | |
1234 | int bitCount; | |
1235 | int posCount; | |
1236 | int thisBit; | |
1237 | uint16_t shiftReg; | |
1238 | uint8_t *output; | |
1239 | int len; | |
1240 | int sumI; | |
1241 | int sumQ; | |
1242 | } Demod; | |
62577a62 | 1243 | */ |
3e134b4c | 1244 | /* |
1245 | * Handles reception of a bit from the tag | |
1246 | * | |
1247 | * This function is called 2 times per bit (every 4 subcarrier cycles). | |
1248 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us | |
1249 | * | |
1250 | * LED handling: | |
1251 | * LED C -> ON once we have received the SOF and are expecting the rest. | |
1252 | * LED C -> OFF once we have received EOF or are unsynced | |
1253 | * | |
1254 | * Returns: true if we received a EOF | |
1255 | * false if we are still waiting for some more | |
1256 | * | |
1257 | */ | |
3e134b4c | 1258 | |
62577a62 | 1259 | /* |
3e134b4c | 1260 | static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq) |
1261 | { | |
1262 | int v = 0; | |
1263 | int ai = ABS(ci); | |
1264 | int aq = ABS(cq); | |
1265 | int halfci = (ai >> 1); | |
1266 | int halfcq = (aq >> 1); | |
1267 | ||
1268 | switch(Demod.state) { | |
1269 | case DEMOD_UNSYNCD: | |
1270 | ||
1271 | CHECK_FOR_SUBCARRIER() | |
1272 | ||
1273 | if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected | |
1274 | Demod.state = DEMOD_PHASE_REF_TRAINING; | |
1275 | Demod.sumI = ci; | |
1276 | Demod.sumQ = cq; | |
1277 | Demod.posCount = 1; | |
1278 | } | |
1279 | break; | |
1280 | ||
1281 | case DEMOD_PHASE_REF_TRAINING: | |
1282 | if(Demod.posCount < 8) { | |
1283 | ||
1284 | CHECK_FOR_SUBCARRIER() | |
1285 | ||
1286 | if (v > SUBCARRIER_DETECT_THRESHOLD) { | |
1287 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. | |
1288 | // note: synchronization time > 80 1/fs | |
1289 | Demod.sumI += ci; | |
1290 | Demod.sumQ += cq; | |
1291 | ++Demod.posCount; | |
1292 | } else { | |
1293 | // subcarrier lost | |
1294 | Demod.state = DEMOD_UNSYNCD; | |
1295 | } | |
1296 | } else { | |
1297 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; | |
1298 | } | |
1299 | break; | |
1300 | ||
1301 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: | |
1302 | ||
1303 | MAKE_SOFT_DECISION() | |
1304 | ||
1305 | //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq ); | |
1306 | // logic '0' detected | |
1307 | if (v <= 0) { | |
1308 | ||
1309 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; | |
1310 | ||
1311 | // start of SOF sequence | |
1312 | Demod.posCount = 0; | |
1313 | } else { | |
1314 | // maximum length of TR1 = 200 1/fs | |
1315 | if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD; | |
1316 | } | |
1317 | ++Demod.posCount; | |
1318 | break; | |
1319 | ||
1320 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: | |
1321 | ++Demod.posCount; | |
1322 | ||
1323 | MAKE_SOFT_DECISION() | |
1324 | ||
1325 | if(v > 0) { | |
1326 | // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges | |
1327 | if(Demod.posCount < 10*2) { | |
1328 | Demod.state = DEMOD_UNSYNCD; | |
1329 | } else { | |
1330 | LED_C_ON(); // Got SOF | |
1331 | Demod.state = DEMOD_AWAITING_START_BIT; | |
1332 | Demod.posCount = 0; | |
1333 | Demod.len = 0; | |
1334 | } | |
1335 | } else { | |
1336 | // low phase of SOF too long (> 12 etu) | |
1337 | if(Demod.posCount > 13*2) { | |
1338 | Demod.state = DEMOD_UNSYNCD; | |
1339 | LED_C_OFF(); | |
1340 | } | |
1341 | } | |
1342 | break; | |
1343 | ||
1344 | case DEMOD_AWAITING_START_BIT: | |
1345 | ++Demod.posCount; | |
1346 | ||
1347 | MAKE_SOFT_DECISION() | |
1348 | ||
1349 | if(v > 0) { | |
1350 | // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs | |
1351 | if(Demod.posCount > 3*2) { | |
1352 | Demod.state = DEMOD_UNSYNCD; | |
1353 | LED_C_OFF(); | |
1354 | } | |
1355 | } else { | |
1356 | // start bit detected | |
1357 | Demod.bitCount = 0; | |
1358 | Demod.posCount = 1; // this was the first half | |
1359 | Demod.thisBit = v; | |
1360 | Demod.shiftReg = 0; | |
1361 | Demod.state = DEMOD_RECEIVING_DATA; | |
1362 | } | |
1363 | break; | |
1364 | ||
1365 | case DEMOD_RECEIVING_DATA: | |
1366 | ||
1367 | MAKE_SOFT_DECISION() | |
1368 | ||
1369 | if(Demod.posCount == 0) { | |
1370 | // first half of bit | |
1371 | Demod.thisBit = v; | |
1372 | Demod.posCount = 1; | |
1373 | } else { | |
1374 | // second half of bit | |
1375 | Demod.thisBit += v; | |
1376 | Demod.shiftReg >>= 1; | |
1377 | // logic '1' | |
1378 | if(Demod.thisBit > 0) | |
1379 | Demod.shiftReg |= 0x200; | |
1380 | ||
1381 | ++Demod.bitCount; | |
1382 | ||
1383 | if(Demod.bitCount == 10) { | |
1384 | ||
1385 | uint16_t s = Demod.shiftReg; | |
1386 | ||
1387 | if((s & 0x200) && !(s & 0x001)) { | |
1388 | // stop bit == '1', start bit == '0' | |
1389 | uint8_t b = (s >> 1); | |
1390 | Demod.output[Demod.len] = b; | |
1391 | ++Demod.len; | |
1392 | Demod.state = DEMOD_AWAITING_START_BIT; | |
1393 | } else { | |
1394 | Demod.state = DEMOD_UNSYNCD; | |
1395 | LED_C_OFF(); | |
1396 | ||
1397 | if(s == 0x000) { | |
1398 | // This is EOF (start, stop and all data bits == '0' | |
1399 | return TRUE; | |
1400 | } | |
1401 | } | |
1402 | } | |
1403 | Demod.posCount = 0; | |
1404 | } | |
1405 | break; | |
1406 | ||
1407 | default: | |
1408 | Demod.state = DEMOD_UNSYNCD; | |
1409 | LED_C_OFF(); | |
1410 | break; | |
1411 | } | |
1412 | return FALSE; | |
1413 | } | |
62577a62 | 1414 | */ |
1415 | /* | |
3e134b4c | 1416 | // Clear out the state of the "UART" that receives from the tag. |
1417 | static void DemodReset() { | |
1418 | Demod.len = 0; | |
1419 | Demod.state = DEMOD_UNSYNCD; | |
1420 | Demod.posCount = 0; | |
1421 | Demod.sumI = 0; | |
1422 | Demod.sumQ = 0; | |
1423 | Demod.bitCount = 0; | |
1424 | Demod.thisBit = 0; | |
1425 | Demod.shiftReg = 0; | |
f7b42573 | 1426 | memset(Demod.output, 0x00, 3); |
3e134b4c | 1427 | } |
1428 | ||
1429 | static void DemodInit(uint8_t *data) { | |
1430 | Demod.output = data; | |
1431 | DemodReset(); | |
1432 | } | |
62577a62 | 1433 | */ |
3e134b4c | 1434 | |
1435 | /* | |
1436 | * Demodulate the samples we received from the tag, also log to tracebuffer | |
1437 | * quiet: set to 'TRUE' to disable debug output | |
1438 | */ | |
62577a62 | 1439 | |
1440 | /* | |
3e134b4c | 1441 | #define LEGIC_DMA_BUFFER_SIZE 256 |
62577a62 | 1442 | |
1443 | static void GetSamplesForLegicDemod(int n, bool quiet) | |
3e134b4c | 1444 | { |
1445 | int max = 0; | |
1446 | bool gotFrame = FALSE; | |
1447 | int lastRxCounter = LEGIC_DMA_BUFFER_SIZE; | |
1448 | int ci, cq, samples = 0; | |
1449 | ||
1450 | BigBuf_free(); | |
1451 | ||
1452 | // And put the FPGA in the appropriate mode | |
1453 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ); | |
1454 | ||
1455 | // The response (tag -> reader) that we're receiving. | |
1456 | // Set up the demodulator for tag -> reader responses. | |
1457 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1458 | ||
1459 | // The DMA buffer, used to stream samples from the FPGA | |
1460 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE); | |
1461 | int8_t *upTo = dmaBuf; | |
1462 | ||
1463 | // Setup and start DMA. | |
1464 | if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){ | |
1465 | if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); | |
1466 | return; | |
1467 | } | |
1468 | ||
1469 | // Signal field is ON with the appropriate LED: | |
1470 | LED_D_ON(); | |
1471 | for(;;) { | |
1472 | int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; | |
1473 | if(behindBy > max) max = behindBy; | |
1474 | ||
1475 | while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) { | |
1476 | ci = upTo[0]; | |
1477 | cq = upTo[1]; | |
1478 | upTo += 2; | |
1479 | if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) { | |
1480 | upTo = dmaBuf; | |
1481 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
1482 | AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE; | |
1483 | } | |
1484 | lastRxCounter -= 2; | |
1485 | if(lastRxCounter <= 0) | |
1486 | lastRxCounter = LEGIC_DMA_BUFFER_SIZE; | |
1487 | ||
1488 | samples += 2; | |
1489 | ||
1490 | gotFrame = HandleLegicSamplesDemod(ci , cq ); | |
1491 | if ( gotFrame ) | |
1492 | break; | |
1493 | } | |
1494 | ||
1495 | if(samples > n || gotFrame) | |
1496 | break; | |
1497 | } | |
1498 | ||
1499 | FpgaDisableSscDma(); | |
1500 | ||
1501 | if (!quiet && Demod.len == 0) { | |
1502 | Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", | |
1503 | max, | |
1504 | samples, | |
1505 | gotFrame, | |
1506 | Demod.len, | |
1507 | Demod.sumI, | |
1508 | Demod.sumQ | |
1509 | ); | |
1510 | } | |
1511 | ||
1512 | //Tracing | |
1513 | if (Demod.len > 0) { | |
1514 | uint8_t parity[MAX_PARITY_SIZE] = {0x00}; | |
1515 | LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE); | |
1516 | } | |
1517 | } | |
62577a62 | 1518 | |
1519 | */ | |
1520 | ||
3e134b4c | 1521 | //----------------------------------------------------------------------------- |
1522 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1523 | //----------------------------------------------------------------------------- | |
62577a62 | 1524 | /* |
3e134b4c | 1525 | static void TransmitForLegic(void) |
1526 | { | |
1527 | int c; | |
1528 | ||
1529 | FpgaSetupSsc(); | |
1530 | ||
1531 | while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) | |
1532 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
1533 | ||
1534 | // Signal field is ON with the appropriate Red LED | |
1535 | LED_D_ON(); | |
1536 | ||
1537 | // Signal we are transmitting with the Green LED | |
1538 | LED_B_ON(); | |
1539 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
1540 | ||
1541 | for(c = 0; c < 10;) { | |
1542 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1543 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
1544 | c++; | |
1545 | } | |
1546 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1547 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1548 | (void)r; | |
1549 | } | |
1550 | WDT_HIT(); | |
1551 | } | |
1552 | ||
1553 | c = 0; | |
1554 | for(;;) { | |
1555 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1556 | AT91C_BASE_SSC->SSC_THR = ToSend[c]; | |
1557 | legic_prng_forward(1); // forward the lfsr | |
1558 | c++; | |
1559 | if(c >= ToSendMax) { | |
1560 | break; | |
1561 | } | |
1562 | } | |
1563 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1564 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1565 | (void)r; | |
1566 | } | |
1567 | WDT_HIT(); | |
1568 | } | |
1569 | LED_B_OFF(); | |
1570 | } | |
62577a62 | 1571 | */ |
3e134b4c | 1572 | |
1573 | //----------------------------------------------------------------------------- | |
1574 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], | |
1575 | // so that it is ready to transmit to the tag using TransmitForLegic(). | |
1576 | //----------------------------------------------------------------------------- | |
62577a62 | 1577 | /* |
bf2cd644 | 1578 | static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) |
3e134b4c | 1579 | { |
1580 | int i, j; | |
1581 | uint8_t b; | |
1582 | ||
1583 | ToSendReset(); | |
1584 | ||
1585 | // Send SOF | |
bf2cd644 | 1586 | for(i = 0; i < 7; i++) |
3e134b4c | 1587 | ToSendStuffBit(1); |
3e134b4c | 1588 | |
bf2cd644 | 1589 | |
1590 | for(i = 0; i < cmdlen; i++) { | |
3e134b4c | 1591 | // Start bit |
1592 | ToSendStuffBit(0); | |
1593 | ||
1594 | // Data bits | |
1595 | b = cmd[i]; | |
bf2cd644 | 1596 | for(j = 0; j < bits; j++) { |
3e134b4c | 1597 | if(b & 1) { |
1598 | ToSendStuffBit(1); | |
1599 | } else { | |
1600 | ToSendStuffBit(0); | |
1601 | } | |
1602 | b >>= 1; | |
1603 | } | |
1604 | } | |
1605 | ||
1606 | // Convert from last character reference to length | |
1607 | ++ToSendMax; | |
1608 | } | |
62577a62 | 1609 | */ |
3e134b4c | 1610 | /** |
1611 | Convenience function to encode, transmit and trace Legic comms | |
1612 | **/ | |
62577a62 | 1613 | /* |
1614 | static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) | |
3e134b4c | 1615 | { |
bf2cd644 | 1616 | CodeLegicBitsAsReader(cmd, cmdlen, bits); |
3e134b4c | 1617 | TransmitForLegic(); |
1618 | if (tracing) { | |
1619 | uint8_t parity[1] = {0x00}; | |
3e82f956 | 1620 | LogTrace(cmd, cmdlen, 0, 0, parity, TRUE); |
3e134b4c | 1621 | } |
1622 | } | |
1623 | ||
62577a62 | 1624 | */ |
3e134b4c | 1625 | // Set up LEGIC communication |
62577a62 | 1626 | /* |
3e134b4c | 1627 | void ice_legic_setup() { |
1628 | ||
1629 | // standard things. | |
1630 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1631 | BigBuf_free(); BigBuf_Clear_ext(false); | |
1632 | clear_trace(); | |
1633 | set_tracing(TRUE); | |
1634 | DemodReset(); | |
1635 | UartReset(); | |
1636 | ||
1637 | // Set up the synchronous serial port | |
1638 | FpgaSetupSsc(); | |
1639 | ||
1640 | // connect Demodulated Signal to ADC: | |
1641 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1642 | ||
1643 | // Signal field is on with the appropriate LED | |
1644 | LED_D_ON(); | |
1645 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
f7b42573 | 1646 | SpinDelay(20); |
3e134b4c | 1647 | // Start the timer |
1648 | //StartCountSspClk(); | |
1649 | ||
1650 | // initalize CRC | |
1651 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); | |
1652 | ||
1653 | // initalize prng | |
1654 | legic_prng_init(0); | |
62577a62 | 1655 | } |
1656 | */ |