]>
Commit | Line | Data |
---|---|---|
bd20f8f4 | 1 | //----------------------------------------------------------------------------- |
2 | // (c) 2009 Henryk Plötz <henryk@ploetzli.ch> | |
9015ae0f | 3 | // 2016 Iceman |
bd20f8f4 | 4 | // |
5 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
6 | // at your option, any later version. See the LICENSE.txt file for the text of | |
7 | // the license. | |
8 | //----------------------------------------------------------------------------- | |
9 | // LEGIC RF simulation code | |
10 | //----------------------------------------------------------------------------- | |
f7e3ed82 | 11 | #include "legicrf.h" |
8e220a91 | 12 | |
a7247d85 | 13 | static struct legic_frame { |
a3994421 | 14 | uint8_t bits; |
a2b1414f | 15 | uint32_t data; |
a7247d85 | 16 | } current_frame; |
8e220a91 | 17 | |
3612a8a8 | 18 | static enum { |
19 | STATE_DISCON, | |
20 | STATE_IV, | |
21 | STATE_CON, | |
22 | } legic_state; | |
23 | ||
24 | static crc_t legic_crc; | |
25 | static int legic_read_count; | |
26 | static uint32_t legic_prng_bc; | |
27 | static uint32_t legic_prng_iv; | |
28 | ||
29 | static int legic_phase_drift; | |
30 | static int legic_frame_drift; | |
31 | static int legic_reqresp_drift; | |
8e220a91 | 32 | |
add16a62 | 33 | AT91PS_TC timer; |
3612a8a8 | 34 | AT91PS_TC prng_timer; |
add16a62 | 35 | |
ad5bc8cc | 36 | /* |
c71c5ee1 | 37 | static void setup_timer(void) { |
ad5bc8cc | 38 | // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging |
39 | // this it won't be terribly accurate but should be good enough. | |
40 | // | |
add16a62 | 41 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); |
42 | timer = AT91C_BASE_TC1; | |
43 | timer->TC_CCR = AT91C_TC_CLKDIS; | |
0aa4cfc2 | 44 | timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; |
add16a62 | 45 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; |
46 | ||
ad5bc8cc | 47 | // |
48 | // Set up Timer 2 to use for measuring time between frames in | |
49 | // tag simulation mode. Runs 4x faster as Timer 1 | |
50 | // | |
3612a8a8 | 51 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2); |
52 | prng_timer = AT91C_BASE_TC2; | |
53 | prng_timer->TC_CCR = AT91C_TC_CLKDIS; | |
54 | prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK; | |
55 | prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
56 | } | |
111c6934 | 57 | |
58 | AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14); | |
59 | AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE; | |
60 | ||
61 | // fast clock | |
62 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable | |
63 | AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks | |
64 | AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR | | |
65 | AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET; | |
66 | AT91C_BASE_TC0->TC_RA = 1; | |
67 | AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000 | |
68 | ||
ad5bc8cc | 69 | */ |
70 | ||
71 | // At TIMER_CLOCK3 (MCK/32) | |
22f4dca8 | 72 | // testing calculating in (us) microseconds. |
111c6934 | 73 | #define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks |
74 | #define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks | |
76471e5d | 75 | #define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */ |
7a8db2f6 | 76 | #define TAG_BIT_PERIOD 142 // 100us == 100 * 1.5 == 150ticks |
111c6934 | 77 | #define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495 |
ad5bc8cc | 78 | |
76471e5d | 79 | #define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit |
add16a62 | 80 | |
3612a8a8 | 81 | #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */ |
82 | #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */ | |
83 | ||
3612a8a8 | 84 | #define OFFSET_LOG 1024 |
add16a62 | 85 | |
86 | #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz))) | |
aac23b24 | 87 | |
ad5bc8cc | 88 | #ifndef SHORT_COIL |
9015ae0f | 89 | # define SHORT_COIL LOW(GPIO_SSC_DOUT); |
ad5bc8cc | 90 | #endif |
91 | #ifndef OPEN_COIL | |
b4a6775b | 92 | # define OPEN_COIL HIGH(GPIO_SSC_DOUT); |
ad5bc8cc | 93 | #endif |
e4a8d1e2 | 94 | #ifndef LINE_IN |
95 | # define LINE_IN \ | |
96 | do { \ | |
97 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; \ | |
98 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; \ | |
99 | } while (0); | |
100 | #endif | |
111c6934 | 101 | // Pause pulse, off in 20us / 30ticks, |
102 | // ONE / ZERO bit pulse, | |
103 | // one == 80us / 120ticks | |
104 | // zero == 40us / 60ticks | |
105 | #ifndef COIL_PULSE | |
25d52dd2 | 106 | # define COIL_PULSE(x) \ |
107 | do { \ | |
76471e5d | 108 | SHORT_COIL; \ |
25d52dd2 | 109 | WaitTicks( (RWD_TIME_PAUSE) ); \ |
76471e5d | 110 | OPEN_COIL; \ |
22f4dca8 | 111 | WaitTicks((x)); \ |
9015ae0f | 112 | } while (0); |
111c6934 | 113 | #endif |
c71c5ee1 | 114 | |
115 | // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces. | |
116 | // Historically it used to be FREE_BUFFER_SIZE, which was 2744. | |
117 | #define LEGIC_CARD_MEMSIZE 1024 | |
118 | static uint8_t* cardmem; | |
119 | ||
faabfafe | 120 | static void frame_append_bit(struct legic_frame * const f, uint8_t bit) { |
b4a6775b | 121 | // Overflow, won't happen |
122 | if (f->bits >= 31) return; | |
123 | ||
124 | f->data |= (bit << f->bits); | |
125 | f->bits++; | |
126 | } | |
127 | ||
128 | static void frame_clean(struct legic_frame * const f) { | |
129 | f->data = 0; | |
130 | f->bits = 0; | |
131 | } | |
132 | ||
ad5bc8cc | 133 | // Prng works when waiting in 99.1us cycles. |
134 | // and while sending/receiving in bit frames (100, 60) | |
b4a6775b | 135 | /*static void CalibratePrng( uint32_t time){ |
ad5bc8cc | 136 | // Calculate Cycles based on timer 100us |
87342aad | 137 | uint32_t i = (time - sendFrameStop) / 100 ; |
ad5bc8cc | 138 | |
139 | // substract cycles of finished frames | |
140 | int k = i - legic_prng_count()+1; | |
141 | ||
142 | // substract current frame length, rewind to beginning | |
143 | if ( k > 0 ) | |
144 | legic_prng_forward(k); | |
145 | } | |
b4a6775b | 146 | */ |
ad5bc8cc | 147 | |
3612a8a8 | 148 | /* Generate Keystream */ |
22f4dca8 | 149 | uint32_t get_key_stream(int skip, int count) { |
633d0686 | 150 | |
c71c5ee1 | 151 | int i; |
edaf10af | 152 | |
c71c5ee1 | 153 | // Use int to enlarge timer tc to 32bit |
edaf10af | 154 | legic_prng_bc += prng_timer->TC_CV; |
c71c5ee1 | 155 | |
156 | // reset the prng timer. | |
edaf10af | 157 | |
158 | /* If skip == -1, forward prng time based */ | |
159 | if(skip == -1) { | |
c71c5ee1 | 160 | i = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */ |
edaf10af | 161 | i -= legic_prng_count(); /* substract cycles of finished frames */ |
c71c5ee1 | 162 | i -= count; /* substract current frame length, rewind to beginning */ |
edaf10af | 163 | legic_prng_forward(i); |
164 | } else { | |
165 | legic_prng_forward(skip); | |
166 | } | |
167 | ||
edaf10af | 168 | i = (count == 6) ? -1 : legic_read_count; |
169 | ||
edaf10af | 170 | /* Generate KeyStream */ |
633d0686 | 171 | return legic_prng_get_bits(count); |
3612a8a8 | 172 | } |
173 | ||
174 | /* Send a frame in tag mode, the FPGA must have been set up by | |
175 | * LegicRfSimulate | |
176 | */ | |
633d0686 | 177 | void frame_send_tag(uint16_t response, uint8_t bits) { |
178 | ||
179 | uint16_t mask = 1; | |
180 | ||
ad5bc8cc | 181 | /* Bitbang the response */ |
633d0686 | 182 | SHORT_COIL; |
ad5bc8cc | 183 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
184 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
3612a8a8 | 185 | |
633d0686 | 186 | /* TAG_FRAME_WAIT -> shift by 2 */ |
187 | legic_prng_forward(2); | |
188 | response ^= legic_prng_get_bits(bits); | |
c71c5ee1 | 189 | |
ad5bc8cc | 190 | /* Wait for the frame start */ |
633d0686 | 191 | WaitTicks( TAG_FRAME_WAIT ); |
8e220a91 | 192 | |
633d0686 | 193 | for (; mask < BITMASK(bits); mask <<= 1) { |
00271f77 | 194 | if (response & mask) |
b1cd7d5c | 195 | OPEN_COIL |
edaf10af | 196 | else |
b1cd7d5c | 197 | SHORT_COIL |
633d0686 | 198 | WaitTicks(TAG_BIT_PERIOD); |
ad5bc8cc | 199 | } |
633d0686 | 200 | SHORT_COIL; |
ad5bc8cc | 201 | } |
c71c5ee1 | 202 | |
ad5bc8cc | 203 | /* Send a frame in reader mode, the FPGA must have been set up by |
204 | * LegicRfReader | |
205 | */ | |
22f4dca8 | 206 | void frame_sendAsReader(uint32_t data, uint8_t bits){ |
c71c5ee1 | 207 | |
111c6934 | 208 | uint32_t starttime = GET_TICKS, send = 0; |
ad5bc8cc | 209 | uint16_t mask = 1; |
111c6934 | 210 | |
211 | // xor lsfr onto data. | |
212 | send = data ^ legic_prng_get_bits(bits); | |
ad5bc8cc | 213 | |
214 | for (; mask < BITMASK(bits); mask <<= 1) { | |
fabef615 | 215 | if (send & mask) |
9015ae0f | 216 | COIL_PULSE(RWD_TIME_1) |
fabef615 | 217 | else |
9015ae0f | 218 | COIL_PULSE(RWD_TIME_0) |
dcc10e5e | 219 | } |
e30c654b | 220 | |
76471e5d | 221 | // Final pause to mark the end of the frame |
76471e5d | 222 | COIL_PULSE(0); |
b4a6775b | 223 | |
fabef615 | 224 | // log |
225 | uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1), BYTEx(send, 0), BYTEx(send, 1)}; | |
226 | LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, TRUE); | |
dcc10e5e | 227 | } |
228 | ||
229 | /* Receive a frame from the card in reader emulation mode, the FPGA and | |
ad5bc8cc | 230 | * timer must have been set up by LegicRfReader and frame_sendAsReader. |
e30c654b | 231 | * |
dcc10e5e | 232 | * The LEGIC RF protocol from card to reader does not include explicit |
233 | * frame start/stop information or length information. The reader must | |
234 | * know beforehand how many bits it wants to receive. (Notably: a card | |
235 | * sending a stream of 0-bits is indistinguishable from no card present.) | |
e30c654b | 236 | * |
dcc10e5e | 237 | * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but |
238 | * I'm not smart enough to use it. Instead I have patched hi_read_tx to output | |
239 | * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look | |
240 | * for edges. Count the edges in each bit interval. If they are approximately | |
241 | * 0 this was a 0-bit, if they are approximately equal to the number of edges | |
242 | * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the | |
ad5bc8cc | 243 | * timer that's still running from frame_sendAsReader in order to get a synchronization |
dcc10e5e | 244 | * with the frame that we just sent. |
e30c654b | 245 | * |
246 | * FIXME: Because we're relying on the hysteresis to just do the right thing | |
dcc10e5e | 247 | * the range is severely reduced (and you'll probably also need a good antenna). |
e30c654b | 248 | * So this should be fixed some time in the future for a proper receiver. |
dcc10e5e | 249 | */ |
111c6934 | 250 | static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) { |
ad5bc8cc | 251 | |
22f4dca8 | 252 | if ( bits > 32 ) return; |
3612a8a8 | 253 | |
22f4dca8 | 254 | uint8_t i = bits, edges = 0; |
d7e24e7c | 255 | uint32_t the_bit = 1, next_bit_at = 0, data = 0; |
fabef615 | 256 | uint32_t old_level = 0; |
257 | volatile uint32_t level = 0; | |
25d52dd2 | 258 | |
fabef615 | 259 | frame_clean(f); |
e4a8d1e2 | 260 | |
261 | /* Bitbang the receiver */ | |
262 | LINE_IN; | |
db44e049 | 263 | |
faabfafe | 264 | // calibrate the prng. |
b4a6775b | 265 | legic_prng_forward(2); |
c649c433 | 266 | data = legic_prng_get_bits(bits); |
b4a6775b | 267 | |
b4a6775b | 268 | //FIXED time between sending frame and now listening frame. 330us |
111c6934 | 269 | uint32_t starttime = GET_TICKS; |
0b0b182f | 270 | // its about 9+9 ticks delay from end-send to here. |
0b0b182f | 271 | WaitTicks( 477 ); |
faabfafe | 272 | |
c649c433 | 273 | next_bit_at = GET_TICKS + TAG_BIT_PERIOD; |
25d52dd2 | 274 | |
22f4dca8 | 275 | while ( i-- ){ |
dcc10e5e | 276 | edges = 0; |
111c6934 | 277 | while ( GET_TICKS < next_bit_at) { |
ad5bc8cc | 278 | |
b4a6775b | 279 | level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); |
ad5bc8cc | 280 | |
281 | if (level != old_level) | |
b4a6775b | 282 | ++edges; |
283 | ||
dcc10e5e | 284 | old_level = level; |
25d52dd2 | 285 | } |
286 | ||
ad5bc8cc | 287 | next_bit_at += TAG_BIT_PERIOD; |
3612a8a8 | 288 | |
fabef615 | 289 | // We expect 42 edges (ONE) |
faabfafe | 290 | if ( edges > 20 ) |
8e220a91 | 291 | data ^= the_bit; |
87342aad | 292 | |
293 | the_bit <<= 1; | |
dcc10e5e | 294 | } |
e30c654b | 295 | |
b4a6775b | 296 | // output |
dcc10e5e | 297 | f->data = data; |
298 | f->bits = bits; | |
db44e049 | 299 | |
fabef615 | 300 | // log |
cb7902cd | 301 | uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)}; |
faabfafe | 302 | LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE); |
a7247d85 | 303 | } |
304 | ||
c71c5ee1 | 305 | // Setup pm3 as a Legic Reader |
87342aad | 306 | static uint32_t setup_phase_reader(uint8_t iv) { |
22f4dca8 | 307 | |
f7b42573 | 308 | // Switch on carrier and let the tag charge for 1ms |
ad5bc8cc | 309 | HIGH(GPIO_SSC_DOUT); |
77a689db | 310 | WaitUS(5000); |
ad5bc8cc | 311 | |
22f4dca8 | 312 | ResetTicks(); |
ad5bc8cc | 313 | |
f7b42573 | 314 | // no keystream yet |
c71c5ee1 | 315 | legic_prng_init(0); |
f7b42573 | 316 | |
ad5bc8cc | 317 | // send IV handshake |
318 | frame_sendAsReader(iv, 7); | |
319 | ||
320 | // Now both tag and reader has same IV. Prng can start. | |
3612a8a8 | 321 | legic_prng_init(iv); |
e30c654b | 322 | |
111c6934 | 323 | frame_receiveAsReader(¤t_frame, 6); |
f7b42573 | 324 | |
d7e24e7c | 325 | // 292us (438t) - fixed delay before sending ack. |
326 | // minus log and stuff 100tick? | |
327 | WaitTicks(338); | |
328 | legic_prng_forward(3); | |
ad5bc8cc | 329 | |
f7b42573 | 330 | // Send obsfuscated acknowledgment frame. |
ad5bc8cc | 331 | // 0x19 = 0x18 MIM22, 0x01 LSB READCMD |
332 | // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD | |
333 | switch ( current_frame.data ) { | |
87342aad | 334 | case 0x0D: frame_sendAsReader(0x19, 6); break; |
335 | case 0x1D: | |
336 | case 0x3D: frame_sendAsReader(0x39, 6); break; | |
337 | default: break; | |
f7b42573 | 338 | } |
d7e24e7c | 339 | |
340 | legic_prng_forward(2); | |
8e220a91 | 341 | return current_frame.data; |
2561caa2 | 342 | } |
343 | ||
22f4dca8 | 344 | static void LegicCommonInit(void) { |
345 | ||
7cc204bf | 346 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
b4a6775b | 347 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); |
dcc10e5e | 348 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
e30c654b | 349 | |
dcc10e5e | 350 | /* Bitbang the transmitter */ |
ad5bc8cc | 351 | LOW(GPIO_SSC_DOUT); |
dcc10e5e | 352 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
353 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
e30c654b | 354 | |
c71c5ee1 | 355 | // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier. |
0b0b182f | 356 | cardmem = BigBuf_get_EM_addr(); |
c71c5ee1 | 357 | memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE); |
358 | ||
359 | clear_trace(); | |
360 | set_tracing(TRUE); | |
8e220a91 | 361 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
ad5bc8cc | 362 | |
22f4dca8 | 363 | StartTicks(); |
8e220a91 | 364 | } |
365 | ||
111c6934 | 366 | // Switch off carrier, make sure tag is reset |
c71c5ee1 | 367 | static void switch_off_tag_rwd(void) { |
ad5bc8cc | 368 | LOW(GPIO_SSC_DOUT); |
3e750be3 | 369 | WaitUS(20); |
8e220a91 | 370 | WDT_HIT(); |
371 | } | |
c71c5ee1 | 372 | |
f7b42573 | 373 | // calculate crc4 for a legic READ command |
fabef615 | 374 | static uint32_t legic4Crc(uint8_t cmd, uint16_t byte_index, uint8_t value, uint8_t cmd_sz) { |
ad5bc8cc | 375 | crc_clear(&legic_crc); |
fabef615 | 376 | uint32_t temp = (value << cmd_sz) | (byte_index << 1) | cmd; |
cb7902cd | 377 | crc_update(&legic_crc, temp, cmd_sz + 8 ); |
8e220a91 | 378 | return crc_finish(&legic_crc); |
379 | } | |
380 | ||
fabef615 | 381 | int legic_read_byte( uint16_t index, uint8_t cmd_sz) { |
8e220a91 | 382 | |
fabef615 | 383 | uint8_t byte, crc, calcCrc = 0; |
384 | uint32_t cmd = (index << 1) | LEGIC_READ; | |
635d6e9b | 385 | |
386 | // 90ticks = 60us (should be 100us but crc calc takes time.) | |
387 | //WaitTicks(330); // 330ticks prng(4) - works | |
388 | WaitTicks(240); // 240ticks prng(3) - works | |
3e750be3 | 389 | |
ad5bc8cc | 390 | frame_sendAsReader(cmd, cmd_sz); |
111c6934 | 391 | frame_receiveAsReader(¤t_frame, 12); |
c71c5ee1 | 392 | |
c649c433 | 393 | // CRC check. |
111c6934 | 394 | byte = BYTEx(current_frame.data, 0); |
cb7902cd | 395 | crc = BYTEx(current_frame.data, 1); |
fabef615 | 396 | calcCrc = legic4Crc(LEGIC_READ, index, byte, cmd_sz); |
65c2d21d | 397 | |
cb7902cd | 398 | if( calcCrc != crc ) { |
399 | Dbprintf("!!! crc mismatch: expected %x but got %x !!!", calcCrc, crc); | |
400 | return -1; | |
401 | } | |
d7e24e7c | 402 | |
c15e07f1 | 403 | legic_prng_forward(3); |
8e220a91 | 404 | return byte; |
405 | } | |
406 | ||
c71c5ee1 | 407 | /* |
408 | * - assemble a write_cmd_frame with crc and send it | |
409 | * - wait until the tag sends back an ACK ('1' bit unencrypted) | |
410 | * - forward the prng based on the timing | |
8e220a91 | 411 | */ |
0e8cabed | 412 | int legic_write_byte(uint16_t index, uint8_t byte, uint8_t addr_sz) { |
c71c5ee1 | 413 | |
414 | // crc | |
3612a8a8 | 415 | crc_clear(&legic_crc); |
416 | crc_update(&legic_crc, 0, 1); /* CMD_WRITE */ | |
0e8cabed | 417 | crc_update(&legic_crc, index, addr_sz); |
3612a8a8 | 418 | crc_update(&legic_crc, byte, 8); |
3612a8a8 | 419 | uint32_t crc = crc_finish(&legic_crc); |
f0fa6638 | 420 | /* |
0e8cabed | 421 | uint32_t crc2 = legic4Crc(LEGIC_WRITE, index, byte, addr_sz+1); |
7bc3c99e | 422 | if ( crc != crc2 ) { |
111c6934 | 423 | Dbprintf("crc is missmatch"); |
7bc3c99e | 424 | return 1; |
425 | } | |
f0fa6638 | 426 | */ |
c71c5ee1 | 427 | // send write command |
3612a8a8 | 428 | uint32_t cmd = ((crc <<(addr_sz+1+8)) //CRC |
429 | |(byte <<(addr_sz+1)) //Data | |
0e8cabed | 430 | |(index <<1) //index |
431 | | LEGIC_WRITE); //CMD = Write | |
111c6934 | 432 | |
3612a8a8 | 433 | uint32_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd |
434 | ||
00271f77 | 435 | legic_prng_forward(2); |
c71c5ee1 | 436 | |
7bc3c99e | 437 | WaitTicks(330); |
c71c5ee1 | 438 | |
ad5bc8cc | 439 | frame_sendAsReader(cmd, cmd_sz); |
0e8cabed | 440 | |
e4a8d1e2 | 441 | /* Bitbang the receiver */ |
442 | LINE_IN; | |
3612a8a8 | 443 | |
c71c5ee1 | 444 | int t, old_level = 0, edges = 0; |
445 | int next_bit_at = 0; | |
3e134b4c | 446 | |
0e8cabed | 447 | // ACK 3.6ms = 3600us * 1.5 = 5400ticks. |
27c4a862 | 448 | WaitTicks(5300); |
449 | ResetTicks(); | |
450 | ||
111c6934 | 451 | for( t = 0; t < 80; ++t) { |
3612a8a8 | 452 | edges = 0; |
ad5bc8cc | 453 | next_bit_at += TAG_BIT_PERIOD; |
27c4a862 | 454 | while ( GET_TICKS < next_bit_at) { |
0b0b182f | 455 | volatile uint32_t level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); |
111c6934 | 456 | if(level != old_level) |
3612a8a8 | 457 | edges++; |
111c6934 | 458 | |
3612a8a8 | 459 | old_level = level; |
460 | } | |
27c4a862 | 461 | |
0e8cabed | 462 | /* expected are 42 edges (ONE) */ |
463 | if(edges > 20 ) { | |
27c4a862 | 464 | |
465 | uint32_t c = (GET_TICKS / TAG_BIT_PERIOD); | |
cc708897 | 466 | legic_prng_forward(c); |
3612a8a8 | 467 | return 0; |
468 | } | |
469 | } | |
c71c5ee1 | 470 | |
3612a8a8 | 471 | return -1; |
472 | } | |
8e220a91 | 473 | |
fabef615 | 474 | int LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) { |
3e134b4c | 475 | |
fabef615 | 476 | uint16_t i = 0; |
a3994421 | 477 | uint8_t isOK = 1; |
478 | legic_card_select_t card; | |
479 | ||
8e220a91 | 480 | LegicCommonInit(); |
faabfafe | 481 | |
fabef615 | 482 | if ( legic_select_card_iv(&card, iv) ) { |
a3994421 | 483 | isOK = 0; |
484 | goto OUT; | |
485 | } | |
cb7902cd | 486 | |
fabef615 | 487 | if (len + offset >= card.cardsize) |
488 | len = card.cardsize - offset; | |
a2b1414f | 489 | |
3612a8a8 | 490 | LED_B_ON(); |
c15e07f1 | 491 | while (i < len) { |
fabef615 | 492 | int r = legic_read_byte(offset + i, card.cmdsize); |
ad5bc8cc | 493 | |
494 | if (r == -1 || BUTTON_PRESS()) { | |
fabef615 | 495 | if ( MF_DBGLEVEL >= 2) DbpString("operation aborted"); |
87342aad | 496 | isOK = 0; |
497 | goto OUT; | |
a2b1414f | 498 | } |
fabef615 | 499 | cardmem[i++] = r; |
3612a8a8 | 500 | WDT_HIT(); |
2561caa2 | 501 | } |
c71c5ee1 | 502 | |
87342aad | 503 | OUT: |
faabfafe | 504 | WDT_HIT(); |
3612a8a8 | 505 | switch_off_tag_rwd(); |
c71c5ee1 | 506 | LEDsoff(); |
86087eba | 507 | cmd_send(CMD_ACK, isOK, len, 0, cardmem, len); |
3612a8a8 | 508 | return 0; |
509 | } | |
510 | ||
0e8cabed | 511 | void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, uint8_t *data) { |
117d9ec2 | 512 | |
f0fa6638 | 513 | #define LOWERLIMIT 4 |
fabef615 | 514 | uint8_t isOK = 1; |
f0fa6638 | 515 | legic_card_select_t card; |
0e8cabed | 516 | |
f0fa6638 | 517 | // uid NOT is writeable. |
518 | if ( offset <= LOWERLIMIT ) { | |
0e8cabed | 519 | isOK = 0; |
520 | goto OUT; | |
521 | } | |
522 | ||
fabef615 | 523 | LegicCommonInit(); |
c71c5ee1 | 524 | |
fabef615 | 525 | if ( legic_select_card_iv(&card, iv) ) { |
526 | isOK = 0; | |
527 | goto OUT; | |
528 | } | |
c71c5ee1 | 529 | |
f0fa6638 | 530 | if ( len + offset + LOWERLIMIT >= card.cardsize) { |
531 | isOK = 0; | |
532 | goto OUT; | |
533 | } | |
0e8cabed | 534 | |
535 | LED_B_ON(); | |
f0fa6638 | 536 | while( len > 0 ) { |
0e8cabed | 537 | |
f0fa6638 | 538 | int r = legic_write_byte( len + offset + LOWERLIMIT, data[len], card.addrsize); |
539 | if ( r == -1 ) { | |
540 | Dbprintf("operation aborted @ 0x%03.3x", len); | |
fabef615 | 541 | isOK = 0; |
542 | goto OUT; | |
3612a8a8 | 543 | } |
f0fa6638 | 544 | --len; |
0e8cabed | 545 | WDT_HIT(); |
3e134b4c | 546 | } |
fabef615 | 547 | |
548 | OUT: | |
549 | cmd_send(CMD_ACK, isOK, 0,0,0,0); | |
550 | switch_off_tag_rwd(); | |
551 | LEDsoff(); | |
3e134b4c | 552 | } |
553 | ||
fabef615 | 554 | int legic_select_card_iv(legic_card_select_t *p_card, uint8_t iv){ |
3e750be3 | 555 | |
a3994421 | 556 | if ( p_card == NULL ) return 1; |
3e750be3 | 557 | |
fabef615 | 558 | p_card->tagtype = setup_phase_reader(iv); |
a3994421 | 559 | |
560 | switch(p_card->tagtype) { | |
3e750be3 | 561 | case 0x0d: |
a3994421 | 562 | p_card->cmdsize = 6; |
fabef615 | 563 | p_card->addrsize = 5; |
a3994421 | 564 | p_card->cardsize = 22; |
3e750be3 | 565 | break; |
566 | case 0x1d: | |
a3994421 | 567 | p_card->cmdsize = 9; |
fabef615 | 568 | p_card->addrsize = 8; |
a3994421 | 569 | p_card->cardsize = 256; |
3e750be3 | 570 | break; |
571 | case 0x3d: | |
a3994421 | 572 | p_card->cmdsize = 11; |
fabef615 | 573 | p_card->addrsize = 10; |
a3994421 | 574 | p_card->cardsize = 1024; |
3e750be3 | 575 | break; |
576 | default: | |
a3994421 | 577 | p_card->cmdsize = 0; |
fabef615 | 578 | p_card->addrsize = 0; |
a3994421 | 579 | p_card->cardsize = 0; |
580 | return 2; | |
a3994421 | 581 | } |
582 | return 0; | |
583 | } | |
fabef615 | 584 | int legic_select_card(legic_card_select_t *p_card){ |
585 | return legic_select_card_iv(p_card, 0x01); | |
586 | } | |
a3994421 | 587 | |
0e8cabed | 588 | //----------------------------------------------------------------------------- |
589 | // Work with emulator memory | |
590 | // | |
591 | // Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not | |
592 | // involved in dealing with emulator memory. But if it is called later, it might | |
593 | // destroy the Emulator Memory. | |
594 | //----------------------------------------------------------------------------- | |
595 | // arg0 = offset | |
596 | // arg1 = num of bytes | |
597 | void LegicEMemSet(uint32_t arg0, uint32_t arg1, uint8_t *data) { | |
598 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
599 | legic_emlset_mem(data, arg0, arg1); | |
600 | } | |
601 | // arg0 = offset | |
602 | // arg1 = num of bytes | |
603 | void LegicEMemGet(uint32_t arg0, uint32_t arg1) { | |
604 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
605 | uint8_t buf[USB_CMD_DATA_SIZE] = {0x00}; | |
606 | legic_emlget_mem(buf, arg0, arg1); | |
607 | LED_B_ON(); | |
608 | cmd_send(CMD_ACK, arg0, arg1, 0, buf, USB_CMD_DATA_SIZE); | |
609 | LED_B_OFF(); | |
610 | } | |
611 | void legic_emlset_mem(uint8_t *data, int offset, int numofbytes) { | |
612 | cardmem = BigBuf_get_EM_addr(); | |
613 | memcpy(cardmem + offset, data, numofbytes); | |
614 | } | |
615 | void legic_emlget_mem(uint8_t *data, int offset, int numofbytes) { | |
616 | cardmem = BigBuf_get_EM_addr(); | |
617 | memcpy(data, cardmem + offset, numofbytes); | |
618 | } | |
619 | ||
a3994421 | 620 | void LegicRfInfo(void){ |
621 | ||
0e8cabed | 622 | int r; |
623 | ||
a3994421 | 624 | uint8_t buf[sizeof(legic_card_select_t)] = {0x00}; |
625 | legic_card_select_t *card = (legic_card_select_t*) buf; | |
626 | ||
627 | LegicCommonInit(); | |
c649c433 | 628 | |
a3994421 | 629 | if ( legic_select_card(card) ) { |
630 | cmd_send(CMD_ACK,0,0,0,0,0); | |
631 | goto OUT; | |
3e750be3 | 632 | } |
633 | ||
fabef615 | 634 | // read UID bytes |
a3994421 | 635 | for ( uint8_t i = 0; i < sizeof(card->uid); ++i) { |
0e8cabed | 636 | r = legic_read_byte(i, card->cmdsize); |
3e750be3 | 637 | if ( r == -1 ) { |
638 | cmd_send(CMD_ACK,0,0,0,0,0); | |
639 | goto OUT; | |
640 | } | |
a3994421 | 641 | card->uid[i] = r & 0xFF; |
3e750be3 | 642 | } |
643 | ||
0e8cabed | 644 | // MCC byte. |
645 | r = legic_read_byte(4, card->cmdsize); | |
646 | uint32_t calc_mcc = CRC8Legic(card->uid, 4);; | |
647 | if ( r != calc_mcc) { | |
648 | cmd_send(CMD_ACK,0,0,0,0,0); | |
649 | goto OUT; | |
650 | } | |
651 | ||
652 | // OK | |
fabef615 | 653 | cmd_send(CMD_ACK, 1, 0, 0, buf, sizeof(legic_card_select_t)); |
635d6e9b | 654 | |
a3994421 | 655 | OUT: |
3e750be3 | 656 | switch_off_tag_rwd(); |
657 | LEDsoff(); | |
3e750be3 | 658 | } |
659 | ||
c71c5ee1 | 660 | /* Handle (whether to respond) a frame in tag mode |
661 | * Only called when simulating a tag. | |
662 | */ | |
3612a8a8 | 663 | static void frame_handle_tag(struct legic_frame const * const f) |
664 | { | |
e4a8d1e2 | 665 | // log |
666 | //uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)}; | |
667 | //LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE); | |
668 | ||
669 | cardmem = BigBuf_get_EM_addr(); | |
117d9ec2 | 670 | |
633d0686 | 671 | /* First Part of Handshake (IV) */ |
672 | if(f->bits == 7) { | |
673 | ||
674 | LED_C_ON(); | |
c71c5ee1 | 675 | |
ad5bc8cc | 676 | // Reset prng timer |
22f4dca8 | 677 | ResetTimer(prng_timer); |
633d0686 | 678 | |
e4a8d1e2 | 679 | // IV from reader. |
633d0686 | 680 | legic_prng_init(f->data); |
e4a8d1e2 | 681 | |
682 | // We should have three tagtypes with three different answers. | |
633d0686 | 683 | frame_send_tag(0x3d, 6); /* 0x3d^0x26 = 0x1B */ |
e4a8d1e2 | 684 | |
633d0686 | 685 | legic_state = STATE_IV; |
686 | legic_read_count = 0; | |
687 | legic_prng_bc = 0; | |
688 | legic_prng_iv = f->data; | |
689 | ||
690 | ||
22f4dca8 | 691 | ResetTimer(timer); |
692 | WaitUS(280); | |
633d0686 | 693 | return; |
694 | } | |
3612a8a8 | 695 | |
696 | /* 0x19==??? */ | |
697 | if(legic_state == STATE_IV) { | |
e4a8d1e2 | 698 | uint32_t local_key = get_key_stream(3, 6); |
cc708897 | 699 | int xored = 0x39 ^ local_key; |
700 | if((f->bits == 6) && (f->data == xored)) { | |
3612a8a8 | 701 | legic_state = STATE_CON; |
702 | ||
22f4dca8 | 703 | ResetTimer(timer); |
704 | WaitUS(200); | |
3612a8a8 | 705 | return; |
111c6934 | 706 | |
707 | } else { | |
3612a8a8 | 708 | legic_state = STATE_DISCON; |
709 | LED_C_OFF(); | |
cc708897 | 710 | Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored); |
3612a8a8 | 711 | return; |
712 | } | |
713 | } | |
714 | ||
715 | /* Read */ | |
716 | if(f->bits == 11) { | |
717 | if(legic_state == STATE_CON) { | |
e4a8d1e2 | 718 | uint32_t key = get_key_stream(2, 11); //legic_phase_drift, 11); |
719 | uint16_t addr = f->data ^ key; | |
720 | addr >>= 1; | |
721 | uint8_t data = cardmem[addr]; | |
111c6934 | 722 | int hash = legic4Crc(LEGIC_READ, addr, data, 11) << 8; |
3612a8a8 | 723 | |
e4a8d1e2 | 724 | legic_read_count++; |
3612a8a8 | 725 | legic_prng_forward(legic_reqresp_drift); |
726 | ||
633d0686 | 727 | frame_send_tag(hash | data, 12); |
22f4dca8 | 728 | ResetTimer(timer); |
cc708897 | 729 | legic_prng_forward(2); |
e4a8d1e2 | 730 | WaitTicks(330); |
3612a8a8 | 731 | return; |
732 | } | |
733 | } | |
734 | ||
735 | /* Write */ | |
736 | if(f->bits == 23) { | |
e4a8d1e2 | 737 | uint32_t key = get_key_stream(-1, 23); //legic_frame_drift, 23); |
738 | uint16_t addr = f->data ^ key; | |
739 | addr >>= 1; | |
740 | addr &= 0x3ff; | |
741 | uint32_t data = f->data ^ key; | |
742 | data >>= 11; | |
743 | data &= 0xff; | |
744 | ||
745 | cardmem[addr] = data; | |
3612a8a8 | 746 | /* write command */ |
747 | legic_state = STATE_DISCON; | |
748 | LED_C_OFF(); | |
749 | Dbprintf("write - addr: %x, data: %x", addr, data); | |
e4a8d1e2 | 750 | // should send a ACK within 3.5ms too |
3612a8a8 | 751 | return; |
752 | } | |
753 | ||
754 | if(legic_state != STATE_DISCON) { | |
755 | Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count); | |
3612a8a8 | 756 | Dbprintf("IV: %03.3x", legic_prng_iv); |
3612a8a8 | 757 | } |
e4a8d1e2 | 758 | |
3612a8a8 | 759 | legic_state = STATE_DISCON; |
760 | legic_read_count = 0; | |
761 | SpinDelay(10); | |
762 | LED_C_OFF(); | |
763 | return; | |
764 | } | |
765 | ||
766 | /* Read bit by bit untill full frame is received | |
767 | * Call to process frame end answer | |
768 | */ | |
c71c5ee1 | 769 | static void emit(int bit) { |
770 | ||
771 | switch (bit) { | |
772 | case 1: | |
773 | frame_append_bit(¤t_frame, 1); | |
774 | break; | |
775 | case 0: | |
776 | frame_append_bit(¤t_frame, 0); | |
777 | break; | |
778 | default: | |
779 | if(current_frame.bits <= 4) { | |
780 | frame_clean(¤t_frame); | |
781 | } else { | |
782 | frame_handle_tag(¤t_frame); | |
783 | frame_clean(¤t_frame); | |
784 | } | |
785 | WDT_HIT(); | |
786 | break; | |
787 | } | |
3612a8a8 | 788 | } |
789 | ||
790 | void LegicRfSimulate(int phase, int frame, int reqresp) | |
791 | { | |
792 | /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode, | |
793 | * modulation mode set to 212kHz subcarrier. We are getting the incoming raw | |
794 | * envelope waveform on DIN and should send our response on DOUT. | |
795 | * | |
796 | * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll | |
797 | * measure the time between two rising edges on DIN, and no encoding on the | |
798 | * subcarrier from card to reader, so we'll just shift out our verbatim data | |
799 | * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear, | |
800 | * seems to be 300us-ish. | |
801 | */ | |
e4a8d1e2 | 802 | |
803 | int old_level = 0, active = 0; | |
804 | legic_state = STATE_DISCON; | |
3612a8a8 | 805 | |
c71c5ee1 | 806 | legic_phase_drift = phase; |
807 | legic_frame_drift = frame; | |
808 | legic_reqresp_drift = reqresp; | |
809 | ||
810 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
811 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
c71c5ee1 | 812 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K); |
813 | ||
814 | /* Bitbang the receiver */ | |
e4a8d1e2 | 815 | LINE_IN; |
816 | ||
817 | // need a way to determine which tagtype we are simulating | |
818 | ||
819 | // hook up emulator memory | |
820 | cardmem = BigBuf_get_EM_addr(); | |
821 | ||
822 | clear_trace(); | |
823 | set_tracing(TRUE); | |
c71c5ee1 | 824 | |
c71c5ee1 | 825 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
826 | ||
e4a8d1e2 | 827 | StartTicks(); |
c71c5ee1 | 828 | |
829 | LED_B_ON(); | |
830 | DbpString("Starting Legic emulator, press button to end"); | |
3612a8a8 | 831 | |
c71c5ee1 | 832 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
e4a8d1e2 | 833 | volatile uint32_t level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); |
834 | ||
835 | uint32_t time = GET_TICKS; | |
836 | ||
837 | if (level != old_level) { | |
838 | ||
839 | if (level) { | |
c71c5ee1 | 840 | |
e4a8d1e2 | 841 | ResetTicks(); |
c71c5ee1 | 842 | |
843 | if (FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) { | |
844 | /* 1 bit */ | |
845 | emit(1); | |
846 | active = 1; | |
847 | LED_A_ON(); | |
848 | } else if (FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) { | |
849 | /* 0 bit */ | |
850 | emit(0); | |
851 | active = 1; | |
852 | LED_A_ON(); | |
853 | } else if (active) { | |
854 | /* invalid */ | |
855 | emit(-1); | |
856 | active = 0; | |
857 | LED_A_OFF(); | |
858 | } | |
859 | } | |
860 | } | |
3612a8a8 | 861 | |
c71c5ee1 | 862 | /* Frame end */ |
863 | if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) { | |
864 | emit(-1); | |
865 | active = 0; | |
866 | LED_A_OFF(); | |
867 | } | |
a2b1414f | 868 | |
e4a8d1e2 | 869 | /* |
870 | * Disable the counter, Then wait for the clock to acknowledge the | |
871 | * shutdown in its status register. Reading the SR has the | |
872 | * side-effect of clearing any pending state in there. | |
873 | */ | |
874 | if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) | |
875 | StopTicks(); | |
c71c5ee1 | 876 | |
877 | old_level = level; | |
878 | WDT_HIT(); | |
879 | } | |
e4a8d1e2 | 880 | |
881 | WDT_HIT(); | |
882 | switch_off_tag_rwd(); | |
c71c5ee1 | 883 | LEDsoff(); |
e4a8d1e2 | 884 | cmd_send(CMD_ACK, 1, 0, 0, 0, 0); |
c71c5ee1 | 885 | } |
3e134b4c | 886 | |
3e134b4c | 887 | //----------------------------------------------------------------------------- |
888 | // Code up a string of octets at layer 2 (including CRC, we don't generate | |
889 | // that here) so that they can be transmitted to the reader. Doesn't transmit | |
890 | // them yet, just leaves them ready to send in ToSend[]. | |
891 | //----------------------------------------------------------------------------- | |
892 | // static void CodeLegicAsTag(const uint8_t *cmd, int len) | |
893 | // { | |
894 | // int i; | |
895 | ||
896 | // ToSendReset(); | |
897 | ||
898 | // // Transmit a burst of ones, as the initial thing that lets the | |
899 | // // reader get phase sync. This (TR1) must be > 80/fs, per spec, | |
900 | // // but tag that I've tried (a Paypass) exceeds that by a fair bit, | |
901 | // // so I will too. | |
902 | // for(i = 0; i < 20; i++) { | |
903 | // ToSendStuffBit(1); | |
904 | // ToSendStuffBit(1); | |
905 | // ToSendStuffBit(1); | |
906 | // ToSendStuffBit(1); | |
907 | // } | |
908 | ||
909 | // // Send SOF. | |
910 | // for(i = 0; i < 10; i++) { | |
911 | // ToSendStuffBit(0); | |
912 | // ToSendStuffBit(0); | |
913 | // ToSendStuffBit(0); | |
914 | // ToSendStuffBit(0); | |
915 | // } | |
916 | // for(i = 0; i < 2; i++) { | |
917 | // ToSendStuffBit(1); | |
918 | // ToSendStuffBit(1); | |
919 | // ToSendStuffBit(1); | |
920 | // ToSendStuffBit(1); | |
921 | // } | |
922 | ||
923 | // for(i = 0; i < len; i++) { | |
924 | // int j; | |
925 | // uint8_t b = cmd[i]; | |
926 | ||
927 | // // Start bit | |
928 | // ToSendStuffBit(0); | |
929 | // ToSendStuffBit(0); | |
930 | // ToSendStuffBit(0); | |
931 | // ToSendStuffBit(0); | |
932 | ||
933 | // // Data bits | |
934 | // for(j = 0; j < 8; j++) { | |
935 | // if(b & 1) { | |
936 | // ToSendStuffBit(1); | |
937 | // ToSendStuffBit(1); | |
938 | // ToSendStuffBit(1); | |
939 | // ToSendStuffBit(1); | |
940 | // } else { | |
941 | // ToSendStuffBit(0); | |
942 | // ToSendStuffBit(0); | |
943 | // ToSendStuffBit(0); | |
944 | // ToSendStuffBit(0); | |
945 | // } | |
946 | // b >>= 1; | |
947 | // } | |
948 | ||
949 | // // Stop bit | |
950 | // ToSendStuffBit(1); | |
951 | // ToSendStuffBit(1); | |
952 | // ToSendStuffBit(1); | |
953 | // ToSendStuffBit(1); | |
954 | // } | |
955 | ||
956 | // // Send EOF. | |
957 | // for(i = 0; i < 10; i++) { | |
958 | // ToSendStuffBit(0); | |
959 | // ToSendStuffBit(0); | |
960 | // ToSendStuffBit(0); | |
961 | // ToSendStuffBit(0); | |
962 | // } | |
963 | // for(i = 0; i < 2; i++) { | |
964 | // ToSendStuffBit(1); | |
965 | // ToSendStuffBit(1); | |
966 | // ToSendStuffBit(1); | |
967 | // ToSendStuffBit(1); | |
968 | // } | |
969 | ||
970 | // // Convert from last byte pos to length | |
971 | // ToSendMax++; | |
972 | // } | |
973 | ||
974 | //----------------------------------------------------------------------------- | |
975 | // The software UART that receives commands from the reader, and its state | |
976 | // variables. | |
977 | //----------------------------------------------------------------------------- | |
62577a62 | 978 | /* |
3e134b4c | 979 | static struct { |
980 | enum { | |
981 | STATE_UNSYNCD, | |
982 | STATE_GOT_FALLING_EDGE_OF_SOF, | |
983 | STATE_AWAITING_START_BIT, | |
984 | STATE_RECEIVING_DATA | |
985 | } state; | |
986 | uint16_t shiftReg; | |
987 | int bitCnt; | |
988 | int byteCnt; | |
989 | int byteCntMax; | |
990 | int posCnt; | |
991 | uint8_t *output; | |
992 | } Uart; | |
62577a62 | 993 | */ |
3e134b4c | 994 | /* Receive & handle a bit coming from the reader. |
995 | * | |
996 | * This function is called 4 times per bit (every 2 subcarrier cycles). | |
997 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us | |
998 | * | |
999 | * LED handling: | |
1000 | * LED A -> ON once we have received the SOF and are expecting the rest. | |
1001 | * LED A -> OFF once we have received EOF or are in error state or unsynced | |
1002 | * | |
1003 | * Returns: true if we received a EOF | |
1004 | * false if we are still waiting for some more | |
1005 | */ | |
1006 | // static RAMFUNC int HandleLegicUartBit(uint8_t bit) | |
1007 | // { | |
1008 | // switch(Uart.state) { | |
1009 | // case STATE_UNSYNCD: | |
1010 | // if(!bit) { | |
1011 | // // we went low, so this could be the beginning of an SOF | |
1012 | // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; | |
1013 | // Uart.posCnt = 0; | |
1014 | // Uart.bitCnt = 0; | |
1015 | // } | |
1016 | // break; | |
1017 | ||
1018 | // case STATE_GOT_FALLING_EDGE_OF_SOF: | |
1019 | // Uart.posCnt++; | |
1020 | // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit | |
1021 | // if(bit) { | |
1022 | // if(Uart.bitCnt > 9) { | |
1023 | // // we've seen enough consecutive | |
1024 | // // zeros that it's a valid SOF | |
1025 | // Uart.posCnt = 0; | |
1026 | // Uart.byteCnt = 0; | |
1027 | // Uart.state = STATE_AWAITING_START_BIT; | |
1028 | // LED_A_ON(); // Indicate we got a valid SOF | |
1029 | // } else { | |
1030 | // // didn't stay down long enough | |
1031 | // // before going high, error | |
1032 | // Uart.state = STATE_UNSYNCD; | |
1033 | // } | |
1034 | // } else { | |
1035 | // // do nothing, keep waiting | |
1036 | // } | |
1037 | // Uart.bitCnt++; | |
1038 | // } | |
1039 | // if(Uart.posCnt >= 4) Uart.posCnt = 0; | |
1040 | // if(Uart.bitCnt > 12) { | |
1041 | // // Give up if we see too many zeros without | |
1042 | // // a one, too. | |
1043 | // LED_A_OFF(); | |
1044 | // Uart.state = STATE_UNSYNCD; | |
1045 | // } | |
1046 | // break; | |
1047 | ||
1048 | // case STATE_AWAITING_START_BIT: | |
1049 | // Uart.posCnt++; | |
1050 | // if(bit) { | |
1051 | // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs | |
1052 | // // stayed high for too long between | |
1053 | // // characters, error | |
1054 | // Uart.state = STATE_UNSYNCD; | |
1055 | // } | |
1056 | // } else { | |
1057 | // // falling edge, this starts the data byte | |
1058 | // Uart.posCnt = 0; | |
1059 | // Uart.bitCnt = 0; | |
1060 | // Uart.shiftReg = 0; | |
1061 | // Uart.state = STATE_RECEIVING_DATA; | |
1062 | // } | |
1063 | // break; | |
1064 | ||
1065 | // case STATE_RECEIVING_DATA: | |
1066 | // Uart.posCnt++; | |
1067 | // if(Uart.posCnt == 2) { | |
1068 | // // time to sample a bit | |
1069 | // Uart.shiftReg >>= 1; | |
1070 | // if(bit) { | |
1071 | // Uart.shiftReg |= 0x200; | |
1072 | // } | |
1073 | // Uart.bitCnt++; | |
1074 | // } | |
1075 | // if(Uart.posCnt >= 4) { | |
1076 | // Uart.posCnt = 0; | |
1077 | // } | |
1078 | // if(Uart.bitCnt == 10) { | |
1079 | // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) | |
1080 | // { | |
1081 | // // this is a data byte, with correct | |
1082 | // // start and stop bits | |
1083 | // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; | |
1084 | // Uart.byteCnt++; | |
1085 | ||
1086 | // if(Uart.byteCnt >= Uart.byteCntMax) { | |
1087 | // // Buffer overflowed, give up | |
1088 | // LED_A_OFF(); | |
1089 | // Uart.state = STATE_UNSYNCD; | |
1090 | // } else { | |
1091 | // // so get the next byte now | |
1092 | // Uart.posCnt = 0; | |
1093 | // Uart.state = STATE_AWAITING_START_BIT; | |
1094 | // } | |
1095 | // } else if (Uart.shiftReg == 0x000) { | |
1096 | // // this is an EOF byte | |
1097 | // LED_A_OFF(); // Finished receiving | |
1098 | // Uart.state = STATE_UNSYNCD; | |
1099 | // if (Uart.byteCnt != 0) { | |
1100 | // return TRUE; | |
1101 | // } | |
1102 | // } else { | |
1103 | // // this is an error | |
1104 | // LED_A_OFF(); | |
1105 | // Uart.state = STATE_UNSYNCD; | |
1106 | // } | |
1107 | // } | |
1108 | // break; | |
1109 | ||
1110 | // default: | |
1111 | // LED_A_OFF(); | |
1112 | // Uart.state = STATE_UNSYNCD; | |
1113 | // break; | |
1114 | // } | |
1115 | ||
1116 | // return FALSE; | |
1117 | // } | |
62577a62 | 1118 | /* |
3e134b4c | 1119 | |
f7b42573 | 1120 | static void UartReset() { |
1121 | Uart.byteCntMax = 3; | |
3e134b4c | 1122 | Uart.state = STATE_UNSYNCD; |
1123 | Uart.byteCnt = 0; | |
1124 | Uart.bitCnt = 0; | |
1125 | Uart.posCnt = 0; | |
f7b42573 | 1126 | memset(Uart.output, 0x00, 3); |
3e134b4c | 1127 | } |
62577a62 | 1128 | */ |
f7b42573 | 1129 | // static void UartInit(uint8_t *data) { |
3e134b4c | 1130 | // Uart.output = data; |
1131 | // UartReset(); | |
1132 | // } | |
1133 | ||
1134 | //============================================================================= | |
1135 | // An LEGIC reader. We take layer two commands, code them | |
1136 | // appropriately, and then send them to the tag. We then listen for the | |
1137 | // tag's response, which we leave in the buffer to be demodulated on the | |
1138 | // PC side. | |
1139 | //============================================================================= | |
62577a62 | 1140 | /* |
3e134b4c | 1141 | static struct { |
1142 | enum { | |
1143 | DEMOD_UNSYNCD, | |
1144 | DEMOD_PHASE_REF_TRAINING, | |
1145 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, | |
1146 | DEMOD_GOT_FALLING_EDGE_OF_SOF, | |
1147 | DEMOD_AWAITING_START_BIT, | |
1148 | DEMOD_RECEIVING_DATA | |
1149 | } state; | |
1150 | int bitCount; | |
1151 | int posCount; | |
1152 | int thisBit; | |
1153 | uint16_t shiftReg; | |
1154 | uint8_t *output; | |
1155 | int len; | |
1156 | int sumI; | |
1157 | int sumQ; | |
1158 | } Demod; | |
62577a62 | 1159 | */ |
3e134b4c | 1160 | /* |
1161 | * Handles reception of a bit from the tag | |
1162 | * | |
1163 | * This function is called 2 times per bit (every 4 subcarrier cycles). | |
1164 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us | |
1165 | * | |
1166 | * LED handling: | |
1167 | * LED C -> ON once we have received the SOF and are expecting the rest. | |
1168 | * LED C -> OFF once we have received EOF or are unsynced | |
1169 | * | |
1170 | * Returns: true if we received a EOF | |
1171 | * false if we are still waiting for some more | |
1172 | * | |
1173 | */ | |
3e134b4c | 1174 | |
62577a62 | 1175 | /* |
3e134b4c | 1176 | static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq) |
1177 | { | |
1178 | int v = 0; | |
1179 | int ai = ABS(ci); | |
1180 | int aq = ABS(cq); | |
1181 | int halfci = (ai >> 1); | |
1182 | int halfcq = (aq >> 1); | |
1183 | ||
1184 | switch(Demod.state) { | |
1185 | case DEMOD_UNSYNCD: | |
1186 | ||
1187 | CHECK_FOR_SUBCARRIER() | |
1188 | ||
1189 | if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected | |
1190 | Demod.state = DEMOD_PHASE_REF_TRAINING; | |
1191 | Demod.sumI = ci; | |
1192 | Demod.sumQ = cq; | |
1193 | Demod.posCount = 1; | |
1194 | } | |
1195 | break; | |
1196 | ||
1197 | case DEMOD_PHASE_REF_TRAINING: | |
1198 | if(Demod.posCount < 8) { | |
1199 | ||
1200 | CHECK_FOR_SUBCARRIER() | |
1201 | ||
1202 | if (v > SUBCARRIER_DETECT_THRESHOLD) { | |
1203 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. | |
1204 | // note: synchronization time > 80 1/fs | |
1205 | Demod.sumI += ci; | |
1206 | Demod.sumQ += cq; | |
1207 | ++Demod.posCount; | |
1208 | } else { | |
1209 | // subcarrier lost | |
1210 | Demod.state = DEMOD_UNSYNCD; | |
1211 | } | |
1212 | } else { | |
1213 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; | |
1214 | } | |
1215 | break; | |
1216 | ||
1217 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: | |
1218 | ||
1219 | MAKE_SOFT_DECISION() | |
1220 | ||
1221 | //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq ); | |
1222 | // logic '0' detected | |
1223 | if (v <= 0) { | |
1224 | ||
1225 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; | |
1226 | ||
1227 | // start of SOF sequence | |
1228 | Demod.posCount = 0; | |
1229 | } else { | |
1230 | // maximum length of TR1 = 200 1/fs | |
1231 | if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD; | |
1232 | } | |
1233 | ++Demod.posCount; | |
1234 | break; | |
1235 | ||
1236 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: | |
1237 | ++Demod.posCount; | |
1238 | ||
1239 | MAKE_SOFT_DECISION() | |
1240 | ||
1241 | if(v > 0) { | |
1242 | // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges | |
1243 | if(Demod.posCount < 10*2) { | |
1244 | Demod.state = DEMOD_UNSYNCD; | |
1245 | } else { | |
1246 | LED_C_ON(); // Got SOF | |
1247 | Demod.state = DEMOD_AWAITING_START_BIT; | |
1248 | Demod.posCount = 0; | |
1249 | Demod.len = 0; | |
1250 | } | |
1251 | } else { | |
1252 | // low phase of SOF too long (> 12 etu) | |
1253 | if(Demod.posCount > 13*2) { | |
1254 | Demod.state = DEMOD_UNSYNCD; | |
1255 | LED_C_OFF(); | |
1256 | } | |
1257 | } | |
1258 | break; | |
1259 | ||
1260 | case DEMOD_AWAITING_START_BIT: | |
1261 | ++Demod.posCount; | |
1262 | ||
1263 | MAKE_SOFT_DECISION() | |
1264 | ||
1265 | if(v > 0) { | |
1266 | // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs | |
1267 | if(Demod.posCount > 3*2) { | |
1268 | Demod.state = DEMOD_UNSYNCD; | |
1269 | LED_C_OFF(); | |
1270 | } | |
1271 | } else { | |
1272 | // start bit detected | |
1273 | Demod.bitCount = 0; | |
1274 | Demod.posCount = 1; // this was the first half | |
1275 | Demod.thisBit = v; | |
1276 | Demod.shiftReg = 0; | |
1277 | Demod.state = DEMOD_RECEIVING_DATA; | |
1278 | } | |
1279 | break; | |
1280 | ||
1281 | case DEMOD_RECEIVING_DATA: | |
1282 | ||
1283 | MAKE_SOFT_DECISION() | |
1284 | ||
1285 | if(Demod.posCount == 0) { | |
1286 | // first half of bit | |
1287 | Demod.thisBit = v; | |
1288 | Demod.posCount = 1; | |
1289 | } else { | |
1290 | // second half of bit | |
1291 | Demod.thisBit += v; | |
1292 | Demod.shiftReg >>= 1; | |
1293 | // logic '1' | |
1294 | if(Demod.thisBit > 0) | |
1295 | Demod.shiftReg |= 0x200; | |
1296 | ||
1297 | ++Demod.bitCount; | |
1298 | ||
1299 | if(Demod.bitCount == 10) { | |
1300 | ||
1301 | uint16_t s = Demod.shiftReg; | |
1302 | ||
1303 | if((s & 0x200) && !(s & 0x001)) { | |
1304 | // stop bit == '1', start bit == '0' | |
1305 | uint8_t b = (s >> 1); | |
1306 | Demod.output[Demod.len] = b; | |
1307 | ++Demod.len; | |
1308 | Demod.state = DEMOD_AWAITING_START_BIT; | |
1309 | } else { | |
1310 | Demod.state = DEMOD_UNSYNCD; | |
1311 | LED_C_OFF(); | |
1312 | ||
1313 | if(s == 0x000) { | |
1314 | // This is EOF (start, stop and all data bits == '0' | |
1315 | return TRUE; | |
1316 | } | |
1317 | } | |
1318 | } | |
1319 | Demod.posCount = 0; | |
1320 | } | |
1321 | break; | |
1322 | ||
1323 | default: | |
1324 | Demod.state = DEMOD_UNSYNCD; | |
1325 | LED_C_OFF(); | |
1326 | break; | |
1327 | } | |
1328 | return FALSE; | |
1329 | } | |
62577a62 | 1330 | */ |
1331 | /* | |
3e134b4c | 1332 | // Clear out the state of the "UART" that receives from the tag. |
1333 | static void DemodReset() { | |
1334 | Demod.len = 0; | |
1335 | Demod.state = DEMOD_UNSYNCD; | |
1336 | Demod.posCount = 0; | |
1337 | Demod.sumI = 0; | |
1338 | Demod.sumQ = 0; | |
1339 | Demod.bitCount = 0; | |
1340 | Demod.thisBit = 0; | |
1341 | Demod.shiftReg = 0; | |
f7b42573 | 1342 | memset(Demod.output, 0x00, 3); |
3e134b4c | 1343 | } |
1344 | ||
1345 | static void DemodInit(uint8_t *data) { | |
1346 | Demod.output = data; | |
1347 | DemodReset(); | |
1348 | } | |
62577a62 | 1349 | */ |
3e134b4c | 1350 | |
1351 | /* | |
1352 | * Demodulate the samples we received from the tag, also log to tracebuffer | |
1353 | * quiet: set to 'TRUE' to disable debug output | |
1354 | */ | |
62577a62 | 1355 | |
1356 | /* | |
3e134b4c | 1357 | #define LEGIC_DMA_BUFFER_SIZE 256 |
62577a62 | 1358 | |
1359 | static void GetSamplesForLegicDemod(int n, bool quiet) | |
3e134b4c | 1360 | { |
1361 | int max = 0; | |
1362 | bool gotFrame = FALSE; | |
1363 | int lastRxCounter = LEGIC_DMA_BUFFER_SIZE; | |
1364 | int ci, cq, samples = 0; | |
1365 | ||
1366 | BigBuf_free(); | |
1367 | ||
1368 | // And put the FPGA in the appropriate mode | |
1369 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ); | |
1370 | ||
1371 | // The response (tag -> reader) that we're receiving. | |
1372 | // Set up the demodulator for tag -> reader responses. | |
1373 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1374 | ||
1375 | // The DMA buffer, used to stream samples from the FPGA | |
1376 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE); | |
1377 | int8_t *upTo = dmaBuf; | |
1378 | ||
1379 | // Setup and start DMA. | |
1380 | if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){ | |
1381 | if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); | |
1382 | return; | |
1383 | } | |
1384 | ||
1385 | // Signal field is ON with the appropriate LED: | |
1386 | LED_D_ON(); | |
1387 | for(;;) { | |
1388 | int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; | |
1389 | if(behindBy > max) max = behindBy; | |
1390 | ||
1391 | while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) { | |
1392 | ci = upTo[0]; | |
1393 | cq = upTo[1]; | |
1394 | upTo += 2; | |
1395 | if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) { | |
1396 | upTo = dmaBuf; | |
1397 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
1398 | AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE; | |
1399 | } | |
1400 | lastRxCounter -= 2; | |
1401 | if(lastRxCounter <= 0) | |
1402 | lastRxCounter = LEGIC_DMA_BUFFER_SIZE; | |
1403 | ||
1404 | samples += 2; | |
1405 | ||
1406 | gotFrame = HandleLegicSamplesDemod(ci , cq ); | |
1407 | if ( gotFrame ) | |
1408 | break; | |
1409 | } | |
1410 | ||
1411 | if(samples > n || gotFrame) | |
1412 | break; | |
1413 | } | |
1414 | ||
1415 | FpgaDisableSscDma(); | |
1416 | ||
1417 | if (!quiet && Demod.len == 0) { | |
1418 | Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", | |
1419 | max, | |
1420 | samples, | |
1421 | gotFrame, | |
1422 | Demod.len, | |
1423 | Demod.sumI, | |
1424 | Demod.sumQ | |
1425 | ); | |
1426 | } | |
1427 | ||
1428 | //Tracing | |
1429 | if (Demod.len > 0) { | |
1430 | uint8_t parity[MAX_PARITY_SIZE] = {0x00}; | |
1431 | LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE); | |
1432 | } | |
1433 | } | |
62577a62 | 1434 | |
1435 | */ | |
1436 | ||
3e134b4c | 1437 | //----------------------------------------------------------------------------- |
1438 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1439 | //----------------------------------------------------------------------------- | |
62577a62 | 1440 | /* |
3e134b4c | 1441 | static void TransmitForLegic(void) |
1442 | { | |
1443 | int c; | |
1444 | ||
1445 | FpgaSetupSsc(); | |
1446 | ||
1447 | while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) | |
1448 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
1449 | ||
1450 | // Signal field is ON with the appropriate Red LED | |
1451 | LED_D_ON(); | |
1452 | ||
1453 | // Signal we are transmitting with the Green LED | |
1454 | LED_B_ON(); | |
1455 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
1456 | ||
1457 | for(c = 0; c < 10;) { | |
1458 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1459 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
1460 | c++; | |
1461 | } | |
1462 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1463 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1464 | (void)r; | |
1465 | } | |
1466 | WDT_HIT(); | |
1467 | } | |
1468 | ||
1469 | c = 0; | |
1470 | for(;;) { | |
1471 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1472 | AT91C_BASE_SSC->SSC_THR = ToSend[c]; | |
1473 | legic_prng_forward(1); // forward the lfsr | |
1474 | c++; | |
1475 | if(c >= ToSendMax) { | |
1476 | break; | |
1477 | } | |
1478 | } | |
1479 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1480 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1481 | (void)r; | |
1482 | } | |
1483 | WDT_HIT(); | |
1484 | } | |
1485 | LED_B_OFF(); | |
1486 | } | |
62577a62 | 1487 | */ |
3e134b4c | 1488 | |
1489 | //----------------------------------------------------------------------------- | |
1490 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], | |
1491 | // so that it is ready to transmit to the tag using TransmitForLegic(). | |
1492 | //----------------------------------------------------------------------------- | |
62577a62 | 1493 | /* |
bf2cd644 | 1494 | static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) |
3e134b4c | 1495 | { |
1496 | int i, j; | |
1497 | uint8_t b; | |
1498 | ||
1499 | ToSendReset(); | |
1500 | ||
1501 | // Send SOF | |
bf2cd644 | 1502 | for(i = 0; i < 7; i++) |
3e134b4c | 1503 | ToSendStuffBit(1); |
3e134b4c | 1504 | |
bf2cd644 | 1505 | |
1506 | for(i = 0; i < cmdlen; i++) { | |
3e134b4c | 1507 | // Start bit |
1508 | ToSendStuffBit(0); | |
1509 | ||
1510 | // Data bits | |
1511 | b = cmd[i]; | |
bf2cd644 | 1512 | for(j = 0; j < bits; j++) { |
3e134b4c | 1513 | if(b & 1) { |
1514 | ToSendStuffBit(1); | |
1515 | } else { | |
1516 | ToSendStuffBit(0); | |
1517 | } | |
1518 | b >>= 1; | |
1519 | } | |
1520 | } | |
1521 | ||
1522 | // Convert from last character reference to length | |
1523 | ++ToSendMax; | |
1524 | } | |
62577a62 | 1525 | */ |
3e134b4c | 1526 | /** |
1527 | Convenience function to encode, transmit and trace Legic comms | |
1528 | **/ | |
62577a62 | 1529 | /* |
1530 | static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) | |
3e134b4c | 1531 | { |
bf2cd644 | 1532 | CodeLegicBitsAsReader(cmd, cmdlen, bits); |
3e134b4c | 1533 | TransmitForLegic(); |
1534 | if (tracing) { | |
1535 | uint8_t parity[1] = {0x00}; | |
3e82f956 | 1536 | LogTrace(cmd, cmdlen, 0, 0, parity, TRUE); |
3e134b4c | 1537 | } |
1538 | } | |
1539 | ||
62577a62 | 1540 | */ |
3e134b4c | 1541 | // Set up LEGIC communication |
62577a62 | 1542 | /* |
3e134b4c | 1543 | void ice_legic_setup() { |
1544 | ||
1545 | // standard things. | |
1546 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1547 | BigBuf_free(); BigBuf_Clear_ext(false); | |
1548 | clear_trace(); | |
1549 | set_tracing(TRUE); | |
1550 | DemodReset(); | |
1551 | UartReset(); | |
1552 | ||
1553 | // Set up the synchronous serial port | |
1554 | FpgaSetupSsc(); | |
1555 | ||
1556 | // connect Demodulated Signal to ADC: | |
1557 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1558 | ||
1559 | // Signal field is on with the appropriate LED | |
1560 | LED_D_ON(); | |
1561 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
f7b42573 | 1562 | SpinDelay(20); |
3e134b4c | 1563 | // Start the timer |
1564 | //StartCountSspClk(); | |
1565 | ||
1566 | // initalize CRC | |
1567 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); | |
1568 | ||
1569 | // initalize prng | |
1570 | legic_prng_init(0); | |
62577a62 | 1571 | } |
1572 | */ |